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1 Gaussian Process Inference

A Gaussian process (GP) is a collection of random variables, any finite number of which have a joint Gaussian
distribution. This means that a GP can be completely specified by its mean function m(·) and covariance
function k(·, ·). We say that f(x) ∼ GP(m(x), k(x, x′) iff for all N ∈ N, (f(x1), . . . , f(xN )) ∼ N (fµ,K) with
fµi = m(xi) and Kij = cov(f(xi), f(xj)) = k(xi, xj).

Assuming that we have access only to noisy function values, i.e. that y = f(x) + ε, and that ε is Gaussian
with variance σ2

n the prior on the noisy data is

cov(fy) = K(X,X) + σ2
nI.

We can write the joint distribution of the observed target values fy and function values at test points X∗ as

[
fy
f∗

]
∼ N

(
0,

[
Kθ(X,X) + σ2I Kθ(X,X∗)
Kθ(K∗, X) Kθ(X∗, X∗)

])
deriving the conditional distribution using standard facts about the conditional Gaussian, we arrive at the
key predictive equations for Gaussian process regression:

f∗|X,y, X∗ ∼ N (f∗, cov(f∗)),where

f∗ := K(X∗, X)[K(X,X) + σ2
nI]−1y,

cov(f∗) = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2
nI]−1K(X,X∗).

We can also marginalize over the function values f to obtain the marginal likelihood:

p(y|X) =

∫
p(y|f , X)p(f |X)df .

Performing the integration, we obtain the log marginal likelihood:

log p(y|X) = −1

2
yT (K + σ2

nI)−1y − 1

2
log |K + σ2

nI| −
n

2
log 2π.

2 Kernel functions.

Informally, a kernel function k furnishes a notion of similarity between points. Oftentimes, far away points
are less similar than nearby points. So, Kij = 〈φ(xi), φ(xj)〉 characterizes the “overlap” between features. All
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linear basis function models f(x) = wTφ(x) with a Gaussian prior over the weight vector: p(w) = N (0,Σw)
correspond to Gaussian processes with the kernel function k(x, x′) = φ(x)TΣwφ(x′). This gives us a canonical
way of translating between the weight space view, and the function space view. Some popular kernels include:

kSE(x,x′) = exp

(
− (x− x′)2

2`2

)
kMA(x,x′) = a

(
1 +

√
3(x− x′)

`

)
exp

(
−
√

3(x− x′)

`

)

kRQ(x,x′) =

(
1 +

(x− x′)2

2α`2

)−α
kPE(x,x′) = exp

(
−2 sin2(π(x− x′)ω/`2

)
Recall that a positive semi-definite matrix is any n × n matrix K that satisfies vTKv ≥ 0 for all vectors
v ∈ Rn. Recall also that the covariance matrix of a multivariate probability distribution is always a PSD
matrix, and that conversely, every PSD matrix is the covariance matrix of some multivariate distribution.
For any kernel function k(·, ·), and finite set of input points x1,x2, . . .xn, the Gram matrix is the matrix
who entries are given by Kij = k(xi,xj). We say that a kernel is PSD if any choice of input points gives rise
to a PSD Gram matrix, i.e. if its Gram matrix is a covariance matrix. If this is the case, we say that the
kernel function is valid for a GP.

A stationary kernel function is invariant under translations of the input space, i.e. it is a function of (x−x′).
If it is a function of only |x − x′|, it is called isotropic — it is invariant to all rigid motions. Bochner’s
theorem characterizes an interesting class of kernel functions:

Theorem 1 (Bochner’s theorem) A complex-valued function on RD is the covariance function of a
weakly stationary1, mean square continuous2 complex-valued random process iff it can be represented as

k(x− x′) =

∫
RD

exp (2πis(x− x′)) dµ(s),

where µ is a positive, finite measure.

In the case that the spectral density S(s) exists, the covariance function and the spectral density are Fourier
duals, by the Wiener-Khintchine theorem:

k(x− x′) =

∫
S(s) exp (2πis(x− x′)) ds, S(s) =

∫
k(x− x′) exp (2πis(x− x′)) d(x− x′).

2.1 The Squared Exponential Kernel

We show that the squared-exponential kernel, arises as the function-space expression of a radial basis function
regression model with infinitely many basis functions. Recall that a linear basis function model given by:

f(x,w) = wTφ(x),

p(w) = N (0,Σw),

1A GP is weakly stationary if its kernel function is stationary, and it has constant mean
2A GP is mean-square continuous iff for all x,x′, limx→x′ E[|f(x)− f(x′)|2] = 0.
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gives rise to the kernel function k(xi, xj) = φ(xi)
TΣwφ(xj). We start with the finite model:

f(x) =

J∑
i=1

wiφi(x),

wi ∼ N
(

0,
σ2

J

)
,

φi(x) = exp

(
− (x− ci)2

2`2

)
.

This gives rise to the kernel function: k(x, x′) = σ2

J

∑J
i=1 φi(x)φi(x

′). Letting ci+1 − ci = 1
J and J →∞ the

kernel becomes a Riemann sum:

k(x, x′) = lim
J→∞

σ2

J

J∑
i=1

φi(x)φi(x
′) =

∫ c∞

co

φc(x)φc(x
′)dc.

By setting c0 = −∞ and C∞ = ∞, we spread infinitely many basis functions across the real line, each a
distance ∆c → 0 apart:

k(x, x′) =

∫ ∞
−∞

exp

(
− (x− c)2

2`2

)
exp

(
− (x′ − c)2

2`2

)
dc,

=
√
π`σ2 exp

(
− (x− x′)2

2(
√

2`)2

)
,

which we recognize as a squared exponential covariance function with a
√

2 times longer length-scale. What is
remarkable is that we have turned a model with infinitely many basis functions into an GP with a particular
kind of kernel. This is an instance of the kernel trick – replacing inner products of basis functions with kernels.
Note that functions drawn from a GP with an RBF kernel are infinitely differentiable. For this reason, Stein
accuses it of being overly smooth and unrealistic for modeling many physical processes. Nevertheless, it is
the most widely used kernel in the field.

2.2 The Polynomial Kernel

The linear model

f(x,w) = wTx+ b,

p(w) = N (0, α2I), p(b) = N (0, β2),

corresponds to a Gaussian process with the kernel:

kLIN(x, x′) = α2xTx+ β2.

Samples from a GP with this kernel will be straight lines. Recalling that a product of valid kernels is a valid
kernel, the product of two linear kernels is a quadratic kernel, giving rise to quadratic functions. This can
be generalized to the polynomial kernel kPOL(x, x′) = (α2xtx+ β2)p.
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2.3 The Rational Quadratic Kernel

The rational quadratic kernel allows us to model data varying at multiple scales. Letting r = ||x− x′||, we

set k(r) =
∫

exp(− r2

2`2 )p(`)d`. If we let p(`) take a Gamma density, we derive the rational quadratic kernel

as: kRQ(r) = (1 + r2

2α`′2 )−α.

2.4 Gibbs Kernel

Recall the RBF kernel

kRBF (x,x′) = a2 exp

(
−‖x− x′‖2

2l2

)

If we want to make the length-scale of l dependent on the feature value, we can change l to a set of lp(x)

kGibbs(x,x
′) =

P∏
p=1

(
2lp(x)lp(x

′)

l2p(x) + l2p(x
′)

) 1
2

exp

(
−

P∑
p=1

(xp − x′p)2

l2p(x) + l2p(x
′)

)

where xp is the pth component of x

In this figure, the length-scale l(x) is designed to be small around x = 2 (a). So the output around x = 2 is
less smoother.

2.5 Periodic Kernel

For the RBF kernel, if we transfer the inputs through a vector-value function u(x) = (cos(x), sin(x)), the
kernel kRBF (x,x′)→ kRBF (u(x),u(x′)). We have the periodic kernel

kPER(x,x′) = exp

−2 sin2
(

x−x′
2

)
l2


An example of periodic kernel is show above. At a certain interval, the input data has a higher covariance
with each other.
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2.6 Non-Stationary Kernels

In stationary kernels, we always have a term τ = x−x′ and the kernel is a function of τ , i.e. k(x,x′) = k(τ).
What if we want to treat x − x′ differently across the input domain? We can instead using an arbitrary
warping function g(x) so that the kernel becomes k (g(x), g(x′)). Thus we can choose the warping function
as needed.

2.7 Ornstein-Uhlenbeck kernel

The RBF kernel is sometimes considered to be too smooth. We can simply replace the quadratic Euclidean
distance with an absolute distance:

kOU (x,x′) = exp

(
−‖x− x′‖

l

)

This is the Ornstein-Uhlenbeck (OU) kernel.

The absolute distance has a relatively sharp peak at zero distance (a), and the covariance decrease exponen-
tially for a increasing distance. That makes the output no longer smooth (b).
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2.8 Matern Kernel

More generally, if take the spectral densities the stationary kernel k(x,x′) = k(τ), i.e. take the Fourier
transform of RBF kernel, we have

S(s) =

∫
k(τ)e−2πis

Tτdτ.

Then we apply a Student-t spectral density for S(s), and take the inverse Fourier transform, we recover the
Matern kernel

kMatern(x,x′) =
21−ν

Γ(ν)

(√
2ν |x− x′|

l

)ν
Kν

(√
2ν |x− x′|

l

)
,

where Kν is a modified Bessel function.

By setting ν = 1, we obtain the OU kernel. The Matern kernel dose not have concentration of measure
problem for high dimensional inputs to the extent of the RBF (Gaussian) kernel. It also gives rise to a
Markovian process.

3 Gaussian Process Regression

In the Gaussian Process regression all the process fn and f∗ are dependent.

3.1 Inducing Inputs

Gaussian process f and f∗ evaluated at n training points and J testing points. Assuming we introduce m
(m� n) latent variables u. The joint probability can be written as

p(f , f∗) =

∫
p(f , f∗,u)du =

∫
p(f , f∗|u)p(u)du, where p(u) = N (0,Ku,u).

Assuming f and f∗ are conditionally independent given u:

p(f , f∗) ≈ q(f , f∗) =

∫
q(f |u)q(f∗|u)p(u)du.
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So we have the exact conditional distributions:

p(f |u) = N (Kf ,uK
−1
u,uu,Kf ,f −Qf ,f )

p(f∗|u) = N (Kf∗,uK
−1
u,uu,Kf∗,f∗ −Qf∗,f∗)

where Qa,b = Ka,uK
−1
u,uKu,b

3.2 Subsets of Regressors (SoR) Approximation

For any input x∗, the corresponding function value f∗ is given by:

f∗ = K∗,uwu, with p(wu) = N (0,K−1u,u).

Particularly, for u, we have u = Ku,uwu and we can redefine the SoR model in an equivalent, more intuitive
way:

f∗ = K∗,uK
−1
u,uu, with u ∼ N (0,Ku,u).

Given that there is a deterministic relation between any f? and u, the approximate conditional distributions
in the integral are given by:

qSoR(f |u) = N (Kf ,uK
−1
u,uu,0)

qSoR(f∗|u) = N (K∗,uK
−1
u,uu,0),

with zero conditional covariance. Then we obtain the SoR approximation:

qSoR(f , f∗) = N
(
0,

[
Qf ,f Qf ,∗
Qf ,∗ Q∗,∗

])
, where Qa,b = Ka,uK

−1
u,uKu,b

We can finally derive the predictive conditional as:

qSoR(f∗,y) = N (µ,A),

where µ = Q∗,f (Qf ,f + σ2I)−1y,

A = Q∗,∗ −Q∗,f (Qf ,f + σ2I)−1Qf ,∗.

3.3 The Fully Independent Training Conditional (FITC) Approximation

Instead of ignoring the variance, FITC proposes an approximation to the training conditional distribution
of f given u as a further independence assumption.

qFITC(f ,u) =

n∏
i=1

p(fi|u) = N (Kf ,uK
−1
u,uu,diag[Kf ,f −Qf ,f ])
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qFITC(f∗,u) = p(f∗|u)

Integrating away u, The effective prior implied by the FITC is given by

qSoR(f , f∗) = N
(
0,

[
Qf ,f − diag[Kf ,f −Qf ,f ] Qf ,∗

Qf ,∗ K∗,∗

])


