
10-708: Probabilistic Graphical Models, Spring 2015

9 : Conditional Random Fields & Case Study I: Image Segmentation

Lecturer: Bin Zhao Scribes: Emmanouil Antonios Platanios
Jeya Balaji Balasubramanian

Mariya Toneva

1 Intuition

Before we present a rigorous treatment of three popular models for partially observed data - the hidden
Markov model (HMM), the maximum entropy Markov model (MEMM), and the conditional random field
(CRF) - we introduce some intuition behind the evolution of these models.

1.1 Hidden Markov Model

Figure 1: HMM with n states and shaded nodes corresponding to the observed variables.

As introduced in Lecture 2, HMMs can be beneficial when modeling partially observed data. However, they
also suffer from several important limitations.

One problem with the HMM framework is the model’s strong independence assumption, known as the
Markov property. The Markov property states P (Xi|Xi−1, Xi−2, ..., X1) = P (Xi|Xi−1). While this property
may simplify the model, it is not always beneficial. By restricting the conditional dependencies to only those
between parents and children, the HMM allows for only local features. In many applications, such as the
one discussed in section 3, it is advantageous to incorporate global features.

Another issue is that the HMM is a generative model, which computes the joint probability P (X,Y ). How-
ever, frequently we are mostly interested in computing P (Y |X) - the probability of a state assignment given
the observed data. To calculate P (Y |X), the HMM spends resources computing P (X) and P (X,Y ), even
though P (X) is rarely used.

1



2 9 : Conditional Random Fields & Case Study I: Image Segmentation

To circumvent both of these problems, researchers looked to maximum entropy Markov models (MEMMs).
Even though MEMMs suffer from their own set of problems, they enable the inclusion of global features and
offer a discriminative framework.

1.2 Maximum Entropy Markov Model

Figure 2: MEMM with n states and shaded nodes corresponding to the observed variables.

The maximum entropy Markov model compensates for the HMM’s locality of features by introducing a global
dependence between each observed and hidden variable. With the introduction of this new dependence,
MEMMs become more expressive than HMMs as they allow explicit dependence between each state and the
full observation sequence.

In addition, the reversal of the arrow between the observed and hidden nodes formulates a discriminative
model, which saves the resources necessary for modeling P (X).

The predictive function now becomes: P (Y1:n|X1:n) =
n∏
i=1

P (Yi|Yi−1, X1:n) =
n∏
i=1

exp(wT×f(Yi,Yi−1,X1:n)
Z(Yi−1,X1:n)

,

where w is some weight vector and Z is a normalizaton function. While this formulation is consistent with
the new objective function, it introduces a local normalization function, Z. This local normalization leads to
a problem known as ‘label bias’. The label bias results in preferences of states with lower number of children
over the rest of the states.

The label biasing problem can be solved by removing the local normalization in favor of a global one. To
enable global normalization, the directed edges between the hidden variables must be replaced by undirected
ones.

1.3 Conditional Random Fields

By replacing the directed edges between the hidden nodes in MEMM by undirected ones, the model overcomes
the label biasing problem while maintaining its global dependence and discriminative framework.

This new model is the conditional random field (CRF) and its predictive function can be written as

P (Y1:n|X1:n) = 1
Z(X1:n,w) ×

n∏
i=1

exp(wT × f(Yi, Yi−1, X1:n). Note that the normalizer Z is now global.



9 : Conditional Random Fields & Case Study I: Image Segmentation 3

Figure 3: CRF with n states and shaded nodes corresponding to the observed variables.

2 Decoding, Inference & Learning

2.1 Hidden Markov Models

The following basic elements are needed to define an HMM:

• N : Number of states in the model (we denote the individual states as S = {S1, S2, ..., SN} and the
state at time t as qt).

• M : Number of distinct observation symbols per state (we denote the individual symbols as V =
{v1, v2, ..., vM}).

• A = {aij}Ni,j=1: The state transition probabilities matrix, where:

aij = P (qt+1 = Sj |qt = Si) , for 1 ≤ i, j ≤ N

• B = {bj (k)}N,Mj,k=1: The observation symbol emission probabilities, where:

bj (k) = P (vk at t|qt = Sj) , for 1 ≤ j ≤ N and 1 ≤ k ≤M

• π = {πi}Ni=1: The initial state probabilities, where:

πi = P (q1 = Si) , for 1 ≤ i ≤ N

Given the appropriate values of N , M , A, B, and π, the HMM can be used to generate an observation
sequence, O = {O1, O2, ..., OT }, where each observation is one of the symbols from V and T is the total
number of observations in the sequence. The procedure used to generate the observation sequence is the
following:

1. Choose an initial state q1 according to the initial state probabilities π and set t = 1.
2. Choose Ot according to the emission probabilities B and the current state, qt.
3. Move to a new state according to the transition probabilities A and the current state, qt.
4. Set t = t+ 1 and if t < T return to step 2; otherwise terminate the procedure.

This procedure can be used to generate an observation sequence as well as to determine how a given sequence
was generated from a given HMM. For convenience from now on we will use the notation λ = (A,B,π) to
indicate the complete parameter set of an HMM.



4 9 : Conditional Random Fields & Case Study I: Image Segmentation

The following three formulations respectively correspond to the three basic problems: decoding, inference,
and learning.

1. Given the observation sequenceO = {O1, O2, ..., OT } and the model λ = (A,B,π), how do we efficiently
compute P (O|λ), the probability of the observation sequence given the model?

2. Given the observation sequence O = {O1, O2, ..., OT } and the model λ = (A,B,π), how do we choose
a corresponding state sequence Q = {q1, q2, ..., qT } which is optimal in some meaningful sense (i.e.
which best “explains” the observations)?

3. How do we adjust the model parameters, λ = (A,B,π) so that P (O|λ) is maximised?

2.1.1 Decoding: The Forward-Backward Algorithm

To address the decoding problem, we want to calculate the probability of the observation sequence O =
{O1, O2, ..., OT } given the model λ = (A,B,π). We could do that by enumerating every possible state
sequence of length T , the number of observations, computing the probability of the observation sequence
for each one of those state sequences and aggregating those probabilities using the probabilities of the
state sequences themselves. In order to do that we initially consider one such state sequence of length T ,
Q = {q1, q2, ..., qT }, where q1 is the initial state. The probability of the observation sequence O given this
state sequence is given by1:

P (O|Q, λ) =

T∏
t=1

P (Ot|qt, λ) =

T∏
t=1

bqt (Ot) (1)

The probability of the state sequence Q is itself given by:

P (Q|λ) = πq1aq1q2aq2q3 ...aqT−1qT = πq1

T∏
t=2

aqt−1qt (2)

Therefore, we have that:
P (O,Q|λ) = P (O|Q, λ)P (Q|λ)⇒

P (O,Q|λ) =

[
T∏
t=1

bqt (Ot)

]
πq1

(
T∏
t=2

aqt−1qt

)
(3)

We can now obtain P (O|λ) by marginalising out Q2. The result we get by doing this is the following:

P (O|λ) =
∑

q1,q2,...,qT

P (O,Q|λ) =
∑

q1,q2,...,qT

[
T∏
t=1

bqt (Ot)

]
πq1

(
T∏
t=2

aqt−1qt

)
(4)

Using this expression, the computation of P (O|λ) requires a total of (2T − 1)NT + NT − 1 ≈ 2TNT

calculations which can be prohibitively expensive to compute even for small values of N and T 3. We thus
need a more efficient way to compute that probability. Fortunately a more efficient method exists and it is
called the forward-backward algorithm.

The Forward-Backward Algorithm: We consider the forward variables αt (i), defined as:

αt (i) = P ({O1, O2, ..., Ot} , qt = Si|λ) , for 1 ≤ t ≤ T and 1 ≤ i ≤ N (5)

We can define αt (i) inductively, so that it can be computed efficiently, in the following way:

1We have assumed statistical independence of the observations.
2This means summing P (O,Q|λ) over all possible state sequences Q.
3E.g. for N = 5 and T = 100 there are in the order of 2× 100× 5100 ≈ 1072 calculations required.



9 : Conditional Random Fields & Case Study I: Image Segmentation 5

Figure 4: A diagram showing the inductive computation
procedure of the forward variables.

Figure 5: A diagram showing the lattice structure of
the inductive computation procedure of the forward vari-
ables.

1. Initialisation:

α1 (i) = πibi (O1) , for 1 ≤ i ≤ N (6)

2. Induction:

αt+1 (j) =

[
N∑
i=1

αt (i) aij

]
bj (Ot+1) , for 1 ≤ t ≤ T − 1 and 1 ≤ j ≤ N (7)

3. Termination:

P (O|λ) =

N∑
i=1

αT (i) (8)

The computation of the forward variables requires only N (N + 1) (T − 1) +N +N (N − 1) (T − 1) ≈ 2N2T
calculations and is thus easily computable even for large values of N and T 4. For solving the other two
fundamental problems of HMMs we now also define a set of backward variables, βt (i), in a similar manner
to that used for defining the forward variables, αt (i):

βt (i) = P ({Ot+1, Ot+2, ..., OT } |qt = Si, λ) , for 1 ≤ t ≤ T and 1 ≤ i ≤ N (9)

We can also define βt (i) inductively, so that it can be computed efficiently, as follows:

1. Initialisation5:

βT (i) = 1, for 1 ≤ i ≤ N (10)

2. Induction:

βt (i) =

N∑
j=1

aijbj (Ot+1)βt+1 (j), for t = T − 1, T − 2, ..., 1 and 1 ≤ i ≤ N (11)

4E.g. for N = 5 and T = 100 there are in the order of about 5000 calculations required which are much less than the about
1072 required with the straightforward calculation given in equation 4.

5This is an arbitrary definition that helps us derive this inductive definition for the backward variables.



6 9 : Conditional Random Fields & Case Study I: Image Segmentation

The computation of the backward variables requires a similar number of calculations to the computation of
the forward variables and so is easily computable even for large values of N and T .

2.1.2 Inference: The Viterbi Algorithm

Figure 6: A diagram showing the
inductive computation procedure
of the backward variables.

There are several ways of solving problem 2. We want to find the “op-
timal” state sequence associated with a given observation sequence but
there are several possible definitions for optimality giving many possible
solutions to this problem. One possible optimality criterion would be to
choose the states qt which are individually most likely. This optimality
criterion maximises the expected number of correct individual states. To
implement the solution to problem 2 using this optimality criterion we
define the following variable6:

γt (i) = P (qt = Si|O, λ) =
αt (i)βt (i)

P (O|λ)
=

αt (i)βt (i)∑N
j=1 αt (j)βt (j)

, (12)

for 1 ≤ t ≤ T and 1 ≤ i ≤ N . Using the γt (i) variables we can solve for
the individually most likely state qt at time t, as:

qt = arg max
i∈{1,...,N}

γt (i), , for 1 ≤ t ≤ T (13)

There could however be some problems. Suppose that the HMM is not
ergodic and that aij = 0 for some i and some j. The above solution does
not consider the fact that some state may not be accessible from some other state and could therefore result
in an invalid sequence. One could solve for the state sequence that maximises the expected number of
correct pairs of states (qt, qt+1) or even triples of states (qt, qt+1, qt+2), etc., but there could still be issues.
The most widely used criterion is to solve for the single best state sequence (i.e. maximise P (Q|O, λ), which
is equivalent to maximising P (Q,O|λ)). To do that we can use the so-called Viterbi algorithm.

The Viterbi Algorithm: To find the single best state sequence, Q = {q1, q2, ..., qT }, for the given obser-
vation sequence, O = {O1, O2, ..., OT }, we need to define the following set of variables:

δt (i) = max
q1,q2,...,qt−1

P ({q1, q2, ..., qt−1} , qt = Si, {O1, O2, ..., Ot} |λ), for 1 ≤ t ≤ T and 1 ≤ i ≤ N (14)

By induction we have that:

δt+1 (j) =

[
max

i∈{1,...,N}
δt (i) aij

]
bj (Ot+1) , for 1 ≤ t ≤ T − 1 and 1 ≤ j ≤ N (15)

In order to retrieve the optimal state sequence we need to keep track of the argument which maximised
δt (i) aij for each t and for each j. We do this defining a new set of variables, the ψt (j), which store that
argument. The complete recursive procedure for finding the best state sequence can now be defined as:

1. Initialisation:

δ1 (i) = πibi (O1) , for 1 ≤ i ≤ N (16)

ψ1 (i) = 0, for 1 ≤ i ≤ N (17)

6The quantity in the denominator of the fraction in this equation is simply a normalisation factor used to make the γt (i)
proper probability measures.



9 : Conditional Random Fields & Case Study I: Image Segmentation 7

2. Recursion:

δt (j) = max
i∈{1,...,N}

[δt−1 (i) aij ] bj (Ot), for 2 ≤ t ≤ T and 1 ≤ j ≤ N (18)

ψt (j) = arg max
i∈{1,...,N}

[δt−1 (i) aij ], for 2 ≤ t ≤ T and 1 ≤ j ≤ N (19)

3. Termination:

P ∗ = max
i∈{1,...,N}

δT (i) (20)

q∗T = arg max
i∈{1,...,N}

δT (i) (21)

4. State sequence backtracking:

q∗t = ψt+1

(
q∗t+1

)
, for t = T − 1, T − 2, ..., 1 (22)

2.1.3 Learning: The Baum-Welch Algorithm

There is no known way to analytically solve for the model which maximises the probability of the observation
sequence. In fact, given any finite observation sequence as training data there is no optimal way of estimating
the model parameters. We can, however, choose λ = (A,B,π) such that P (O|λ) is locally maximised by
using an iterative procedure such as the Baum-Welch algorithm or by using gradient techniques.

The Baum-Welch Algorithm: We firstly define the following set of variables7:

ξt (i, j) = P (qt = Si, qt+1 = Sj |O, λ) =
αt (i) aijbj (Ot+1)βt+1 (j)

P (O|λ)
⇒

ξt (i, j) =
αt (i) aijbj (Ot+1)βt+1 (j)∑N

k=1

∑N
l=1 αt (k) aklbl (Ot+1)βt+1 (l)

, for 1 ≤ t ≤ T and 1 ≤ i, j ≤ N (23)

We can now also write that:

γt (i) =
N∑
j=1

ξt (i, j), for 1 ≤ t ≤ T and 1 ≤ i ≤ N (24)

and we can see that:
T−1∑
t=1

γt (i) = expected number of transitions from Si (25)

and that:
T−1∑
t=1

ξt (i, j) = expected number of transitions from Si to Sj (26)

Using the above formulas and the concept of counting event occurrences we can give a method for the
estimation of the parameters, λ, of a HMM. A set of reasonable re-estimation formulas for π, A and B are
the following:

π̄i = expected number of times in Si at time (t = 1) = γ1 (i) , for 1 ≤ i ≤ N (27)

7The quantity in the denominator of the fraction in this equation is simply a normalisation factor used to make the ξt (i, j)
proper probability measures.



8 9 : Conditional Random Fields & Case Study I: Image Segmentation

āij =
expected number of transitions from Si to Sj

expected number of transitions from Si
=

∑T−1
t=1 ξt (i, j)∑T−1
t=1 γt (i)

, for 1 ≤ i, j ≤ N (28)

b̄j (k) =
expected number of times in Sj and observing vk

expected number of times in Sj
⇒

b̄j (k) =

∑T
t=1 s.t. Ot=vk

γt (j)∑T
t=1 γt (j)

, for 1 ≤ j ≤ N and 1 ≤ k ≤M (29)

It has been proven by Baum and his colleagues that either:

• The initial model λ defines a critical point of the likelihood function, in which case λ̄ =
(
Ā, B̄, π̄

)
= λ,

or:

• Model λ̄ is more likely than model λ in the sense that P
(
O|λ̄

)
> P (O|λ) (i.e. we have found a new

model, λ̄, from which the observation sequence, O, is more likely to have been produced).

Figure 7: A diagram showing the computation procedure of the Baum-Welch algorithm variables.

The final result of this iterative re-estimation procedure is called a maximum likelihood estimate of the HMM.
It should be pointed out that the forward-backward algorithm leads to local maxima only and that in most
problems of interest the optimisation surface is very complex and has many local maxima. However, it has
been shown that these local maxima are good enough for getting satisfactory results. The above re-estimation
formulas can be derived directly by maximising (using standard constrained optimisation techniques) Baum’s
auxiliary function:

Q
(
λ, λ̄

)
=
∑
Q

P (Q|O, λ) logP
(
O,Q|λ̄

)
(30)

Eventually the likelihood function converges to a local maximum point. The re-estimation formulas can be
readily interpreted as an implementation of the Expectation-Maximisation (EM) algorithm from the field
of statistics that was also described in the GMM and the QGMM sections of this report. The expectation
step consists of the calculation of the auxiliary function Q

(
λ, λ̄

)
and the maximisation step consists of the

maximisation over λ̄. The following stochastic constraints are automatically satisfied at each iteration:

N∑
i=1

π̄i = 1 (31)

N∑
j=1

āij = 1, for 1 ≤ i ≤ N (32)



9 : Conditional Random Fields & Case Study I: Image Segmentation 9

and:
M∑
k=1

b̄j (k) = 1, for 1 ≤ j ≤ N (33)

Based on setting up a standard Lagrange optimisation problem by using Lagrange multipliers it can be
shown that P (O|λ) is maximised when the following conditions are met:

πi =
πi

∂P
∂πi∑N

k=1 πk
∂P
∂πk

, for 1 ≤ i ≤ N (34)

aij =
aij

∂P
∂aij∑N

k=1 aik
∂P
∂aik

, for 1 ≤ i, j ≤ N (35)

and:

bj (k) =
bj (k) ∂P

∂bj(k)∑M
l=1 bj (l) ∂P

∂bj(l)

, for 1 ≤ j ≤ N and 1 ≤ k ≤M (36)

These formulas can be easily shown to be the same as the ones we derived earlier and which are shown in
equations (27), (28), and (29).

Finally we note that, since the entire problem can be set up as an optimisation problem, standard gradient
techniques can be used to solve for the optimal values of the model parameters. Such techniques have been
tried and have been shown to yield solutions compatible with those of the standard re-estimation procedures
presented here.

2.2 Conditional Random Fields

The general formulation for CRFs is shown below:

Pλ(y|X) =
exp(λ · F (y,X))

Zλ(X)
, where Zλ(X) =

∑
y

exp(λ · F (Y,X)) (37)

It can be seen that the numerator is in the exponential family, and the denominator is the normalization
factor which sums over all the state sequence, y, over the exponential family.

2.2.1 Inference

The task in inference is a very similar problem as in HMMs, which is to find the most likely state sequence
y, given observation X. Since the normalization term Zλ does not depend on the state sequence, we can just
do the maximization over the term with λ and the feature vector (which depends upon the state sequence
and observation sequence).

ŷ = arg max
y

Pλ(y|X) = arg max
y

λ · F (y,X) (38)

This problem can be solved using a dynamic programming algorithm similar to the Viterbi algorithm for
HMMs.



10 9 : Conditional Random Fields & Case Study I: Image Segmentation

2.2.2 Learning

The learning task is to learn a model λ, given a set of N training sequences {(Xk, yk)}, where k = 1, . . . , N ;
Xk is the k-th observed sequence, and yk is the k-th hidden sequence.

We use the maximum likelihood estimation framework here. We want to find the log-likelihood. It is defined
as a summation over all of the given training sequences k:

Lλ =
∑
y

logPλ(y|X) (39)

This likelihood factorizes into two parts: the first part is the exponential family, and the second is the
normalization factor:

Lλ =
∑
y

[λ · F (Xk)− logZλ(Xk)] (40)

Next, we need a gradient to perform the optimization. We take the gradient of the log-likelihood with respect
to λ:

∆Lλ =
∂Lλ
∂λ

(41)

Taking the derivative of the gradient with respect to lambda results in the following:

∆Lλ = F (Xk, yk)− 1

Zλ(Xk)
(42)

First term of the gradient is the feature we will use. The second term is the complex intractable summation
over the hidden states: Zλ(Xk) =

∑
y exp(F (Xk, yk) · λ · F (y,X)).

We can resolve this using procedures very similar to the forward-backward procedure. The summation over
the hidden state variables is the expectation of y given xk of the features. The model expectations are
computed below: ∑

y

Pλ(y|x) · F (y|Xk) = EPλ(y|X) · F (y|Xk) (43)

We can expand this term because we assume a chain structure for the CRFs:

∑
y

Pλ(y|X) ·
n∑
i=1

f(yi−1, yi, X, i) (44)

Taking the summation to the front, we get:

n∑
i=1

[∑
y

Pλ(y|X) · f(yi−1, yi, X, i)

]
(45)

Here we consider the states of the sequence between state 1 and state i. If say, we want to know the
probability that the state yi−1 is y, and the state of yi is y′, given observation X and the feature term, we
can write this expression as:

n∑
i=1

[∑
y

Pλ(yi−1 = y, yi = y′|X) · f(yi−1, yi, X, i)

]
(46)

We need to know how to compute the probability that state at i− 1 is y, and at i is y′. This was ψ in the
previous HMM derivation.



9 : Conditional Random Fields & Case Study I: Image Segmentation 11

Analogous to HMMs, we define α and β for CRFs, and also a transition matrix M [y, y′] at a time for the
probability of a transition from state y to y′. This quantity is just exp[(λ ·f(y, y′, X, i)]. This α, β, transition
matrix M [y, y′], and the feature matrix terms give the expectation derivation.

From the definition of α, β, we can derive this final equation:

N∑
i=1

1

Zλ(X)
αTi−1(M · f [i] · βi) (47)

Using these terms we can compute the gradient of the log-likelihood for our model.

Since we can now compute our gradient, and our goal is to maximize this using optimization techniques, we
can use methods like gradient descent and conjugate gradient.

An important challenge in the learning stage is over-fitting. The optimization needs to be penalized for
complexity. So, instead of just maximizing the log-likelihood, we can also do a very simple regularization,

as it is done in SVM. The regularization term,−‖λ‖
2
2

σ2 , contains the outer bound of the parameters that we
try to minimize. The term to optimize now becomes

∑
k

logPλ(y|x)−
‖λ‖22
σ2

(48)

3 Application of CRFs in Computer Vision

One application of CRF in computer vision is image segmentation, where the goal is to segment an image
into objects. This can be reduced to a labeling problem, and in a simple case, a binary classification problem.
The classification task is to differentiate the objects we are interested in (foreground) from the rest of the
pixels (background). The foreground object receives a label (+), and background receives another label (-).
The classification task assigns an independently learned label on each patch but does not smooth across the
neighboring patches, even though they can be related.

Using CRFs, we can overcome this shortcoming with two terms. The first term (state): f(yi, X, λ), depends
on the features of the entire image, and the label for its own patch. The state term is a logistic regression
function that tries to classify whether each of the pixels/patches belongs to the foreground or background.
The state term suffers from the lack of smoothness. So, we add a second term (smoothness regularization)
in the CRF: g(yi, yj , X, λ), which accounts for all labels from neighboring patches. This term constrains all
patches that either appear spatially close to each other or share similar features and can have similar labels.

To summarize, image segmentation involves feature representation using appropriate image filters. This
filtered image is subject to a classification task using a logistic regression on the state term that assigns a
classification score (for each possible label) to each patch in the image. Next, smoothing is performed using
an association score that considers the similarity between labels that are spatially close or are similar in
appearance. These steps result in proper image segmentation instead of obtaining random patches.

An extension of such CRFs is one that addresses the issue of the size of the patch. If the patch is too large, it
may include multiple objects; if it were too small, it would only include parts of an image. These errors can
make optimization difficult. A possible solution using CRFs is a multi-level CRF, which contains 2 levels.
The first level uses small patch sizes to learn a local appearance CRF. The second level uses large patches for
global coherence CRFs. The scores from these two terms are combined to return better performing image
classification tasks.


