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1 Introduction

Graphical models are cool but hard to explain in layman’s words. Matrix factorizations are simple and you can even
tell your grandmother about it. They are often intimately related and the interface of the two subcommunities can
borrow ideas from one field and apply to another. In additional most results can be thought of as removing certain
restrictions and adding additional flexibility to the the naive matrix factorization.

2 Topic models and LSI

Long before Latent Dirichlet Allocation (LDA), Latent Semantic Indexing has been very popular. It is essentially
running SVD on the document matrix with bag of words models X = UΛV T , where the inner dimension k is the
number of topics. The associated optimization problem can be written as

min
U,V
‖X − UV T ‖2

where U and V are not entirely identifiable (since we can take any invertible transformation of the rows of U and V
without affecting the objective function). However, it is not hard to see that SVD recovers an optimal solution.

The model is very simple but has some cool applications including:

• cross-language retrieval (by concatenate features of different language inX and find co-sharedU ). TOEFL/GRE
synonym in the same way.

• Matching paper submission to reviewers.

3 Exponential family PCA

LSI can be generalized into Generalized linear losses via a probabilistic model.

X ∼ Pr(·|Θ)Θ = UV T

when Pr(·|Θ) is Gaussian, the reduces to standard matrix factorization. Here the difference is to consider exponential
family.

The MLE can also be represented in a matrix factorization form

min
U,V
−〈X,UV T 〉+G(UV T )
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where G is the log-partition function. It is strictly convex and has analytic form. Also note that the maximization of
the log-likelihood is simply the Fenchel conjugate. The whole thing is bi-strictly convex and alternating minimization
is guaranteed to converge to a stationary point.

For example, in Poisson model the optimization is an unconstrained optimization which looks like

min
U,V

∑
w,d

−Xw,d[UV
T ]w,d + exp([UV T ]w,d)

4 Nonnegative matrix factorization

Another widely accepted method is Nonnegative Matrix Factorization (NMF). It gains popularity because it simply
makes a lot of sense to assume the factors are non-negative. Also it has an interesting multiplicative update algorithm
with the property that all 0 will remain at 0. This is a form of gradient descent with an adaptively chosen stepsize
(refer to the notes for the update equations).

min
U≥0,V≥0

−〈X,UV T 〉+G(UV T )

NMF is mainly used for feature learning on image data. Due to the nonnegativity constraint, the solutions are likely
be sparse and localized and that corresponds very well to parts in an image or arguably regions of the brain. There is
also a KL-divergence version of the NMF, which solves

min
U≥0,V≥0

∑
w,d

−Xw,d log[UV T ]w,d + [UV T ]w,d

If you compare the above KL-divergence version of the NMF and the Poisson PCA, you will see that the forms are
very similar. There are some differences though as one cannot be simply reparameterized as another. KL-divergence
NMF’s low-rank matrix is linear in the exponentiated space, while in Poisson PCA, the low-rank factorized matrix is
linear in the original logarithmic space.

NMF leads to sparse solutions mainly because they have a nonnegativity constraint. The solution will be 0 when
certain constraints are active.

Since the algorithm will shrink some coordinates to zero and they stay at zero, one should always randomly initialize
dense factor U and V to avoid trivial solutions. In particular, U = 0 and V = 0 is a trivial stationary point.

5 Polysemy, Synonymy, pLSI and LDA

LSI is good ay synonym but less so at Polysemy. So people introduce the notion of a topic where different topic can
share the same words but they may mean different things in different topics. This leads to probabilistic LSI (Hoffman
ML’01). LDA is essentially a Bayesian version of pLSI with an additional Dirichlet prior. It is claimed that this
seemingly minor change actually avoids probabilistic LSI from overfitting to data.

The maximum-likelihood problem for pLSI turns out to be

min
U,V

∑
w,d

−Xw,d log[UV T ]w,d

s.t. U, V ≥ 0, UT 1 = 1, V T 1 = 1

Comparing the previous KL-Divergence version of NMF, the only difference is that now it has an additional constraint
that each row of U and V must be in a probability simplex. This adds a semantic meaning to the factors.
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6 Revisiting PCA

(Deterministic) Principal Component Analysis (PCA) enjoys a set of salient properties: Orthogonal basis, implicit
Gaussian assumption, 2nd order decoupling (decouping of PCA) and in some sense, an assumption that the data is
“noiseless” (we will see what it means later).

“These are not necessarily the best way of doing dimension reduction.”, some smart folks thought. Then they come
up with extensions of PCA which features the following:

1. Sparse coding with overcomplete basis.

2. Exponential family PCA/Kernel PCA with non-linear basis.

3. Independent Component Analysis that allows for high order de-correlation.

4. Probabilistic PCA that addresses additive noise to the model.

The remaining parts of Yaoliang’s lecture focused on pPCA and Sparse Coding. The second and third item is left as
supplementary readings.

7 Probabilistic PCA

‘probablistic PCA” Assume a generative model.

Xi|V ∼ N (Uvi, σ
2I), vi ∼ N (0, σ2I)

for i = 1, ..., n. The maximum likelihood optimization problem is

min
U,σ2

log det(UUT + σ2I) + 〈S, (UUT + σ2I)−1〉

where S is the sample covariance matrix.

This is a highly non-convex problem, since log det is a concave function and UUT is essentially a rank-constraint.
Quite remarkably, we can solve the above maximum likelihood problem in closed form via SVD of S = U∗diag([sk]Wk=1)V ∗.

The optimal solution
U = U∗diag([

√
(s2
k − σ2)]Kk=1)

where σ2 = 1
W−K

∑W
k=K+1 s

2
k.

This is proven by the Von Neuman’s trace inequality on the trace of the product of two matrices (see http://en.
wikipedia.org/wiki/Von_Neumann%27s_trace_inequality) that says

To see this, first note that we can replace UUT by a X with row space and column space U∗., since adding any
component orthogonal to U∗ will only increase the objective function. Now the problem reduces to vector problems
on the diagonals, which solves

min
σ2
k,σ

2

∑
log(σ2

k + σ2) +
s2
k

σ2 + σ2
+

W∑
k=K+1

log σ2 +
s2
k

σ2
.

The same reduction can also be seen from Von Neuman’s trace inequality∑
i

σw−i(A)σi(B) ≤< A,B >≤
∑
i

σi(A)σi(B).

http://en.wikipedia.org/wiki/Von_Neumann%27s_trace_inequality
http://en.wikipedia.org/wiki/Von_Neumann%27s_trace_inequality
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where we replace the second term in the maximum likelihood objective with its lower bound. The lower bound can
be attained when we take UUT to have the range that matches the learning K-dimensional eigenspace of S. Then the
solution to the spectrum can be obtained by simply setting derivative to 0.

Note that the under the assumption that the data is contaminated by noise, the solution is no longer rank-projection,
but rather the solution to

min
X
‖S −X‖22 + λ‖X‖∗

with an adaptively chosen regularization weight λ using the remaining described spectrum of S.

It is claimed in the slides that the pPCA recovers PCA when σ = 0. This is true but it’s pretty meaningless because if
the true parameter σ2 = 0, S is always rank K and it doesn’t make sense to do dimension reduction anyway.

Since the probabilistic model comes out, there are many extensions to this. We refer readers to Slide 21 for the
references.

One notable connection is that if one applies pPCA to count data (Multinomial rather than normal) with a Dirichlet
prior, one gets back LDA with Z marginalized out. However, we can no longer marginalize out V as in the Gaussian
case.

8 Sparsity and Choosing K

The remaining issues involve getting exact sparsity and choosing number of topicsK from data. LDA’s Dirichlet prior,
and other Bayesian models (even with shrinkage) cannot get exact sparsity.

In general, the posterior mean estimators is rarely sparse but the maximum a posteriori (MAP) estimators can be
sparse. The notes suggest that MAP estimator is not Bayesian hence unsatisfactory. Arguably, however, both MAP
and posterior mean estimators can be Bayes estimator for the same prior from decision-theoretic point of view. They
just correspond to different loss functions. MAP corresponds to L1 loss, while posterior mean corresponds to the
square loss.

The actual solution to this issue in Bayesian modelling often requires the not-so-pretty use of slab-and-spike type of
priors that assigns point mass at sparse solutions.

Somehow, the lecture only uses sparsity to motivate the discussion of sparse coding, where sparsity is often induces
via an L1 penalty. This is what the next section is about.

As for the model selection problem of choosingK, usually people use Bayesian Non-parametric, but that is beyond the
scope of this lecture. We will sort of address this problem by showing that some norm-regularized matrix factorization
actually corresponds to infinite sparse coding where we do not need to specify K ahead of time. This is what the next
next section is about.

9 Sparse coding

Assume factorization model X = UV T . Wavelets, fourier, random projection can be thought of having a fixed
dictionary U and the problem is finding V . In sparse coding, we solve for U and V at the same time.

Specifically, a commonly accepted regime is when U is overcomplete and V is sparse. “Overcomplete” means that
U has more columns than rows and one can think of U as a dictionary of parts and every data point is a sparse linear
combination of the parts. The more overcomplete U is the sparser V should be.
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Variants of this models for exponential family, to structure sparsity and so forth have been proposed too and this is
also stacked into deep neural networks. A general formulation can be written as

min
U,V

`(X,UV T ) + λ
∑
d,k

g(Vd,k) (1)

for some sparse inducing norms. Often U needs to have bounded norm otherwise V can be set to arbitrarily near 0
and the solution is ill-posed.

Solution to such problem is often done by alternating minimization, e.g., k-SVD. Provable guarantees are still an active
area of research (search on “provable dictionary learning”, “provable overcomplete dictionary learning”, “provable
sparse coding” and etc).

10 Infinite sparse coding

An interesting result for sparse coding occurs when we take K to infinity. Consider the following special case of (1).

min
Θ

`(X,Θ) + λ min
Θ=UV T ,|U:,k|≤1

∑K
k=1 ‖V:,k‖

(2)

For finite K this is a non-convex problem in Θ but as K →∞,

|||Θ||| := min
Θ=UV T ,|U:,k|≤1

∑K
k=1 ‖V:,k‖

is a norm. The dual norm
|||Θ|||o = max{uTΘv : |u| ≤ 1, ‖v‖ ≤ 1}

Specifically, when |u| = ‖u‖2, ‖v‖ = ‖v‖2, the |||Θ|||o = ‖Θ‖2 the spectral/operator norm. Thus, |||Θ||| = ‖Θ‖∗
gets back the nuclear norm, or the trace norm. The essential rank will be obtained adaptively in some sense. But there
is still one parameter λ to tune.

11 Extensions to these ideas

Like we discussed previously, similar ideas have been exploited a lot in both matrix factorization and graphical mod-
elling. Zhu & Xing proposed Sparse Topic Modelling which is discriminative rather than generative. Zhu and Xing
paper has many more parameters than observations. There fore they add strong regularizers with l1 norms and Θ is
actuallly clusters of S. The tweak apparently worked pretty well (better than LDA) for topic modelling. At the same
time, because it is not sampling or computing posterior mean, the L1 norm will give exact sparsity.

The ideas of using a latent low-dimensional subspace to represent high-dimensional data got really popular in the past
decades because they actually work very well in computer vision data.

Any combinations of the keywords: “Supervised”, “predictive”, “sparse”, “large-margin” and etc, might have gener-
ated a paper. It is like these methods are occupying the world.

Nowadays, people often stop modelling probabilistically and directly model the optimization objective to enjoy the
structural implication of the different regularizer. However, this approach is less principled and does not often lead to
an easy construction of confidence/credibility intervals, which makes inference using these models often challenging
(if not intractable). For predictive tasks, it does not matter much since one can always evaluate on the hold-out data,
but for scientific discoveries, probabilistic inferences are of great importance. This is probably the reason why courses
like probabilistic graphical model still exists and are this popular.
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