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1 Representation

Many distributions can be represented in closed form, example:

f(x) =
1

(2π|Σ|)1/2
exp(−1

2
(x− µ)TΣ−1(x− µ))

And the expectation Ep[f(x)] is easy to derive.

But there are even more distributions that cannot be expressed in closed form.

2 Monte Carlo methods

Concept: Draw random samples from a distribution and compute marginals and expectations using sample-
based average. e.g:

E[f(x)] =
1

N

∑
i

f(x)(i)

This works with arbitrary model and is asymptotically exact. However, there are three challenges:

• How to draw samples from a given dist (not all distributions can be trivially sampled).

• How to make better use of the samples (not all sample are useful, or eqally useful).

• How to know when we have enough sample for estimation.

Example:

Naive Sampling: In the lecture slide, there is an example is provided using samples generated from a Bayesian
network where variable values are discrete. We can constrcut the samples according to probabilities given in
a BN by traversing through the tree while using the truth table on each node. The probability estimation
can be done using simple frequency counting. However, problems arise when some value of some variable
is not present in the pool of samples, thus giving unknown (or zero, according to the frequency counting
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Figure 1: Example of Monte Carlo method: Naive Sampling

paradigm) probabilities of some marginal and conditional distribution. This implies we need more samples to
accurately estimate a probability. However, in many situations the number of samples required is exponential
in numbers. Furthermore, the naive sampling method would be too costly for high dimensional cases, and
therefore we introduce other alternatives from rejection sampling to weighted resampling.

3 Rejection Sampling

Figure 2: Illustration of the Rejecton Sampling

Suppose we want to sample from a distribution Π(x) = 1
ZΠ′(x), where Z is an unknown normaliser. In

many situations, Π(x) is difficult to sample but Π′(x) is easy to evaluate. Rejection sampling provides a
simple procedure to make use of this property and sample from the original distribution by utilising a simpler
distribution, Q(x). The procedure is as the following:

Draw x′ ∼ Q(x)

Accept with proportion to
Π(x′)

kQ(x′)
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Where k is a constant chosen in a way so to ensure kQ(x) ≥ π(x). The correctness of this procedure can be
easily shown by using Bayesian inference as described below.

p(x) =
[Π′(x)/kQ(x)]Q(x)∫
[Π′(x)/kQ(x)]Q(x)dx

=
Π′(x)∫
Π′(x)dx

= Π(x).

However, as one can visualise, if the proposal distribution does not match the shape of original distribution
closely, this procedure can yield a high number of rejected samples, thus making it inefficient.

Moreover, the value of k has to be determined before the procedure can start. This is not possible in many
situations.

4 Importance Sampling

Instead of formulating a distribution with a density function everywhere greater or equal to original distri-
bution, and subsequently rejecting samples, importance sampling uses a weighting scheme on the generated
samples. Suppose we generate M samples from the proposal distribution q, and assume π(x(t)) can be eval-
uated (note: this is non-trivial assumption). Then the mean of arbitrary function f(x) can be computed
by

E[f(x)] =
1

M

M∑
i=1

f(x(i))w(i)

Where w(t) = π(x(t))
q(x(t))

and x(t) are the samples from q.

In the case which π(x) cannot be evaluated directly. Assume p′(x) = αp(x), where α is an unknown

normaliser. Let r(x) = π′(x)
q(x) , it follows that

Eq[r(x)] =

∫
π′(x)

q(x)
q(x)dx = α

Now it can be shown that (see slides)

Ep[f(x)] =
1

M

M∑
i=1

f(x(i))r(x(t))/
∑
i

r(x(t))
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In other words, the weights w̃(t) is now determined by r(x(t))/
∑
i r(x

(t)), and E[f(x)] = 1
M

∑M
i=1 f(x(i))w̃(i).

5 Weighted Resampling

Note even though importance sampling resolves one issue in rejection sample, that the value of k has to be
determined a priori, the efficiency of the procudure still relies on how well the proposal distribution q matches
the original distribution π. To see this, suppose the original distribution has a substantial mass concenrtrated
in a small region, and the proposal distribution does not. Following the procedure of importance sampling,
it is not hard to see that samples generated in this region is going to have a much higher weight than samples
in other regions. Thus, the estimated result is likely to contain large error.

There are two solutions to this issue. One is to use a heavy tail proposal distribution, the other is to resample
from the samples according to the weights. However, this means a high number of samples is required to
give reasonable estimate. The textbook (Mackay 29.2) shows an example which the weight difference could
result requiring exponential number of samples in order to give any reasonable estimate of Ep[f(x)].

6 Particle Filter

Particle Filter is a tool to estimate the hidden state xt (at time t) of a hidden markov model with known
transition probability π(xt+1|xt), and the expectation value over a function at state xt, approximated by∫

f(xt)p(xt|y0:t)dx ≈
1

N

N∑
i=1

f(x
(i)
t )

Where y0:t are the observations from time 0 to t, and x
(i)
t with i = 1, ..., N are the samples. Depending on

the proposal distribution, there are many ways to sample each xt and update the weights (see Wikipedia,
for example). The one introduced in class uses the following mechanism: following the same derivation in
importance sampling, it can be shown that the quantity p(xt|y1:t) can be represented by

x
(m)
t ∼ p(xt|y1:t−1)

w
(m)
t =

p(yt|x(m)
t )∑

m p(yt|x
(m)
t )

Where m = 1, ...,M are the samples and w
(m)
t are the weights. We draw xt+1 according to the following

distribution:

p(xt+1|y1:t) =

∫
p(xt+1|xt)p(xt|y1:t)dxt

=

M∑
m=1

w
(i)
t p(xt+1|x(m)

t )
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And repeat the previous process of drawing M samples for timestamp t+ 1. i.e

x
(m)
t+1 ∼ p(xt+1|y1:t)

w
(m)
t+1 =

p(yt+1|x(m)
t+1)∑

m p(yt+1|x(m)
t+1)

(To be continued)


