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1 Introduction

A common task in machine learning is to work with high-dimensional data. To deal with that, generally
people assume a structure data based on latent variables. In this kind of models, the inference is not only
depending on observed variables, but also on unobserved latent variable.

The insertion of unobserved variables lets us have a good comprehension of the problem that we want
to model. However, it is often the case that exact inference is intractable. Throughout the course, we have
studied methods like EM algorithm and approximate inference methods, like Markov Chain Monte Carlo
(MCMC), which are very popular, but they have several drawbacks. For example, MCMC can be slow, and
EM can get stuck in local optima and be slow, as well.
Spectral methods arise as alternative to the standard methods in order to make inference. Thus, this kind of
methods attempt only to estimate probabilities over the observable variables. There are many applications
where the estimation of probabilities is more important than the latent variables themselves, so spectral
methods provide useful estimates in a wide range of domains and models. Indeed, Spectral methods describe
a model such that the probabilities of observable variables depend only on statistics over the observable
variables themselves, preventing the difficulties which appear in the optimization problem of the standard
approaches.

2 Graphical Models and Rank

2.1 Independence and Rank

We can consider the joint distribution of two random variables X1,X2 each taking values in {1, ..., N}. The
joint probability of X1 , X2 can be fully represented by a N×N matrix P such that Pij = P(X1 = i,X2 = j).
Moreover, the marginal probabilities of X1 can be represented in a vector with N components P (X1), ie
P (X1)n = P(X1 = n). Similarly, we can define P (X2). Therefore, if X1 and X2 are independent, we have

Pij = P(X1 = i,X2 = j)

= P(X1 = i)P(X2 = j)

= P (X1)iP (X2)j

Thus,
P = P (X1)P (X2)T

ie, if X1 and X2 are independent, then P is a rank 1 matrix.
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On the other hand, we know that in case that X1 and X2 are not independent, the rank of P is at most N .
Then, it is reasonable to ask what structure emerges when the rank of P is lower than N . Let us consider
an example.

If X1 and X2 are not marginally independent, but they are conditionally independent by X, which has
k states, then rank(P) ≤ k. Indeed, we can define the matrix P (X1|X) as the N × k matrix such that
P (X1|X)ij = P(X1 = i|X = j). Similarly we can define P (X2|X). Therefore, it is easy to prove:

P = P (X1|X) · diag(P (X)) · P (X2|X)

In the right hand side, all the matrices have rank lower than k, then product must have rank lower than k.

Thus, we can say that latent variables models encode low rank dependencies among variables. To exploit
this structure, Linear Algebra offers us a bunch of tools: Rank Computation, Eigenvalues, SVD, Tensor, and
so on.

2.2 HMM example

Just for example, we can consider the following HMM, where the observable variables have m states and the
hidden variable k states.

Figure 1: Graphical Model for a Hidden Markov Model.

We can define the matrix P(X{1,2}, X{3,4}) the probability matrix, where the rows are corresponding the
the possible values of (X1, X2) and the columns to the possible values of (X3, X4). With the previous
information, we can say that P(X{1,2}, X{3,4}) is rank lower than k. Indeed, we have to notice that

P(X{1,2}, X{3,4}) = P (X{1,2}|H2) · diag(P (H2)) · P (X{3,4}|H2)T

And, as before, in the right hand side we have only matrices with rank lower than k. Notice that, with
this factorization, we have expressed a matrix with depends on 4 variables, in a product of matrices which
depend on 3, 1 and 3 variables respectively. However, we still have the dependency on hidden variables.

To resolve this, we just have to observe that this kind of factorizations are not unique. For example, if
M = LR, we also can write M = LSS−1R. So, if we consider the factor L and R, we can also consider LS
and S−1R. This observation is really useful for the Spectral Method, because we can make factorizations
using only observable variables.

Continuing with our example, and using the same argument as before, we wan say

P(X{1,2}, X3) = P (X{1,2}|H2)diag(P (H2))P (X3|H2)T

and
P(X2, X{3,4}) = P (X2|H2)diag(P (H2))P (X{3,4}|H2)T
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Additionally, noting that

P(X{1,2}, X{3,4}) = P (X{1,2}|H2) · diag(P (H2)) · P (X{3,4}|H2)T

and

P(X2, X3) = P (X2|H2)diag(P (H2))P (X3|H2)T

we have

P(X{1,2}, X{3,4}) = P(X{1,2}, X3)P(X2, X3)−1P(X2, X{3,4})

ie, we have expressed a matrix depending on 4 variables, as a product of 3 matrices depending on 3, 2 and
3 variables respectively, and all of them observable. This last fact is really important, and is an advantage
compared with the EM algorithm, which is based on hidden variables. However, this kind of factorizations
may give inconsistent results, for example, giving negative probabilities.

Nevertheless, there are different factorizations for the same structure. For instance,

P(X{1,2}, X{3,4}) = P(X{1,2}, X4)P(X1, X4)−1P(X1, X{3,4})

3 Relationship to original factorization

We can write the new factorization as the old one with an invertible term. Let

M = P
[
X{1,2}, X{3,4}

]
L = P

[
X{1,2}, H2

]
P [∅H2]

R = P
[
X{3,4} | H2

]T
where M = LR.

Choose invertible S = P [X3 | X2] rewrite rewrite M = LSS−1R where

LS = P [X1,2, X3]

S−1R = P [X3, X2]
−1 P

[
X2, X{3,4}

]
.

The new factorization uses one less factor in each matrix than in the full joint P
[
X{1,2}, X{3,4}

]
and is only

variables of the observed data.

We can also use this new factorization to decompose any latent tree. See 5

4 Training

To train our model we replace each probability matrix with its MLE. For the discrete case, the MLE matrices
correspond to frequency counts.

Using the MLE estimate for each probability matrix is a consistent estimator of the joint. However, we have
to invert one of the probability matrices so we lose some statistical efficiency. The EM algorithm never has
to invert a probability matrix so it is more statistically efficient than spectral learning.
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5 Generalizing to more variables

We can recursively apply the factorization from the left to the right to decrease the factors until they all
have at most 3 factors.

For example:

P
[
X{1,2}, X{3,4,5}

]
= P

[
X{1,2}, X3

]
P [X2, X3]

−1 P
[
X2, X{3,4,5}

]
.

Rewrite P
[
X2, X{3,4,5}

]
as P

[
X{2,3}, X{4,5}

]
and decompose

P
[
X{2,3}, X{4,5}

]
= P

[
X{2,3}, X4

]
P [X3, X4]

−1 P
[
X3, X{4,5}

]
.

6 Fixing the inverse

In the factorization we assumed that P [X2, X3] was invertible but this is not generally the case.

For P [X2, X3] to be invertible, we need each matrix in the factorization

P [X2, X3] = P [X2 | H2]P [∅H2]P [X3 | H2]
T

to be full rank.

As before let m be the number of observables and k the number of hidden states.

6.1 k ≤ m

When k ≤ m, we can project P [X2, X3] to a lower dimensional space and invert it in that space. Let

U and V be the top k left and right singular vectors, respectively. We can approximate P [X2, X3]
−1

by

V
(
UTP [X2, X3]V

)−1
UT .

6.2 k > m

This case the factors of P [X2, X3] are not full rank so are not invertible. We can’t project to a lower
dimensional space without sacrificing accuracy.

Intuitively, large k and small m indicates long term dependencies. Below is an example that expresses this
intuition.

Let S = X or S = Y with probability 1/2. We fix a number n. We print S followed by n As. We repeat
this process forever.

As we make n bigger the dependencies in the model get bigger because each S gets farther away.

For n > 2, we have that the number of hidden states is bigger than the number of observable states. Thus
in this case, a large number of hidden states implies that we have long term dependencies.
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7 Spectral Learning

We can reduce the rank of P [X2, X3] so that it is at most m using singular value decomposition but we lose
our information on long dependencies between variables.

Is there a way to some how keep these long term dependencies? The entries of P [X2, X3] are normalized
counts. Given an assignment of variables, Let δ(X) be an indicator vector for the value of X. For example,
lets say that there are only 2 observable states 1 and 2 so

δ(1) =

[
1
0

]
δ(2) =

[
0
1

]
.

Define the tensor product for vectors as v ⊗ w = vwT . Notice that

(δ(X2)⊗ δ(X3))ij = (δ(X2))i(δ(X3))j .

For a given assignment, δ(X2)⊗ δ(X3) tells us where to include counts in the joint of P [X2, X3] so

P [X2, X3] = EX2,X3
[δ(X2)⊗ δ(X3)] .

We can interpret δ as indicator features. Therefore, we can replace these δs with a more complicated feature
function φ.

We can rewrite the full joint as

P
[
X{1,2}, X{3,4}

]
= E

[
δ(X{1,2})⊗ φ(X3)

]
V
(
UT E [φ(X2)⊗ φ(X3)]V

]−1
UT E

[
φ(X2)⊗ δ(X{3,4})

]
.

8 Connection to Hilbert Space Embeddings

We can use the kernel trick to deal with infinite dimensional feature functions! We deal with infinite
dimensional vectors but we can apply the kernel trick to deal with finite matrices that depend on the size of
the sample data. This is beyond the scope of the lecture.

9 Summary

Experimentally, the spectral method performs comparatively to the EM algorithm but is much faster.
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Table 1: Pros and cons of each method
EM Spectral

More statistically efficient Less statistically efficient
Contains local optima Local-optima free

Easier to extend to new models Unknown whether its possible to extend to loopy models
Lacks theoretical guarantees Provably consistent

Does not deal with negative numbers Problems with negative numbers in MLE
Slow Very fast

Difficult to include long dependencies Handles long dependencies well
Generalizes poorly to continuous variables Generalizes well to continuous domains


