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1 Introduction

Probabilistic inference is one of the main tasks in graphical modeling, which is concerned with answering
queries like marginal and conditional probabilities of the model. Given a distribution P defined by a graphical
model over a set of variables V, we are interested in solving the following inference problems:

• Likelihood of observed data

• Marginal distribution P (xA) of a particular subset of nodes A ⊂ V

• Conditional distribution P (xA|xB) of disjoint subsets A,B ⊂ V

• Mode of the density x̂ = arg maxx∈χm P (x)

So far, we have seen several exact inference algorithms such as brute force enumeration, variable elimination,
message passing (sum-product, belief propagation), and junction tree algorithms. Brute force approach
applies summation over all variables except the query ones, while variable elimination applies a systematic
ordering on summation operations by exploiting the graph structure. Both methods, however, are wasteful
since each individual query computations are treated independently, and consequently, they neglect to share
intermediate terms. One efficient alternative is message passing algorithm that shares intermediate terms
and solves all local inference problems. All mentioned algorithms work only for tree structures and might not
converge for loopy graphs, or even if they converge, we are not sure if the solution makes sense. Junction tree
algorithm provides a way to convert any arbitrary loopy graph to a clique trees and then finds the exact
solution to the inference problem by running a message passing on clique tree. While junction tree satisfies
local and global consistency, it is expensive and exponential to the number of nodes in the largest clique.
In this lecture, two main types of variational approximate inference techniques are introduced: loopy belief
propagation and mean field approximation.

2 A Review on Belief Propagation

The whole story begins with a very intuitive heuristic again: message passing and belief propagation. At
each iteration, each node i passes a message to each of its neighbors j when it receives all messages from
its own neighbors (Figure 1a). This is called message update rule and can be calculated according to the
following equation:

mi→j(xj) ∝
∑
xi

ψij(xi, xj)ψi(xi)
∏

k∈N(i)\j

mk→i(xi)

where ψij(xi, xj) is called compatibilities or doubleton, ψi(xi) is called external evidence or singleton, and
mk→i(xi) is message from all other neighbors of i except j.
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Figure 1: Belief propagation: (a) message passing, (b) node marginal

After the convergence, we can compute the marginal probabilities of every node using the following formula
(Figure 1b), which are proved to be exact on tree structures.

bi(xi) ∝ ψi(xi)
∏

k∈N(i)

mk(xk)

We can make message passing even more general by applying it to a factor graph. Therefore, the algorithm
involves two types of messages: from node i to factor node a, and from factor a to node i (Figure 2):

mi→a(xi) =
∏

c∈N(i)\a

mc→i(xi)

ma→i(xi) =
∑
Xa\xi

fa(Xa)
∏

j∈N(a)\i

mj→a(xj)

Figure 2: Belief propagation in factor graph

3 Loopy Belief Propagation

NOw, the question is what if we have an arbitrary graph? How do we do inference while we know junction
tree is expensive? A clever engineering way is to run the same forward/backward message passing algorithm
on every edge regardless of the graph type (tree or not tree). This is called loopy belief propagation, since the
message circulate, and is in fact a fixed point iterative procedure that tries to minimize Fbethe (introduced
later). More specifically, the following steps are repeated until convergence:

bi(xi) ∝
∏

a∈N(i)

ma→i(xi)
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ba(Xa) ∝ fa(Xa)
∏

i∈N(a)

mi→a(xi)

mi→a(xi) =
∏

c∈N(i)\a

mc→i(xi)

ma→i(xi) =
∑
Xa\xi

fa(Xa)
∏

j∈N(a)\i

mj→a(xj)

However, it is clear that it might not converge or may converge to a wrong solution. This was one the popular
algorithms in late 90’s and a substantial amount of research and experiments has been done to understand
its theoretical behavior. Murphy et. al (1999), as a good example, have conducted a systematic case study
and interestingly observed that a good approximation is still achievable empirically if:

• Stop after a fixed number of iterations

• Stop when no significant change in beliefs

• If solution is not oscillatory but converges, it usually is a good approximation

In the following section, we will discuss in more detail the theoretical properties and characteristics of loopy
belief propagation.

4 Bethe Approximation to Gibbs Free Energy

4.1 Approximating a Probability Distribution

Observing the nice performance of belief propagation on inference in graphs with loops, we question whether
this algorithm has any theoretical justification or whether it is a dirty hack. It will be shown that belief
propagation finds an approximation to the true distribution that is roughly optimal. Now we lay the
groundwork for finding an optimal approximation to a distribution. Formally, let P be the actual distribution
over an arbitrary graph,

P (X) =
1

Z

∏
fa∈F

fa(Xa).

We wish to find a distribution Q that approximates P . Our definition of an optimal approximation is one
that minimizes KL-divergence,

KL(Q1||Q2) =
∑
X

Q1(X) log

(
Q1(x)

Q2(x)

)
which can be interpreted as a distance between distributions. Not a true metric, it satisfies

KL(Q1||Q2) ≥ 0

KL(Q1||Q2) = 0 ⇐⇒ Q1 = Q2

but not symmetry. Thus we can choose between KL(P ||Q) and KL(Q||P ). Unfortunately KL(P ||Q) requires
inference on P . On the other hand, without inference we can write

KL(Q||P ) =
∑
X

Q(X) log

(
Q(X)

P (X)

)
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=
∑
X

Q(X) logQ(X)−
∑
X

Q(X) logP (X) = −HQ(X)− EQ logP (X)

= −HQ(X)− EQ log

 1

Z

∏
fa∈F

fa(Xa)

 = −HQ(X)−
∑
fa∈F

EQ log fa(Xa) + logZ

where HR denotes entropy of distribution R.

We denote the first two terms by the free energy F (P,Q),

F (P,Q) = −HQ(X)−
∑
fa∈F

EQ log fa(Xa).

By inspection, F (P,Q) ≥ F (P, P ) = − logZ. Let us consider how to compute F (P,Q). The entropy HQ

is intractable in general because we must sum over all possible values of X. In contrast, EQ log fa(Xa) is
computable if the marginal of fa is known. Altogether, F is hard to compute. Therefore, our new approach
is to approximate F by some easily computable F̂ . We shall see that a choice approximation turns out to be
the Bethe approximation to Gibbs free energy.

4.2 Deriving the Bethe Approximation

Figure 3: A line graph, the simplest kind of tree.

To motivate the Bethe approximation, consider the tree-structured distribution in Fig. 3. The joint probability
is

P (X1, . . . , X8) = P (X8|X1, . . . , X7)P (X1, . . . , X7) = P (X8|X7)P (X7|X1, . . . , X6)

= · · · = P (X8|X7)P (X7|X6)P (X6|X5)P (X5|X1)P (X1|X2)P (X2|X3)P (X3, X4)

=
P (X8, X7)P (X7, X6)P (X6, X5)P (X5, X1)P (X1, X2)P (X2, X3)P (X3, X4)

P (X7)P (X6)P (X5)P (X1)P (X2)P (X3)
.

Extrapolating this structure, we see that for any tree the distribution is

b(x) =
∏
a

ba(xa)
∏
i

bi(xi)
1−di

where a enumerates edges, i enumerates vertices, and di is the degree of vertex i. We can now compute the
entropy as well as the free energy with an arbitrary distribution P (X) = 1

Z

∏
fa∈F fa(Xa). We have

Htree = −
∑
a

∑
xa

ba(xa) log ba(xa) +
∑
i

(di − 1)
∑
xi

bi(xi) log bi(xi)
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Ftree =
∑
a

∑
xa

ba(xa) log
ba(xa)

fa(xa)
+
∑
i

(1− di)
∑
xi

bi(xi) log bi(xi).

The free energy only requires summation over edges and vertices, so it is easy to compute. For an arbitrary
graph, however, the free energy is far harder to write down. Therefore, we use the Bethe approximation,
which has the exact same formula as free energy for a tree,

FBethe =
∑
a

∑
xa

ba(xa) log
ba(xa)

fa(xa)
+
∑
i

(1− di)
∑
xi

bi(xi) log bi(xi).

The advantage of the Bethe approximation, as mentioned previously, is that it is easy to compute for any
graph. The disadvantage, however, is that there is an ambiguous relationship to the true free energy. In
general, F̂ (P,Q) could be greater, equal, or less than F (P,Q). An intuitive argument can be made that the
closer the underlying graph is to a tree, the more accurate the Bethe approximation. However, there are no
rigorous, general results.

To recap, we aim to minimize KL-divergence between P and Q. We can approximate this quantity by the
Bethe free energy. The next step is to find the {ba} and {bi} that attain the minimum such that local
consistency holds:

∀i, xi
∑
xi

bi(xi) = 1

∀a, i ∈ N(a), xi
∑

xa|xa={xi,xj}

ba(xa) = bi(xi)

where N(a) = {i : xi ∈ xa}. By the method of Lagrange multipliers, the objective function becomes

L = FBethe +
∑
i

γi

(
1−

∑
xi

bi(xi)

)

+
∑
a

∑
i∈N(a)

∑
xi

λai(xi)

bi(xi)− ∑
xa|xa={xi,xj}

ba(xa)

 .

Assuming that FBethe is convex, we now find the stationary points:

0 =
∂L

∂bi(xi)
= 1 + log ba(xa)− log fa(xa)−

∑
a∈N(i)

λai(xi)

=⇒ bi(xi) = exp

 1

di − 1

∑
a∈N(i)

λai(xi)−
γi

di − 1
− 1


∝ exp

 1

di − 1

∑
a∈N(i)

λai(xi)


0 =

∂L

∂ba(Xa)
= 1 + log ba(xa)− log fa(xa)−

∑
i∈N(a)

λai(xi)

=⇒ ba(xa) = exp

log fa(xa) +
∑

i∈N(a)

λai(xi)− 1


∝ exp

log fa(xa) +
∑

i∈N(a)

λai(xi)

 .
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5 Belief Propagation as Minimizing Bethe Free Energy

From the Bethe Free Energy we can obtain the Belief Propagation equations for a factor graph. For the
variables of the factor graph, we have:

bi(xi) ∝ exp

 1

di − 1

∑
a∈N(i)

λai(xi)


With λai = log(mi→a(xi)) = log

(∏
a∈N(i)6=amb→i(xi)

)
, this gives us, for the variables of the factor graph,

bi(xi) ∝ fi(xi)
∏

a∈N(i)

ma→i(xi)

For the factors, we have:

ba(Xa) ∝ exp

−log(fa(Xa)) +
∑

i∈N(a)

λai(xi)


Using our λai, for the factors it gives us:

ba(Xa) ∝ fa(Xa)
∏

i∈N(a)

∏
c∈N(i)\a

mc→i(xi)

Now we define ba→i(xi) =
∑
Xa\xi

ba(Xa). Using the ba derived above,

ma→i(xi) =
∑
Xa\xi

fa(Xa)
∏

j∈N(a)\i

∏
b∈N(j)\a

mb→j(xj)

6 Loopy Belief Propagation

Finding the true distribution is difficult. So instead we’ll optimize over an easier distribution q. We will find

q∗ = argminq∈S(Fbetha(p, q))

Now we can just optimize Hq. However, optimizing Hq is still difficult. Instead we will optimize the bethe
free energy of the beliefs F (b). Loopy belief propagation can be interpreted as a method that uses fixed point
iteration to optimize F (b). Note that we do not know the precise relationship between optimizing F (b) and
optimizing Hq. Oftentimes loopy belief propagation does not converge to the correct solution, although there
are a wide class of problems for which it frequently converges to the correct distribution

7 Generalized Belief Propagation

Using our insights from Bethe free energy, we can choose more accurate approximations of Hq and achieve
better results. We will consider regions of the graph. In normal loopy belief propagation, regions of the
graph are single nodes. In general belief propagation, beliefs are calculated over multiple regions and then
integrated. Instead of using Bethe free energy, this more general method uses Gibbs free energy. This region
based approach was found by Kikuchi, and provides better approximations of the true free energy than
Bethe free energy, at increased computational cost. We can see how this region integration is performed
by understanding the following example: In this example we have four separate regions of the graph. Each
region is comprised of four nodes.
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Beliefs are calculated and integrated hierarchically. This means there is increased computational cost.

Looking at a particular region, we see how nodes that share regions have their energies calculated from their
parent regions. By increasing the number of regions, we increase the accuracy of the approximation. However,
that creates more regions and causes more nodes to be members of multiple regions.

On many problems using GBP instead of standard loopy belief propagation can lead to far better results,
especially if loopy belief propagation does not converge. This follows theoretically, but it is nice to see
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empirically that the improvement is significant.
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