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What is Machine Learning?

I Machine learning algorithms adapt with data versus having
fixed decision rules.

I Machine learning aims not only to equip people with tools
to analyse data, but to create algorithms which can learn
and make decisions without human intervention.1,2

I In order for a model to automatically learn and make
decisions, it must be able to discover patterns and
extrapolate those patterns to new situations.

1E.g. , N.D. Lawrence (2010), “What is Machine Learning?”
2T.M. Mitchell (2006), “What is Machine Learning and Where Is it Headed?”
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Building an Intelligent Model

The ability for a model to learn from data depends on its:
1. Support: what solutions we think are a priori possible.
2. Inductive biases: what solutions we think are a priori likely.

I Examples: Function Learning, Character Recognition
I Human ability to make remarkable generalisations from data could

derive from an expressive prior combined with Bayesian inference.
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Statistics from Scratch

Basic Regression Problem

I Training set of N targets (observations) y = (y(x1), . . . , y(xN))T.
I Observations evaluated at inputs X = (x1, . . . , xN)T.
I Want to predict the value of y(x∗) at a test input x∗.

For example: Given CO2 concentrations y measured at times X, what will
the CO2 concentration be for x∗ = 2024, 10 years from now?

Just knowing high school math, what might you try?
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Statistics from Scratch

Guess the parametric form of a function that could fit the data

I f (x,w) = wTx [Linear function of w and x]
I f (x,w) = wTφ(x) [Linear function of w] (Linear Basis Function

Model)
I f (x,w) = g(wTφ(x)) [Non-linear in x and w] (E.g., Neural Network)

φ(x) is a vector of basis functions. For example, if φ(x) = (1, x, x2) and
x ∈ R1 then f (x,w) = w0 + w1x + w2x2 is a quadratic function.

Choose an error measure E(w), minimize with respect to w
I E(w) =

∑N
i=1[f (xi,w)− y(xi)]

2
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Statistics from Scratch

A probabilistic approach
We could explicitly account for noise in our model.

I y(x) = f (x,w) + ε(x) , where ε(x) is a noise function.

One commonly takes ε(x) = N (0, σ2) for i.i.d. additive Gaussian noise, in
which case

p(y(x)|x,w, σ2) = N (y(x); f (x,w), σ2) Observation Model (1)

p(y|x,w, σ2) =
N∏

i=1

N (y(xi); f (xi,w), σ2) Likelihood (2)

I Maximize the likelihood of the data p(y|x,w, σ2) with respect to σ2,w.

For a Gaussian noise model, this approach will make the same predictions as
using a squared loss error function:

log p(y|X,w, σ2) ∝ − 1
2σ2

N∑
i=1

[f (xi,w)− y(xi)]
2 (3)
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Statistics from Scratch

I The probabilistic approach helps us interpret the error measure in a
deterministic approach, and gives us a sense of the noise level σ2.

I Probabilistic methods thus provide an intuitive framework for
representing uncertainty, and model development.

I Both approaches are prone to over-fitting for flexible f (x,w): low error
on the training data, high error on the test set.

Regularization

I Use a penalized log likelihood (or error function), such as

log p(y|X,w) ∝

model fit︷ ︸︸ ︷
− 1

2σ2

n∑
i=1

(f (xi,w)− y(xi)
2)

complexity penalty︷ ︸︸ ︷
−λwTw . (4)

I But how should we define complexity, and how much should we
penalize complexity?

I Can set λ using cross-validation.
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Bayesian Inference

Bayes’ Rule

p(a|b) = p(b|a)p(a)/p(b) , p(a|b) ∝ p(b|a)p(a) . (5)

posterior =
likelihood× prior

marginal likelihood
, p(w|y,X, σ2) =

p(y|X,w, σ2)p(w)

p(y|X, σ2)
.

(6)

Predictive Distribution

p(y|x∗, y,X) =

∫
p(y|x∗,w)p(w|y,X)dw . (7)

I Average of infinitely many models weighted by their posterior
probabilities.

I No over-fitting, automatically calibrated complexity.
I Typically more interested in distribution over functions than in

parameters w.
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Representing Uncertainty

Different types of uncertainty:

I Uncertainty through lack of knowledge
I Intrinsic uncertainty; e.g., radioactive decay.

Uncertainty through lack of knowledge can seem like intrinsic uncertainty
(e.g., rolling dice).

Regardless of whether or not the universe is deterministic – whether there is
some underlying true answer – we will always have uncertainty. We can
represent this belief using probability distributions (Bayesian methods,
probabilistic modelling).
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Parametric Regression Review

Deterministic

E(w) =

N∑
i=1

(f (xi,w)− yi)
2 . (8)

Maximum Likelihood

p(y(x)|x,w) = N (y(x); f (x,w), σ2
n) , (9)

p(y|X,w) =

N∏
i=1

N (y(xi); f (xi,w), σ2
n) . (10)

Bayesian

posterior =
likelihood× prior

marginal likelihood
, p(w|y,X) =

p(y|X,w)p(w)

p(y|X)
. (11)

p(y|x∗, y,X) =

∫
p(y|x∗,w)p(w|y,X)dw . (12)
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Model Selection and Marginal Likelihood

p(y|M1,X) =

∫
p(y|f1(x,w))p(w)dw (13)

              y
All Possible Datasets

p(
y|

M
)

 

 

Complex Model

Simple Model

Appropriate Model

18 / 53



Blackboard: Examples of Occam’s Razor in Everyday Inferences

For further reading, see MacKay (2003) textbook, Information Theory,
Inference, and Learning Algorithms.
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Occam’s Razor Example

-1, 3, 7, 11, ??, ??

I H1: the sequence is an arithmetic progression,
add n, where n is an integer.

I H2: the sequence is generated by a cubic function
of the form cx3 + dx2 + e, where c, d, and e are
fractions. (− 1

11x3 + 9
11x2 + 23

11)
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Model Selection
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Observations y(x). Assume p(y(x)|f (x)) ∼ N (y(x); f (x), σ2). Consider
polynomials of different orders. As always, observations are out of the
chosen model class! Which model should we choose?

f0(x) = a0 , (14)
f1(x) = a0 + a1x , (15)

f2(x) = a0 + a1x + a2x2 , (16)
... (17)

fJ(x) = a0 + a1x + a2x2 + · · ·+ aJxJ . (18)
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Model Selection: Occam’s Hill
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Marginal likelihood (evidence) as a function of model order, using an
isotropic prior p(a) = N (0, σ2I).
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Model Selection: Occam’s Asymptote
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Marginal likelihood (evidence) as a function of model order, using an
anisotropic prior p(ai) = N (0, γ−i), with γ learned from the data.
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Occam’s Razor
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(a) Isotropic Gaussian Prior
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(b) Anisotropic Gaussian Prior

For further reading, see Rasmussen and Ghahramani (2001) (Occam’s
Razor) and Kass and Raftery (1995) (Bayes Factors)
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Linear Basis Models

Consider the simple linear model,

f (x) = a0 + a1x , (19)
a0, a1 ∼ N (0, 1) . (20)
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Linear Models

We are interested in the induced distribution over functions, not the
parameters...
Let’s characterise the properties of these functions directly:

f (x|a0, a1) = a0 + a1x , a0, a1 ∼ N (0, 1) . (21)
E[f (x)] = E[a0] + E[a1]x = 0 . (22)

cov[f (xb), f (xc)] = E[f (xb)f (xc)]− E[f (xb)]E[f (xc)] (23)

= E[a2
0 + a0a1(xb + xc) + a2

1xbxc]− 0 (24)

= E[a2
0] + E[a2

1xbxc] + E[a0a1(xb + xc)] (25)
= 1 + xbxc + 0 (26)
= 1 + xbxc . (27)
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Linear Models

Therefore any collection of values has a joint Gaussian distribution

[f (x1), . . . , f (xN)] ∼ N (0,K) , (28)
Kij = cov(f (xi), f (xj)) = k(xi, xj) = 1 + xbxc . (29)

By definition, f (x) is a Gaussian process.

Definition
A Gaussian process (GP) is a collection of random variables, any finite
number of which have a joint Gaussian distribution. We write
f (x) ∼ GP(m, k) to mean

[f (x1), . . . , f (xN)] ∼ N (µ,K) (30)
µi = m(xi) (31)
Kij = k(xi, xj) , (32)

for any collection of input values x1, . . . , xN . In other words, f is a GP with
mean function m(x) and covariance kernel k(xi, xj).
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Linear Basis Function Models

Model Specification

f (x,w) = wTφ(x) (33)
p(w) = N (0,Σw) (34)

Moments of Induced Distribution over Functions

E[f (x,w)] = m(x) = E[wT]φ(x) = 0 (35)
cov(f (xi), f (xj)) = k(xi, xj) = E[f (xi)f (xj)]− E[f (xi)]E[f (xj)] (36)

= φ(xi)
TE[wwT]φ(xj)− 0 (37)

= φ(xi)
TΣwφ(xj) (38)

I f (x,w) is a Gaussian process, f (x) ∼ N (m, k) with mean function
m(x) = 0 and covariance kernel k(xi, xj) = φ(xi)

TΣwφ(xj).
I The entire basis function model of Eqs. (33) and (34) is encapsulated as

a distribution over functions with kernel k(x, x′).
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Gaussian Processes

I We are ultimately more interested in – and have stronger intuitions
about – the functions that model our data than weights w in a parametric
model, and we can express those intuitions using a covariance kernel.

I The kernel controls the support and inductive biases of our model, and
thus its ability to generalise.
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Example: RBF Kernel

kRBF(x, x′) = cov(f (x), f (x′)) = a2 exp(−||x− x′||2

2`2 ) (39)

I Far and above the most popular kernel.
I Expresses the intuition that function values at nearby inputs are more

correlated than function values at far away inputs.
I The kernel hyperparameters a and ` control amplitudes and wiggliness

of these functions.
I GPs with an RBF kernel have large support and are universal

approximators.
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Sampling from a GP with an RBF Kernel

x = [-10:0.2:10]’; % inputs (where we query the GP)
N = numel(x); % number of inputs
K = zeros(N,N); % covariance matrix

% very inefficient way of creating K in Matlab
for i=1:N

for j=1:N
K(i,j) = k_rbf(x(i),x(j));

end
end

K = K + 1e-6*eye(N); % add jitter for conditioning
CK = chol(K);
f = CK’*randn(N,1); % draws from N(0,K)

plot(x,f);
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Samples from a GP with an RBF Kernel
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1D RBF Kernel with Different Length-scales

kRBF(x, x′) = cov(f (x), f (x′)) = a2 exp(−||x− x′||2

2`2 ) (40)
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Figure: SE kernels with different length-scales, as a function of τ = x − x′.
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RBF Kernel Covariance Matrix

kRBF(x, x′) = cov(f (x), f (x′)) = a2 exp(−||x− x′||2

2`2 ) (41)

The covariance matrix K for ordered inputs on a 1D grid. Kij = kRBF(xi, xj).
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Gaussian Process Inference

I Observed noisy data y = (y(x1), . . . , y(xN))T at input locations X.
I Start with the standard regression assumption: N (y(x); f (x), σ2).
I Place a Gaussian process distribution over noise free functions

f (x) ∼ GP(0, kθ). The kernel k is parametrized by θ.
I Infer p(f∗|y,X,X∗) for the noise free function f evaluated at test points

X∗.

Joint distribution[
y

f∗

]
∼ N

(
0,

[
Kθ(X,X) + σ2I Kθ(X,X∗)

Kθ(X∗,X) Kθ(X∗,X∗)

])
. (42)

Conditional predictive distribution

f∗|X∗,X, y,θ ∼ N (f̄∗, cov(f∗)) , (43)

f̄∗ = Kθ(X∗,X)[Kθ(X,X) + σ2I]−1y , (44)

cov(f∗) = Kθ(X∗,X∗)− Kθ(X∗,X)[Kθ(X,X) + σ2I]−1Kθ(X,X∗) .
(45)
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Inference using an RBF kernel

I Specify f (x) ∼ GP(0, k).
I Choose kRBF(x, x′) = a2

0 exp(− ||x−x′||2
2`2

0
). Choose values for a0 and `0.

I Observe data, look at the prior and posterior over functions.
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I Does something look strange about these functions?
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Inference using an RBF kernel

Increase the length-scale `.
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Learning and Model Selection

p(Mi|y) =
p(y|Mi)p(Mi)

p(y)
(46)

We can write the evidence of the model as

p(y|Mi) =

∫
p(y|f ,Mi)p(f)df , (47)

              y
All Possible Datasets

p(
y|

M
)
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Learning and Model Selection

I We can integrate away the entire Gaussian process f (x) to obtain the
marginal likelihood, as a function of kernel hyperparameters θ alone.

p(y|θ,X) =

∫
p(y|f ,X)p(f |θ,X)df . (48)

log p(y|θ,X) =

model fit︷ ︸︸ ︷
−1

2
yT(Kθ + σ2I)−1y−

complexity penalty︷ ︸︸ ︷
1
2

log |Kθ + σ2I| −N
2

log(2π) .

(49)
I An extremely powerful mechanism for kernel learning.
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Learning and Model Selection

I A fully Bayesian treatment would integrate away kernel
hyperparameters θ.

p(f∗|X∗,X, y) =

∫
p(f∗|X∗,X, y,θ)p(θ|y)dθ (50)

I For example, we could specify a prior p(θ), use MCMC to take J
samples from p(θ|y) ∝ p(y|θ)p(θ), and then find

p(f∗|X∗,X, y) ≈ 1
J

J∑
i=1

p(f∗|X∗,X, y,θ(i)) , θ(i) ∼ p(θ|y) . (51)

I If we have a non-Gaussian noise model, and thus cannot integrate away
f , the strong dependencies between Gaussian process f and
hyperparameters θ make sampling extremely difficult. In my
experience, the most effective solution is to use a deterministic
approximation for the posterior p(f |y) which enables one to work with
an approximate marginal likelihood.
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Gaussian Process Covariance Kernels

Let τ = x− x′:

kSE(τ) = exp(−0.5τ 2/`2) (52)

kMA(τ) = a(1 +

√
3τ
`

) exp(−
√

3τ
`

) (53)

kRQ(τ) = (1 +
τ 2

2α `2 )−α (54)

kPE(τ) = exp(−2 sin2(π τ ω)/`2) (55)
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Inference and Learning

1. Learning: Optimize marginal likelihood,

log p(y|θ,X) =

model fit︷ ︸︸ ︷
−1

2
yT(Kθ + σ2I)−1y−

complexity penalty︷ ︸︸ ︷
1
2

log |Kθ + σ2I| −N
2

log(2π) ,

with respect to kernel hyperparameters θ.
2. Inference: Conditioned on kernel hyperparameters θ, form the

predictive distribution for test inputs X∗:

f∗|X∗,X, y,θ ∼ N (f̄∗, cov(f∗)) ,

f̄∗ = Kθ(X∗,X)[Kθ(X,X) + σ2I]−1y ,

cov(f∗) = Kθ(X∗,X∗)− Kθ(X∗,X)[Kθ(X,X) + σ2I]−1Kθ(X,X∗) .
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Gaussian process graphical model

I Squared are observed, circles are latent, the thick bar is a set of fully
connected nodes.

I Each yi is conditionally independent given fi.
I Because of the marginalization property of a GP, addition of further

inputs x∗ and unobserved targets y∗ does not change the distribution of
any other variables.

Figure from GPML, Rasmussen and Williams (2006)
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Worked Example: Combining Kernels, CO2 Data
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Example from Rasmussen and Williams (2006), Gaussian Processes for
Machine Learning.
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Worked Example: Combining Kernels, CO2 Data
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Worked Example: Combining Kernels, CO2 Data

I Long rising trend: k1(xp, xq) = θ2
1 exp

(
− (xp−xq)

2

2θ2
2

)
I Quasi-periodic seasonal changes: k2(xp, xq) =

kRBF(xp, xq)kPER(xp, xq) = θ2
3 exp

(
− (xp−xq)

2θ2
4
− 2 sin2(π(xp−xq))

θ2
5

)
I Multi-scale medium term irregularities:

k3(xp, xq) = θ2
6

(
1 +

(xp−xq)
2

2θ8θ2
7

)−θ8

I Correlated and i.i.d. noise: k4(xp, xq) = θ2
9 exp

(
− (xp−xq)

2

2θ2
10

)
+ θ2

11δpq

I ktotal(xp, xq) = k1(xp, xq) + k2(xp, xq) + k3(xp, xq) + k4(xp, xq)
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Worked Example: Combining Kernels, CO2 Data

I Hand crafted a kernel combination to perform extrapolation
I Confidence in the extrapolation is high (suggests that model is well

specified).
I Can interpret the learned kernel hyperparameters θ to learn information

about our dataset.
I A lot of the interesting pattern recognition has been done by a human in

this example. We would like to completely automate this modelling
procedure.
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Non-Gaussian Likelihoods

We can no longer analytically integrate away the Gaussian process. But we
can use a simple Monte carlo sum:

p(f∗|y,X, x∗) =

∫
p(f∗|f , x∗)p(f |y)df

≈ 1
J

J∑
j=1

p(f∗|f (j), x∗) , f (j) ∼ p(f |y)

But how do we sample from p(f |y)?
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Non-Gaussian Likelihoods

We can no longer analytically integrate away the Gaussian process. But we
can use a simple Monte carlo sum:

p(f∗|y,X, x∗) =

∫
p(f∗|f , x∗)p(f |y)df

≈ 1
J

J∑
j=1

p(f∗|f (j), x∗) , f (j) ∼ p(f |y)

But how do we sample from p(f |y)?

Elliptical slice sampling. Murray et. al. AISTATS 2010.
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Non-Gaussian Likelihoods

But what about hyperparameters? It’s easy to implement Gibbs sampling:

p(f |y, θ) ∝ p(y|f)p(f |θ) (56)
p(θ|f , y) ∝ p(f |θ)p(θ) . (57)

But this won’t work because of strong correlations between f and θ.
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Non-Gaussian Likelihoods

But what about hyperparameters? It’s easy to implement Gibbs sampling:

p(f |y, θ) ∝ p(y|f)p(f |θ) (58)
p(θ|f , y) ∝ p(f |θ)p(θ) . (59)

But this won’t work because of strong correlations between f and θ.

I Transform into a whitened space, f = Lν, and sample from ν and θ,
which decouples correlations.
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Non-Gaussian Likelihoods

But what about hyperparameters? It’s easy to implement Gibbs sampling:

p(f |y, θ) ∝ p(y|f)p(f |θ) (60)
p(θ|f , y) ∝ p(f |θ)p(θ) . (61)

But this won’t work because of strong correlations between f and θ.

I Transform into a whitened space, f = Lν, and sample from ν and θ,
which decouples correlations.

I Use a deterministic approach to approximately integrate away f to
access a marginal likelihood, conditioned only on kernel
hyperparameters θ:

p(y|θ) =

∫
p(y|f)p(f |θ)df (62)

I The Laplace approximation, for example, approximates p(f |y) as a
Gaussian.
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Readings for Next Time

I C. Rasmussen and C. Williams, GPML, Ch. 4, 5
I Y. Saatchi, PhD Thesis, 2011. Chapter 5
I J. Candela and C.E. Rasmussen, A unifying view of sparse

approximation Gaussian process regression, JMLR 2005.
I A.G. Wilson and R.P. Adams. Gaussian process kernels for pattern

discovery and extrapolation, ICML 2013.

53 / 53


