
10-708: Probabilistic Graphical Models, Spring 2015

27: Case study with popular GM III

Lecturer: Eric P. Xing Scribes: Hyun Ah Song & Elizabeth Silver

1 Introduction: Gene association mapping for complex diseases1

This class covers an example of how to use graphs to construct a regression model (as opposed to a proba-
bilistic model). The tools of graphical models are used to translate complex data and complex queries into
a regression method.

1.1 Biological motivation

We would like to know what genetic variations cause diseases. The naive view of this process is that one
genetic variation (e.g. a Single Nucleotide Polymorphism (SNP), or copy number variation, etc.) causes
one disease. However, most disease processes are much more complex. For example, flu susceptibility is
influenced by many genes (as well as the environment). Furthermore, many diseases are not truly binary
variables – they may consist of a cluster of traits (e.g. coronary heart disease) or occur on a gradient
(e.g. there’s no sharp cutoff for how much insulin resistance counts as Type II diabetes). The biological
phenomenon of one gene causing multiple traits is known as “pleiotropy”. Multiple genes influencing a single
trait, such that one gean may mask the effect of another, is known as “epistasis”.

Some SNPs make us sick – we can refer to these as the “causal SNPs”. We would expect that the SNPs most
closely associated with a disease are the causal SNPs. However, SNPs may be associated with each other
due to linkage disequilibrium, so a SNP may have a spurious association with a disease due to its linkage
with a causal SNP.

The naive view of SNP → disease implies that we can just regress the disease status onto the patients’
genotypes2 and discover the causal SNPs, perhaps using a lasso penalty to select a sparse set of SNPs. To
deal with the biological complexities, we would like to generalize this method in two ways:

1. Multivariate output: instead of a binary disease status, use all the disease traits that you are trying to
predict. This is an instance of multi-task regression.

2. Graph-structured output: use the association network among the traits to constrain the regression.

Intuitively, if a SNP is associated with one trait in a cluster of disease-related traits, it is likely to also be
associated with other traits in that cluster. This intuition forms the basis of the following methods.

1All the materials including figures are based on the papers [1, 2, 3, 4] and slides [5].
2How you represent the genotype data is an interesting question. SNPs are differences of a single nucleotide at a given

location; there are four possible nucleotides at each location, so each SNP can be represented as an indicator vector of length
four, although not all nucleotides may be observed for each SNP. Other genetic variations, such as copy number variations,
DNA duplications and deletions, can be harder to represent.

1

2 27: Case study with popular GM III

2 Structured association among traits

We use a Quantitative Trait Network (QTN) as our graph over the traits. This is simply a thresholded
correlation matrix. Pairs of traits with correlation less than the threshold ρ are not adjacent, whereas
traits with correlation greater than ρ are connected, and the weight on the edge is equal to their observed
correlation.

3 Graph-Constrained Fused Lasso [3]

Graph-Constrained Fused Lasso leverages the Quantitative Trait Network (QTN) over the output variables
to encode the structured regularization functions in regression model. There are two basic methods that are
based on the Graph-Constrained Fused Lasso: GcFlasso, and GwFlasso.

3.1 GcFlasso

GcFlasso is designed based on the conventional objective function of lasso with an additional fusion penalty.

B̂GC = arg min
∑
k

(yk −Xβk)T · (yk −Xβk) + λ
∑
k

∑
j

|βjk|+ γ
∑

(m,l)∈E

∑
j

|βjm − sign(rml)βjl| (1)

The term rml denotes the correlation coefficient betweenmth and lth features. The last term
∑

(m,l)∈E
∑
j |βjm−

sign(rml)βjl| is the fusion penalty, which encourages the regression coefficients βjm and βjl) to have similar
values. In other words, if the input feature, SNP j, is related to one of the outputs – say trait m – then we
expect it to also be related to trait l, because traits m and l are connected in the QTN. The fusion penalty
term can be thought of as flattening the regression coefficients of SNPs onto traits with high correlations,
so that the effect of each SNP is equalized for the given traits. By regularization parameter γ, the influence
of fusion effect is controlled. The fusion penalty is also an L1 penalty, so it encourages sparsity among the
differences of the weights among SNPS associated with the same cluster of traits.

Applying the fusion penalty term in the objective function, it increases the likelihood to learn true associa-
tions among the input data, and also reduces false positives. The process of GcFlasso is illustrated in Figure
1 (a).

3.2 GwFlasso

GwFlasso can be considered a generalization of GcFlasso. Its cost function is very similar:

B̂GW = arg min
∑
k

(yk −Xβk)T · (yk −Xβk) + λ
∑
k

∑
j

|βjk|+ γ
∑

(m,l)∈E

f(rml)
∑
j

|βjm − sign(rml)βjl|

(2)

The only difference is the function f(rml), a function of the edge weights between trait m and trait l (where
(m, l) is in the set of edges). This term weights the “fusion penalty” of GwFlasso. GwFlasso allows the
degree of fusion to depend on the degree of association between the traits. GcFlasso can be considered a
limiting case of GwFlasso when f(rml) = 1. The process of GwFlasso is illustrated in Figure 1 (b).

27: Case study with popular GM III 3

(a) (b)

Figure 1: Illustrations of (a) GcFlasso, and (b) GwFlasso.

3.3 Optimization

The optimization problems for equations 1 and 2 are convex, and can be solved using quadratic programming.
However, there are two possible problems for optimization of the Graph-Constrained Fused Lasso: 1) it may
not scale well, since the problem we are dealing with usually consists of thousands of traits, and 2) the
objective functions include L1 norm, which is non-smooth, and may cause difficulty in optimization.

In order to overcome these two possible problems, we use a variational technique. Additional variables
can be introduced to equation 2 to transform non-smooth L1 terms into smooth L2 terms. The following
minimization problem is equivalent to that in equation 2:

minimize
βk,djk,djml

∑
k

(yk −Xβk)T · (yk −Xβk) + λ
∑
j,k

(βjk)2

djk
+ γ

∑
(m,l)∈E

f(rml)
2
∑
j

(βjm − sign(rml)βjl)
2

djml

(3)

subject to
∑
j,k

dj,k = 1,
∑

(m,l)∈E

∑
j

djml = 1, djk ≥ 0 for all j, k, djml ≥ 0 for all j, (m, l) ∈ E.

By adding new variables djk and djml, the optimization problem consists of only smooth functions, and
fast coordinate-descent algorithm can be used to estimate the regression coefficients. The fast coordinate-
descent algorithm iteratively updates βk, djk, djml one at a time by fixing the rest of the variables. The
update equations for the variables are given below.

βjk =

{∑
i

xij

(
yik −

∑
j′ 6=j

xij′βj′k

)
+ γ
(∑

(k,l)∈E

f(rkl)
2sign(rkl)βjl
djkl

+
∑

(m,k)∈E

f(rmk)2sign(rmk)βjm
djmk

)}
/{∑

i

x2ij +
λ

djk
+ γ

∑
(k,l)∈E

f(rkl)
2

djkl
+ γ

∑
(m,k)∈E

f(rmk)2

djmk

}
(4)

4 27: Case study with popular GM III

djk =
|βjk|∑
j′,a |βj′a|′

(5)

djml =
f(rml)|βjm − sign(rml)βjl|∑

(a,b∈E)

∑
j′ f(rab)|βj′a − sign(rab)βj′b|

(6)

4 Tree-Guided Group Lasso [4]

Tree-based methods scale much better than general graphs. Consider problems where we can cluster the
output variables into a hierarchical tree structure – for example, clustering genes according to their similarity.
In this case we wish to use the degree of similarity of the variables to weight the regression (see figure 2).
For a pair of variables, their similarity can be represented as the height of the smallest subtree containing
both variables. We can then introduce a penalty term based on the subtrees.

Figure 2: Illustration of two cases genes with different degrees of associations.

Each node v of the tree has a subtree below it containing leaves Gv. The subtree rooted at node v has a
height, hv. We use these terms to design the cost function:

B̂Tree = arg min
∑
k

(yk −Xβk)T · (yk −Xβk) + λ
∑
k

∑
v∈V

wv||βjGv
||2 (7)

where βjGv
is the vector of regression coefficients for variables in Gv (i.e. the leaves of the subtree rooted at

v), and the wv terms are functions of the heights hv.

This objective function weights the degree of coupling according to subtree height. However, pairs of nodes
can appear in multiple subtrees together, in which case they will be coupled together many times with
different weights. The difficulty then is to design a weighting function that is consistent: the total penalty
for each individual node should be equal, regardless of how many subtrees that node appears in. Kim &
Xing (2010) develop a weighting function that is consistent [4]:

To determine the wv terms, first assign a pair of variables, sv and gv, to each tree node v, with the constraint
that sv + gv = 1. sv reflects the penalties on each variable j ∈ Gv for selecting them individually, whereas
gv represents the penalty for selecting them jointly. For example, if the entire tree has height 1, and the
subtree rooted at v has height hv, one can set sv = hv and gv = 1− hv.

27: Case study with popular GM III 5

Then derive the wv recursively as follows, starting at the root:

∑
j

∑
v∈V

wv||βjGv
||2 = λ

∑
j

Wj(vroot) (8)

where

Wj(v) =

{
sv ·

∑
c∈Children(v) |Wj(c)|+ gv · ||βjGv

||2 if v is an internal node,∑
m ∈ Gv|βjm| if v is a leaf.

Kim & Xing [4] show that using this scheme, the sum of the weights equal 1 for all genes, i.e. that

∑
v:k∈Gv

wv =
∏

m∈Ancestors(vk)

sm +
∑

l∈Ancestors(vk)

gl
∏

m∈Ancestors(vl)

sm = 1 (9)

When gv = 0 for all v, the tree-guided penalty is just the lasso penalty. When gv = 1 and sv = 0, then the
penalty reduces to the L1/L2 multi-task learning penalty:

B̂L1/L2 = arg min
∑
k

(yk −Xβk)T · (yk −Xβk) + λ
∑
k

∑
j

||βj ||2

which performs joint covariate selection for all output variables. In between, you get elastic-net regression: a
linear combination of the L1 and L2 norms. Elastic-net regression usually applies the same linear combination
of penalties to all variables. Tree-guided group lasso generalizes this so that the linear combination of
penalties is customized for each output node, based on the tree structure.

5 Two-Graph Guided Multi-Task Lasso [2]

Methods introduced until now focus on incorporating knowledge of the output structure when learning
regression coefficients. However, it is more natural to assume that not only outputs of genetic traits, but
also the inputs of SNPs form graph structures. SNP values may be associated with each other due to
common inheritance: population structures, linkage disequilibrium, etc. Two-Graph Guided Multi-Task
Lasso is motivated by this notion, and considers subnetwork-to-subnetwork association in eQTL mapping.

5.1 Algorithm

The idea is simply to apply fusion penalty to the input structure as well as the output structure. The
objective function is shown in equation 10. We let G1 = (V1, E1) and G2 = (V2, E2) be two graphs defined
on outputs and inputs, respectively, and pen1 and pen2 be penalty terms for the discrepancy between the
regression coefficients and the edge structures in outputs and inputs, respectively.

6 27: Case study with popular GM III

minimize
B

||Y −XB||2F + λ||B||1 + γ1 · pen1(E1, B) + γ2 · pen2(E2, B) (10)

where

pen1(E1, B) =
∑

em,l∈E1

w(em, l)

J∑
j=1

|bjm − sign(rml)bjl|,

pen2(E2, B) =
∑

ef,g∈E2

w(ef , g)

K∑
k=1

|bfk − sign(rf,g)bgk|.

Term rm,l denotes the correlation between ym and yl, and w(·) denotes the weight. The process of Two-
Graph Guided Multi-Task Lasso is illustrated in Figure 3.

Figure 3: Illustration of Two-Graph Guided Multi-Task Lasso - finding associations between subnetworks of
inputs and outputs.

5.2 Optimization

Note that the objective function in equation 10 is not differentiable. To optimize Two-Graph Guided Multi-
Task Lasso, the objective function is transformed to a series of smooth functions in forms of constrained
ridge-type optimization problem. Then simple coordinate-descent algorithm can be used for optimization.

minimize
B,dj,k,d1jml,d2kfg

||Y −XB||2F + λ

J∑
j=1

K∑
k=1

b2jk
djk

+ γ1
∑

em,l∈E1

w2(em, l)

J∑
j=1

(bjm − sign(rml)bjl)
2

d1jml

+ γ2
∑

ef,g∈E2

w2(ef , g)

K∑
k=1

(bfk − sign(rf,g)bgk)2

d2kfg
, (11)

subject to
∑
j,k

dj,k = 1,
∑

em,l∈E
d1jml = 1,

∑
ef,g∈E2,k

d2kfg = 1, dj,k, d1jml, d2kfg ≥ 0

6 Proximal Gradient Descent [1]

Genome association mapping usually involves dealing with high-dimensional regression models with penalties
for inducing structured sparsity. The penalty terms commonly result in nonseparability and nonsmoothness,

27: Case study with popular GM III 7

which makes the optimization difficult. Proximal Gradient Descent method simply expands and rotates the
domain of penalty terms to resolve problems of nonseparability and nonsmoothness that occur in various
types of penalty terms. In [1], the penalty terms of two methods, overlapping-group-sparsity-lasso penalty and
graph-guided-fused-lasso-penalty are introduced as examples of applications of Proximal Gradient Descent
method.

6.1 Resolving nonseparability

A commonly used formulation of genome association mapping is given as equation 12:

arg min
β∈RJ

f(β) =
1

2
||y −Xβ||22 + Ω(β) (12)

For overlapping-group-sparsity-lasso penalty and graph-guided-fused-lasso-penalty methods, the penalty terms
are defined as Ω(β) = γ

∑
g∈G wg||βg||2, and Ω(β) = γ

∑
e=(m,l)∈E,m<l τ(rml)|βm−sign(rml)βl|, respectively,

which are nonseparable in β and nonsmooth in function Ω(β).

By utilizing dual norm, penalty terms can be decoupled as follows. We can express ||β||2 as ||β||2 =
max||αg||2≤1 α

T
g βg, where αg ∈ R|g| is auxiliary variables with a closed, convex domain Q = {α|‖αg‖2 ≤

1,∀g ∈ G}. Then the penalty term can be rewritten as below.

Ω(β) = max
α∈Q

αTCβ, (13)

where

C(i,g),j =

{
γwg, if i = j

0, otherwise

and

Ce=(m,l),j =

 γ · τ(rml), if j = m
−γ · sign(rml)τ(rml), if j = l

0, otherwise

for overlapping-group-lasso penalty and graph-guided-fused-lasso penalty method, respectively. This refor-
mulation of penalty terms resolves the problem of nonseparability, by expanding the terms into higher order.

6.2 Resolving nonsmoothness

Now that we have expanded and transformed our penalty terms into separable forms, we will make smooth
approximations to the penalty terms. We can approximate the objective function in equation 12 as given
below.

arg min
β∈RJ

f̃(β) =
1

2
||y −Xβ||22 + fµ(β), (14)

where we make smooth approximations to the penalty term in fµ(β) by introducing additional term µd(α).

fµ(β) = max
α∈Q

(αTCβ − µd(α)). (15)

Term µ is a positive smoothness parameter, and d(α) = 1
2 ||α||

2
2 is a smoothing function. By making smooth

approximations to the penalty term, the optimization problem can be carried on with less complexity. Figure
4 provides a graphical intuition for this process.

8 27: Case study with popular GM III

By resolving the nonseparability and nonsmoothness problems, the Proximal Gradient Descent method scales
up the regression problem to larger numbers of variables, and with a faster convergence rate compared to
other optimization methods such as interior-point methods.

Figure 4: Graphical explanation of how proximal gradient descent method resolves nonseparability and
nonsmoothness.

References

[1] Xi Chen, Qihang Lin, Seyoung Kim, Jaime G Carbonell, Eric P Xing, et al. Smoothing proximal gradient
method for general structured sparse regression. The Annals of Applied Statistics, 6(2):719–752, 2012.

[2] Xiaohui Chen, Xinghua Shi, Xing Xu, Zhiyong Wang, Ryan Mills, Charles Lee, and Jinbo Xu. A
two-graph guided multi-task lasso approach for eqtl mapping. In International Conference on Artificial
Intelligence and Statistics, pages 208–217, 2012.

[3] Seyoung Kim and Eric P Xing. Statistical estimation of correlated genome associations to a quantitative
trait network. PLoS genetics, 5(8):e1000587, 2009.

[4] Seyoung Kim and Eric P Xing. Tree-guided group lasso for multi-task regression with structured sparsity.
In Proceedings of the 27th International Conference on Machine Learning (ICML-10), pages 543–550,
2010.

[5] Eric Xing. http://www.cs.cmu.edu/ epxing/class/10708-15/slides/lecture27-structsparse.pdf, 2015.

