10-708: Probabilistic Graphical Models, Spring 2015

28 : Approximate Inference - Distributed MCMC

Lecturer: Avinava Dubey Scribes: Hakim Sidahmed, Aman Gupta

1 Introduction

For many interesting problems, drawing samples from a complicated probability distribution is a difficult
problem and approximate methods have to be used. A popular class of sampling algorithms is the ” Markov
Chain Monte Carlo” (MCMC) methods. These methods use an adaptive proposal Q(z’||z) to sample from
the true distribution P(z) using a Markov Chain. If certain conditions are met, samples from the adaptive
distribution can be used as surrogate samples from the true distribution. Gibbs sampling is a particular
type of MCMC algorithm for which each random variable z; is sampled given the other variables.

In this note, we briefly review MCMC methods. We then go on to describe strategies to scale these methods
to large datasets and models.

2 Review of MCMC methods [6]

We briefly review MCMC methods in this section.

Monte Carlo Methods are used to draw samples from a probability density function that is hard to compute.
This situation can occur in Markov Random Fields (MRFs) where the normalization constant can be too
hard to compute, or in high-dimensional models. MCMC methods are used when it is impossible to sample
directly from the original distribution. They use a proposal distribution Q(z’||) which proposes which point
to sample next.

2.1 The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is a popular MCMC method and is a generalization of the Metropolis al-
gorithm. The algorithm is described in Algo 1. In Metropolis-Hastings, the form of the proposal distribution
evolves based on the present state. A common choice of family for the proposal distribution is the isotropic
Gaussian. The choice of the variance for this distribution is critical for the performance of the sampling: A
smaller variance will increase the number of accepted samples, but will reduce the speed of search in of the
space. Thus, choosing a proposal distribution forces us to perform a tradeoff between speed and acceptance
rate, and requires care.

2.2 Gibbs Sampling - Special case of Metropolis-Hastings

Gibbs sampling is another popular MCMC method. In Gibbs sampling, each random variable z; is sampled
separately, with all the other variables fixed. In this particular case, the proposal distribution @ is chosen

28 : Approximate Inference - Distributed MCMC

Algorithm 1 The Metropolis Hastings Algorithm [6]

1:
2:
3:
4:
5:
6:

7
8:
9:
10:
11:
12:
13:
14:
15:

Input: Conditional proposal Q(z'||z), target P*(x)

Output: Sampled set of N correlated samples drawn from P(x)
Initialize state z(°)

Initialize sampled set as Null

for t=1...N do

Sample proposal Q(z'||z(*)) to obtain candidate z’
Accept this state with probability o = %m
if s thentate is accepted
Set z(t+1) = ¢
else
2 1) — (1)
end if
Add 2D to the sampled set
end for

return the sampled set

in the following manner:

Q@'|lx) = P(a'|lx—s)

This is a special case of the Metropolis-Hastings with an acceptance rate of 1. The details of Gibbs sampling
have been described in Algo 2.

Algorithm 2 The Gibbs Sampling Algorithm [6]

— =
= O

Input: Conditional proposal
Output: Sampled set of N correlated samples drawn from P(x)
Initialize state < x§0>, ..,xgg) >
Initialize sampled set as Null
fort=1..N do
for i =1..K do
Sample xEtH) ~ P(Zi||x§t+1), ...,xl(-il),ngll), ...,x(léﬂ))
Add z**+Y to the sampled set
end for

end for

: return the sampled set

3

Gibbs sampling

3.1 Taking multiple chains

There is no fixed method which can detect the convergence of a Markov Chain. However, certain heuristics
can be used to detect the convergence of MCMC methods. A common method consists of running multiple
chains created with different seeds in parallel (one chain per CPU). When all the chains have close log-
likelihoods, we can reasonably assume that they have converged. This heuristic is illustrated in figure 1.
Each chain is run in parallel on a different core. While the chains on the left plot have not converged, we
can reasonably assume the chains on the right plot have converged.

28 : Approximate Inference - Distributed MCMC 3

]

2 L \“.w“ ‘.r'-f"-/ '--*',wmn\‘ L
Ay .

i

Not converged Converged

Figure 1: Number of iterations vs log-likelihood for multiple chains - left: No convergence - right: Conver-
gence

However, this strategy of running multiple chains in parallel does not solve all the issues. Indeed, if the chains
have a long burn-in period (years for instance), then this strategy will not reduce this duration. Hence, it is
important to be able to sample individual chains faster.

4 Naive parallel Gibbs sampling

A naive strategy for speeding up Gibbs sampling is Synchronous Gibbs sampling. This method consists of
sampling all the variables of a problem in parallel on a different processor. This method is illustrated in the
alarm network example (figure 2):

Burglary

C e

Al PO A] _POD
T 90

! T 70
! 0 @ E 01

Figure 2: Naive parallel Gibbs sampling for the alarm network

This approach works as follows:

1. Assign each variable to a processor
2. Sample each variable at time ¢ using the results values of the other variables at ¢t — 1

3. Send all the updated variables to all the processors

The main difference with the Sequential Gibbs Sampler is that each variable is sampled using the *old*
values for the other variables, regardless of whether newer values have been sampled for them.

4 28 : Approximate Inference - Distributed MCMC

Algorithm 3 The synchronous Gibbs sampler|3]

1: for all variables X; do in parallel
2: Execute Gibbs update: XJ(-tH) ~ Tr(XJ||acS\t,3)
3: barrier end

In this example, consider that all the variables are set to ”false” at ¢ = 0. Variable B will be assigned to
worker 0, E to worker 1, A to worker 2, J to worker 3 and M to worker 4.

At time ¢t = 1, worker 0 will sample variable B using all the other variables at time ¢ = 0 (figure 3).

t B_E A J (M|
F F F F F
F

B W N a2 O

Figure 3: Variable B is sampled at time ¢ = 1 using the values for the other variables at time t = 0
Worker 1 will sample variable E in parallel using all the variables at time ¢ = 0 (figure 4).
t B [E A J M|
F F F F F
F T

AW N 2 O

Figure 4: Variable E is sampled at time ¢ = 1 using the values for the other variables at time ¢t = 0

Worker 2 will sample variable A in parallel using all the variables at time ¢t = 0 (figure 5).

One possible disadvantage of this method is that it can require a lot of communications (to send the variable
updates to all the workers). This problem can be limited by assigning blocks of variables to workers instead
of single variables.

Even though this method works well for many models, like collapsed Gibbs sampling for LDA, for many
models, the Synchronous Gibbs Sampler is not ergodic and hence does not converge to the correct stationary
distribution.

Let us see such an example where the synchronous Gibbs sampler does not converge to the stationary
distribution. Consider the Bayes Network defined in figure 6. This network essentially encodes a XOR
relation between (A,B) and (A,C): If A is true, then with high probability B and C will be false. On the
other hand, if A is false, then with high probability, B and C will be true.

28 : Approximate Inference - Distributed MCMC 5

t B E A J [M_
F F F F F
F T F

B W N -~ O

Figure 5: Variable A is sampled at time ¢ = 1 using the values for the other variables at time ¢ = 0

A|_PE)_ - A|_P(C)
T 0.0001 ° ° T 0.0001
F 0.9999 F 0.9999

Figure 6: Example of Bayes Network where Naive parallel Gibbs sampling fails

Using the naive parallel Gibbs Sampler strategy, we sample each of the variables A, B, and C using the old
values. Starting with a state ¢ = 0 where all the variables are set to false, we sample A:

P(A||B,C) o< P(B||A)P(C||A)
. Given B and C are false, A will, with high probability, be true:

P(A=T|B=F,C=F)xP(B=F|A=T)P(C =F||A=T) x0.99920.999 ~ 1

P(A=F|B=F,C=F)xP(B=F|A=F)P(C = F|A=F) x 0.00120.001 ~ 0

Likewise, the naive parallel Gibbs Sampler draws with high probability ”true” for variable B:
PB=T|A=F)x0.999 ~ 1

P(B=F||A=F)x0.001 ~0

and variable C will be, with high probability, drawn to be ”true” as well.

At time ¢t = 1, all the variables will therefore be true with high probability. At the following iteration, the
variables will likely be chosen to be all ”false” and so on. In fact, this algorithm will flip to a stationary
distribution state with probability only m. In sequential Gibbs sampling, in opposite, once A would
have flipped, neither B nor C would have flipped.

In general, the naive parallel Gibbs sampler performs poorly on near-discrete distributions.

There are, however, ways to perform good-quality Gibbs sampling in parallel.

6 28 : Approximate Inference - Distributed MCMC

t A B _C_
F F

F

A W N -~ O

Figure 7: At time ¢t = 0, all the variables are chosen false

t A B C_
F F F
.

A W N 2~ O

Figure 8: At time ¢ = 1, variable A will be, with high probability, drawn to be true

5 The Chromatic sampler

An interesting implementation of parallel Gibbs sampling has been proposed by Gonzalez, Joseph, et al
(2011). They introduced the Chromatic sampler. This method is based on two important concepts: Graph
coloring and Markov Blanket. In Markov Random Fields, the Markov Blanket of a node is defined as its
immediate neighbors. A node is independent of all the other nodes of the graph given its Markov Blanket.
Consider the graph in figure 12. Because each node of a given color is separated from the other nodes of the
same color, we can sample it independently of the other nodes of the same color. The Chromatic sampler
will hence:

1. Find subsets of nodes, such that all nodes in a given subset are not in each other’s Markov Blankets,
and the subsets cover the whole graph

2. Sample each colored subset in parallel

Since each colored subgraph can be sampled in parallel, we want to find a graph coloring that creates as
large subgraphs as possible. In the two colors graph given as example, the Chromatic sampler samples all
the nodes in green in parallel, sends the updates to all the nodes, then samples all the red nodes in parallel
and so on.

28 : Approximate Inference - Distributed MCMC 7

t A B [C_
F F F
T T

A WO N -~ O

Figure 9: At time ¢t = 1, variable B will be, with high probability, drawn to be true

t A B _IC_
FF F
T T (T

S~ W N = O

Figure 10: At time ¢t = 1, variable C will be, with high probability, drawn to be true

One important particular case is given by trees. These graphs always admit a 2-coloring. More generally,
bipartite graphs are always 2-colorable. This strategy does not work for all the graphs. For full cliques for
instance, n nodes require n colors. Besides, the problem of determining whether a graph is k-colorable is
NP-hard. Heuristics have to be used to find a good coloring.

6 Online parallel MCMC

For many problems, the data is received in a streaming way. Examples include news or twitter feeds. We
need to process new data points one at a time. In addition to that, we need to be able to "forget” old data

Algorithm 4 The Chromatic sampler|[3]
: Input: k-colored MRF
: for each of the k colors k;: i € {1,....,k} do
for all variables X; € ; in the i*" color do in parallel
Execute Gibbs update: XV X, |2 v
pdate: A, ~m(JHxNjen<i7INJen>i)
barrier end

end for

AN R

8 28 : Approximate Inference - Distributed MCMC

t A [B_IC_
0O F F F
i R B
2 F F F
3
4

Figure 11: At time ¢ = 2, all the variables will be, with high probability, drawn to be false

Figure 12: Example of graph coloring

points, because the amount of memory available is limited. Because of the frequency this data is received,
we need to process it constant time for each new data point. And because of the amount of data to be
processed, it is important to employ methods that can be parallel to scale them up.

6.1 Sequential Monte Carlo

Sequential Monte Carlo is a method that generalizes particle filters. Particle filters incrementally sample
latent variables X at time ¢ given observations Y up to ¢: P(X;||Y1.t). While particle filters assume the
graphical model is a state-space model, SMC does not assume the models has any particular structure at
all: Given n random variables x1,...,x,, SMC constructs proposal distributions such that, given samples
from P(x1.;), we can sample P(z1.541) in constant time. This method does not require the (intractable)
computation of the normalization constant as the distribution P(x;.,) needs only be evaluated up to a
multiplicative constant.

28 : Approximate Inference - Distributed MCMC 9

6.2 Sequential Importance Sampling

Sequential importance sampling is the foundation of sequential Monte Carlo. In order to get samples in
constant time, we assume the distribution factorizes in the following form:

Qn(l’lm) = Qn—l(ﬂﬂl:n—1||131:n—1) = Q1($1) H(Jk(l’kHIl:k—l)

The advantage of this method is that once we have samples from 1 to k, we don’t need to redraw these
samples. Note that the variables x; can represent more than single variables. For instance, if the observed
variable y; represents documents, then z; can represent the distribution over topics.

In normalized importance sampling, the sample weights are defined by:
i

N r
= 72]_ i

wi

where]
i P

Q)

That is, the weights are proportional to the probability of the samples divided by the proposal distribution
of that sample. They quantify the importance of that sample in finding the marginal distribution.

We saw previously that the samples can be drawn in constant time. We can also get the weights in constant
time.

In Sequential importance sampling, the unnormalized weights r can be written as:

T(xlzn) =

Py‘fiibil(xlznfl) P»,/L(mln)

qn—l(xl:n—l) Pn—ll(xlzn—l)Qn(l'n||I1:n—1)

r(mlm) =

’I"(ZL'Ln) = Tnfl(xl:nfl)an(wl:n71>
n

r(z1n) = r1(21) H ok (T1:k)

k=2

where

Prlz(xlzn)
Pn/(xlzn—l)Qn(xn”xl:n—l)

an(xlzn) =

This formula shows that the unnormalized weights can be computed incrementally: We compute o, and
use it to update r(x1.,—1) to r(z1.,). For this update to be constant time, P/ (x1.,) must be computable
from P;_;(%1.n—1) in constant time. We save the unnormalized weights r at each iteration, and compute
the normalized weights w as needed from r using 1. Hence, for each new variable x,,, we can sample z and
compute the normalized weights w in constant time. And, since the samples do not depend on each other,
sequential importance sampling can easily be made parallel.

The algorithm is described in Algo 5. Note that in the algorithm is very fast, even though the computation
of the normalized weights is sequential. Although in theory we should synchronize this step, these updates
can be done asynchronously [5].

10 28 : Approximate Inference - Distributed MCMC

Algorithm 5 Sequential Importance Sampling

for n=1do
Parallel draw samples 2% ~ g1 (z1)

Py
4 q1(z})
Compute normalized weights w]bynormalizingr}
end for
for n > 2 do

Parallel draw samples z;~qn($n||x1;n_1i)

Parallel compute unnormalized weights r¢ =

compute unnormalized weights r¢ = 7! ay,(2%.,))

— T'L' _ P"/(:Ei:n)_]
n-1 Pnfll(z11m,71)qn(ziy,“mi;nfﬂ
. . rL .. rL
Compute the normalized weights w;, by normalizing r},
end for

One major drawback of sequential importance sampling is that the variance of the samples increases expo-
nentially with n[4], and the accuracy can decrease significantly. One solution to this problem is to resample
from n — T to T at every iteration.

Beyond decreasing variance, resampling:

1. removes samples z* with low weights, which come from low probability regions. However, we want to
focus on high probability regions o P(z). Since each sample gets an equal amount of computation,
regarless of its weight wy, resampling makes sure we spend time on the weights computations of high
probability samples.

2. prevents a small number of samples x; from dominating the empirical distribution: Every time we
resample, all the weights are reset to %, thus preventing some sample weights to grow too much.

The sequential Monte Carlo algorithm is then just the sequential importance sampling with resampling at
every iteration:

Algorithm 6 Sequential Monte Carlo
for n=1do
Parallel draw samples ¢ ~ q1(71)

Py
, a1 (z1)
Compute normalized weights w]bynormalizingr]

Parallel compute unnormalized weights ri =

Parallel resample w?, x¢ into N equally weighted particles x§

end for
for n > 2 do
Parallel draw samples z?,~q, (Zn||Z1:n—17) v
,,,i _ Pn/(zllzn) _
=l Py _1i(at,,_an (2127, 1)

Compute the normalized weights w! by normalizing ¢,

compute unnormalized weights r}, =i a,(2%,,) =

Parallel resample w!, ! into N equally weighted particles x?,

end for

28 : Approximate Inference - Distributed MCMC 11

7 Parallel inference for Bayesian Nonparametrics

In this section, we review parallel inference methods for a popular Bayesian nonparametric model, viz. the
Dirichlet Process Mixture Model (DPMM). We first recap the model and then discuss normal and parallel
inference techniques for DPMMs. Finally, we discuss some comparative results.

7.1 The Dirichlet Process Mixture Model

‘e e

£ §

Figure 13: Infinite mixture models : restaurant perspective

Let us begin with a finite representation. Assume a restaurant with K tables. Each table has one and only
one dish (represented by a color in figure 13). Specifically, the items in the situation represent the following:

Table : Cluster

People : Items to be clustered

Dish/color on each table : Center of each cluster

Hidden variables : Assignment of people to each table

The estimation problem is to find out what dish is on each table (parameter computation) and the assign-
ments of people to different tables (cluster assignments). Now, let us take different situations into account.

If people sit on the table with the most preferred dish/color, this algorithm simulates hard k-means with
people(items) being assigned to tables(clusters). In another scenario. people sit on the table proportional
to appreciation of dish/color. Then, this is a representation of the soft k-means algorithm.

12 28 : Approximate Inference - Distributed MCMC

fork=1,...K @

ne~H
fori=1,...N
Z,~ U(1,K) X € N
X, ~f(n,)
i=1,...N k=1,...K

appreciation of
dish/color

Figure 14: Soft k-means as a a generative process

In general, the soft k-means can be described as a generative process. Each dish (parameter setting) is
represented by a distribution, from which items can be drawn. Specifically, we draw K cluster centers from a
distribution H. Then, we draw Z; from a uniform distribution representing K clusters. Using Z; and cluster
information, we then proceed to generate item X;. This information is depicted as a graphical model in
figure 14.

for k=1, ... K
ng~H

8 ~ Dir(a)

fori=1,...N
Z, ~ Mul(e)
X; ~ f(nz) i=1,...N k=1,..K

Figure 15: Finite Mixture Model Generative Model

Yet another ”flavor” to the above problem is adding the ”rich gets richer” property to the above situation.
In that case, people sit on the table proportional to appreciation of dish/color and number of people sitting
on the table. Thus, tables with more people will attract new people towards them. This is the finite
version of the Dirichlet Distribution Mixture Model. The generative process of the Dirichlet Distribution
Mixture Model is very similar to the soft k-means’ process, except that now cluster numbers are drawn
from multinomials instead of the uniform distribution. The graphical model associated with this process is
described in figure 15.

28 : Approximate Inference - Distributed MCMC 13

7.1.1 Infinite representation of Dirichlet Process Mixture Model

Zn I/E - o
N\ g N\
:. |4 { .Ii——:l_ |
_/ L _/

<
‘—

'Y

5
M~ 7
A Y,
N 00

Figure 16: DPMM generative process

1. Draw V;|a ~ Beta(1,a), i={1,2,...}

(]

. Draw i} |Go ~ Go, i=1{1,2,...}
3. For the nth data point:

(a) Draw Z, | {v1,v2,-..} ~ Mult(«x(Vv)).
(b) Draw X,, | zn ~ p(xn |77,)-

Figure 17: Description of the generative process

Now, assume that the number of tables is infinite. People either sit on a table proportional to appreciation
of dish/color and number of people sitting on the table, or choose a new table and place a new dish on it.
They can choose a new table with a certain probability. The posterior distribution of such a setting results
in a Dirichlet distribution and hence this process is referred to as a Dirichlet process mixture model.

Samples from a Dirichlet distribution can be created using the stick breaking construction. The probabilities
of choosing a table must sum to one. In the stick breaking construction, we break a stick into two parts.
The first part is the probability of choosing a table(cluster). We then take the remaining part of the stick
and break it into two parts again. Again, we choose the first part as the probability of choosing a table. We
keep repeating this process infinite times and essentially get a distribution over an infinite number of tables
(clusters).

The generative process of the DPMM is described in figure 16 and 17. This process now involves using
a multinomial distribution over an infinite number of clusters. Each component Vj of the multinomial is
drawn from a Beta distribution to simulate the stick breaking process. Each Z,, is drawn from an infinite
multinomial. Using Z,, and cluster information, samples can be drawn from the distribution.

14 28 : Approximate Inference - Distributed MCMC

7.2 Inference of Dirichlet Process Mixture Model

A simple Gibbs sampling algorithm would involve sampling each of the variables given the rest of the variables
having fixed values. Variables to sample are table proportion Vj , table assignment to each customer (Z) and
dish at each table n7. This is easily parallelizable and many different parallelization schemes are described
subsequently.

7.3 Parallel Inference of Dirichlet Process Mixture Model

An easy way to parallelize Gibbs sampling for DPMMs is to use the observation that given Vi and 7y, all Zs
are independent of each other. Thus, we can parallelize the inference of all the Zs, but are forced to sample
all Vi and n; together. Empirical results show that this process leads to poor mixing, and thus is not of
great practical utility.

An interesting way to improve the above-mentioned process was introduced recently [7] and involves sampling
all Zs in different processors and maintaining a local copy of all V and 7 by taking noisy samples for each
processor.

Collapsed Gibbs sampling involves integrating out all Vi, and 7, . This leads to good mixing, but couples all
the Zs and makes parallel inference hard. Thus, collapsed Gibbs sampling suffers from large computational
cost.

Yet another inference technique is variational inference. In variational inference, we approximate the posterior
with a distribution belonging to a more manageable family of distribution. This typically involves making
simplifying assumptions about the original model and relaxing many dependencies. Parallel inference is easy
in variational methods, but the search space for "good” models becomes limited and these methods are
typically less accurate than MCMC methods.

Sequential Monte Carlo (SMC) Methods keep a pool of particles, approximate the distribution using weighted
combination of the pool. Parallel inference is easy, but SMC methods suffer from high variance. To alleviate
this, it is sometimes necessary to resample via MCMC methods.

7.3.1 Parallel MCMC for DPMMs

A recent idea for parallel inference of DPMMSs uses a very simple trick. It involves running local collapsed
Gibbs samplers on different cores/processes and then simple/approximate recombination of the results pro-
duced by each core. This generally does not work very well, because two newly discovered clustered in two
different processors may not be the same. Also, re-combining results is a problem. However, this model has
shown to give good results empirically for some models.

Another parallel inference uses the idea that Dirichlet Mixture of Dirichlet processes are Dirichlet processes.
This can be understood using a nice analogy. Each restaurant can be reached via a key m; (drawn from a
multinomial distribution) earmarked for that restaurant. Thus, choosing the restaurant can also be thought
of as a Dirichlet process. Given the keys of all items, each of the processors is independent of other processors.
Conditioned on the Restaurant allocation data are distributed according to P independent Dirichlet process.
We can then perform local collapsed Gibbs sampling on the independent DPs on each processor, and combine
results. We can propose to move a cluster ¢ to a processor p. The acceptance ratio depends on the cluster
size. This can be done asynchronously without affecting algorithm performance.

The generative process is described in figure 18. The figure shows the equivalence between the auxiliary
method and the original method. By introducing some auxiliary variables, we were able to add the power

28 : Approximate Inference - Distributed MCMC 15

DijP(;.H). B e T D ~DP(a, H),
@woiricmet(%,...,g) @ 6:~ D,
—_— x; ~ f(6;)

0; ~ Dy,

Kpew (0;); di=Lgemes M

Figure 18: Comparison of many inference methods for DPMMs

of parallelism to the process.

7.4 Results

Figure 19 compares the performance of the above described algorithms on the same dataset. Gibbs sampling
suffers from computational complexity. Variational methods lead to poor accuracy. SMC methods improve
in terms of accuracy when we increase the number of particles, but suffer from high variance. It is clear
from the figure that the auxiliary variable method outperforms the naive parallel MCMC method and leads
to the best performance in terms of time and accuracy.

Figure 20 compares the perplexity of different models for Hierarchical Dirichlet Processes. It is clear that
the AVparallel method outperforms the naive parallel MCMC method by achieving the lowest perplexity.

1
0.8
0.6
—
[¥8
0.4 AVparallel
* -e-Synch
-m SMC (10 particle)
0.2 = SMC (100 particle)
-+VB
0 -m-Gibbs (1 processor)
4 16 64 256 1024 4096

Time (minutes)

Figure 19: Comparison of many inference methods for DPMMs

16

28 : Approximate Inference - Distributed MCMC

4000
+AVparallel
-e-Synch
-+VB
3000 #-Gibbs (1 Processor)

Perplexity
[\
o
o
S

1000

0.25 1 4 16 64 256 1024 4096
Time (minutes)

Figure 20: Comparison of inference methods for Hierarchical DPs

8 Conclusion

We discussed some parallel inference schemes for graphical models. Some conclusions are that naive parallel
inference scheme does not always work. It is a good idea to utilize the structure of the problem to achieve
conditional independence to increase chances of parallelizing. Also, it is important to peform either exact
parallel inference or achieve a bound on the error of such methods to ensure good quality of inference results.

28 : Approximate Inference - Distributed MCMC 17

References

1]

2]

Eric P.Xing Probabilistic Graphical Models, lectures notes.
http://www.cs.cmu.edu/ epxing/Class/10708/

MacKay, David JC. Introduction to monte carlo methods [Learning in graphical models. Springer Nether-
lands, 1998. 175-204.]

Gonzalez, Joseph and Low, Yucheng and Gretton, Arthur and Guestrin, Carlos Parallel Gibbs sam-
pling: From colored fields to thin junction trees [International Conference on Artificial Intelligence and
Statistics]. P 324-332, 2011.

Doucet, Arnaud, Nando De Freitas, and Neil Gordon. introduction to sequential Monte Carlo methods.
[Springer New York, 2001]

Paige, Brooks, et al. Asynchronous Anytime Sequential Monte Carlo [Advances in Neural Information
Processing Systems. 2014]

Xie, Luu Scribe notes 2014

Newman, David and Asuncion, Arthur and Smyth, Padhraic and Welling, Max Distributed algorithms
for topic models 2014

