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What is Machine Learning?

» Machine learning algorithms adapt with data versus having
fixed decision rules.

» Machine learning aims not only to equip people with tools
to analyse data, but to create algorithms which can learn
and make decisions without human intervention.!+?

» In order for a model to automatically learn and make
decisions, it must be able to discover patterns and
extrapolate those patterns to new situations.

E.g., N.D. Lawrence (2010), “What is Machine Learning?”
2T.M. Mitchell (2006), “What is Machine Learning and Where Is it Headed?”



Airline Passengers (Thousands)

o]

o

o
T

500

400

300

N
o
o

—Train

1955 1957 1959 1961

Year

49 1951 1953

3/53



700

o]
o
o

[
o
o

IS
o
o

Airline Passengers (Thousands)
w
o
o

—Train
—Human?

BN

1955 1957 1959 1961
Year

4/53



700

o]
o
o

[
o
o

IS
o
o

Airline Passengers (Thousands)
w
o
o

—Train
—Alien?

BN

1955 1957 1959 1961
Year

5/53



700r

—Train
600+ —Human?

500

400

300

200

Airline Passengers (Thousands)

1 L L L L L ]
9[%49 1951 1953 1955 1957 1959 1961
Year

6/53



7001
—Train
J— 2
6001 Human*
—Alien?

500

400

300

200

Airline Passengers (Thousands)

1 L L L L L ]
9[%49 1951 1953 1955 1957 1959 1961
Year

7153



7007
—Train
600r —Alien?
—Test
500 —Human?

400

300

200

Airline Passengers (Thousands)

1 L L L L L ]
9[%49 1951 1953 1955 1957 1959 1961
Year

8/53



The ability for a model to learn from data depends on its:
1. Support: what solutions we think are a priori possible.

2. Inductive biases: what solutions we think are a priori likely.

» Examples: Function Learning, Character Recognition

» Human ability to make remarkable generalisations from data could
derive from an expressive prior combined with Bayesian inference.
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Basic Regression Problem

» Training set of N targets (observations) y = (y(x1), ..., y(xn))".
» Observations evaluated at inputs X = (xp,...,xy).
» Want to predict the value of y(x,) at a test input x,.

For example: Given CO, concentrations y measured at times X, what will
the CO, concentration be for x, = 2024, 10 years from now?

Just knowing high school math, what might you try?
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Guess the parametric form of a function that could fit the data

> fx,w) =wlx [Linear function of w and x]
> fx,w) = wle(x) [Linear function of w] (Linear Basis Function
Model)

> f(x,w) = g(wle(x)) [Non-linear in x and w] (E.g., Neural Network)

¢(x) is a vector of basis functions. For example, if ¢(x) = (1,x,x?) and
x € R! then f(x,w) = wo + wix + wax? is a quadratic function.

Choose an error measure E(w), minimize with respect to w

> E(w) = Y0 [ (xi, w) — y(xi)]?
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Statistics from Scratch

A probabilistic approach
We could explicitly account for noise in our model.

> y(x) =f(x,w) + e(x), where ¢(x) is a noise function.

One commonly takes €(x) = N (0, 0?) for i.i.d. additive Gaussian noise, in

which case
p(y(x)|x,w, 0%) = N (y(x); f(x,w), 0?) Observation Model (1)
N
piylx,w,0%) = [[N(x):f(xi,w),0%)  Likelihood ©)

i=1

» Maximize the likelihood of the data p(y|x, w, 0?) with respect to o2, w.

For a Gaussian noise model, this approach will make the same predictions as
using a squared loss error function:

log p(y|X, w, 0%) o 5= Z[f xi,w) = y()]’ 3)



Statistics from Scratch

» The probabilistic approach helps us interpret the error measure in a
deterministic approach, and gives us a sense of the noise level 0.

» Probabilistic methods thus provide an intuitive framework for
representing uncertainty, and model development.

» Both approaches are prone to over-fitting for flexible f(x, w): low error
on the training data, high error on the test set.

Regularization

» Use a penalized log likelihood (or error function), such as

model fit
complexity penalty
T
log p(y|X,w) ow—Z(f xw) =y —awlw @)

» But how should we define complexity, and how much should we
penalize complexity?

» Can set A using cross-validation.



Bayesian Inference

Bayes’” Rule

p(alb) = p(bla)p(a)/p(b),  p(alb) o p(bla)p(a). )

likelihood x prior _ pIX,w,0%)p(w)

posterior marginal likelihood’ piwly. X, %) p(y|X, o?)
(6)
Predictive Distribution
p(ylx*yy,X):/p(ylx*»W)p(WIy,X)dW- (M

» Average of infinitely many models weighted by their posterior
probabilities.

» No over-fitting, automatically calibrated complexity.

» Typically more interested in distribution over functions than in
parameters w.



Representing Uncertainty

Different types of uncertainty:
» Uncertainty through lack of knowledge
» Intrinsic uncertainty; e.g., radioactive decay.

Uncertainty through lack of knowledge can seem like intrinsic uncertainty
(e.g., rolling dice).

Regardless of whether or not the universe is deterministic — whether there is
some underlying true answer — we will always have uncertainty. We can
represent this belief using probability distributions (Bayesian methods,
probabilistic modelling).



Deterministic
N
E(w) =Y (flxi,w) —y:)*- ®)
i=1
Maximum Likelihood
POk, w) = N ()3 f (x, ), o7) ©)
N
pIX,w) = [[NG()if (xisw), 07) - (10)
i=1
Bayesian
posterior = likelihood x prior _ pyIX,w)p(w)

pwly,X) = oK) (11)

17753

marginal likelihood’



pOyIM,,X) = / POV (6 w))p(w)dw (13)

Complex Model

= Simple Model
~——— Appropriate Model

p(yIM)

y
All Possible Datasets
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Blackboard: Examples of Occam’s Razor in Everyday Inferences

For further reading, see MacKay (2003) textbook, Information Theory,
Inference, and Learning Algorithms.
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Occam’s Razor Example

-1,3,7,11, 77,7
» H;: the sequence is an arithmetic progression,
add n, where n is an integer.
» Hj: the sequence is generated by a cubic function

of the form cx3 —|— dx2 —|— e, where ¢, d, and e are
fractions. (— x + 1 x + ﬁ)
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Observations y(x). Assume p(y(x)|f(x)) ~ N (y(x);f(x),o?). Consider
polynomials of different orders. As always, observations are out of the
chosen model class! Which model should we choose?

fO(x) =ao,
filx) =ap+arx,

Hx) =ao+ax+ arx*,

fi(x) =ap+aix+ax® + - +agx’ .

(14)
as)
(16)

a7
(18)
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Model Selection: Occam’s Hill

0.25

Marginal Likelihood (Evidence)

1 2 3 4 5 6 7 8 9 10 11
Model Order

Marginal likelihood (evidence) as a function of model order, using an
isotropic prior p(a) = N(0, o%I).



Model Selection: Occam’s Asymptote

0.25

0.2

0.15F

Marginal Likelihood (Evidence)

1 2 3 4 5 6 7 8 9 10 11
Model Order

Marginal likelihood (evidence) as a function of model order, using an
anisotropic prior p(a;) = N'(0,v~), with - learned from the data.



Occam’s Razor
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For further reading, see Rasmussen and Ghahramani (2001) (Occam’s
Razor) and Kass and Raftery (1995) (Bayes Factors)




Consider the simple linear model,

f(x) =ap+ ax, (19)
ag,ay ~ N(0,1). (20)

25

20|

Output, f(x)
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‘We are interested in the induced distribution over functions, not the
parameters...
Let’s characterise the properties of these functions directly:

f(xlao,ar) = ao + arx, ag,a; ~ N(0,1). 1)
E[f(x)] = Elao] + E[a;]x = 0. (22)
cov[f(xp),f(xe)] = E[f (xp)f (xc)] — E[f (xp) | E[f (xc)] (23)
= E[d} + aoai (xp + x.) + atxpx] — 0 (24)

= Ela] + Elaxpx.] + Elaoa; (xp + x.)] (25)

=14+xx.+0 (26)

=1+ xpx.. 27
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Linear Models

Therefore any collection of values has a joint Gaussian distribution

[f(xl)a7f(xN)] NN(07K)3 (28)
Kij = cov(f(xi),f(x;)) = k(x;,x;) = 1 + xpxc . (29)
By definition, f(x) is a Gaussian process.
Definition

A Gaussian process (GP) is a collection of random variables, any finite
number of which have a joint Gaussian distribution. We write
f(x) ~ GP(m, k) to mean

[f(xl)a"'vf(xN)] NN(HaK) (30
i = m(x;) (31)
K,‘j = k(Xj,Xj) 5 (32)
for any collection of input values xy, . .., xy. In other words, f is a GP with

mean function m(x) and covariance kernel k(x;, x;).



Linear Basis Function Models
Model Specification

flx,w) =wo(x) (33)
pw) = /\/(0, ) (34)

Moments of Induced Distribution over Functions

E[f (x, w)]

m(x) = Ew"]¢(x) = 0 (35)

cov(f(xi),f (7)) = k(xi, %) = E[f (xi)f ()] — E[f () ]E[f(x))]  (36)
= ¢(x)) 'Eww"]¢p(x;) — 0 (37)
:d)( ) Ewd)(xj) (38)

> f(x,w) is a Gaussian process, f(x) ~ N (m, k) with mean function
m(x) = 0 and covariance kernel k(x;, x;) = ¢(x;) TS, (x;).

» The entire basis function model of Eqs. (33) and (34) is encapsulated as
a distribution over functions with kernel k(x, x").



» We are ultimately more interested in — and have stronger intuitions
about — the functions that model our data than weights w in a parametric
model, and we can express those intuitions using a covariance kernel.

» The kernel controls the support and inductive biases of our model, and
thus its ability to generalise.
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=P

krpr(x,x') = cov(f(x),f(x')) = a* exp( T2

) (39)
» Far and above the most popular kernel.

» Expresses the intuition that function values at nearby inputs are more
correlated than function values at far away inputs.

» The kernel hyperparameters a and ¢ control amplitudes and wiggliness
of these functions.

» GPs with an RBF kernel have large support and are universal
approximators.
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)

x = [-10:0.2:10]"; % inputs (where we query the GP)
N = numel (x); % number of inputs
K = zeros(N,N); % covariance matrix

% very inefficient way of creating K in Matlab
for i=1:N
for j=1:N
K(i,3) = k_rbf(x(1),x(3));
end
end

K = K + le-6*eye(N); % add jitter for conditioning
CK = chol (K);
f = CK’*xrandn (N, 1) ; % draws from N (0, K)

plot(x, f);
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Gaussian process sample prior functions

output, f(x)
o
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[l — x|I?

202

krpr(x,x') = cov(f(x),f(x')) = a* exp(— ) (40)

SE kernels with Different Length—scales
1 T T T T T T T T T

— =7
08 —1=07
0.7 —1=2.28 R

Figure: SE kernels with different length-scales, as a function of 7 = x — x’.
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RBF Kernel Covariance Matrix

[lx — |2

krpr(x, x') = cov(f(x),f(x')) = a® exp(— Y

) (41

The covariance matrix K for ordered inputs on a 1D grid. K; = krgr(x;, X;).




Gaussian Process Inference

» Observed noisy datay = (y(x1),...,y(xy))T at input locations X.
» Start with the standard regression assumption: N (y(x);f(x), o2).

KQ(X7X)+UZI K@(XaX*)
Ko(Xi,X)  Kp(Xi, X)

» Place a Gaussian process distribution over noise free functions
f(x) ~ GP(0,ky). The kernel k is parametrized by 6.
» Infer p(f.|y, X, X.) for the noise free function f evaluated at test points
X
Joint distribution
y
[ ] ~N <0, ) . (42)
Sx
Conditional predictive distribution
filX. X, y,0 ~ N(f., cov(£.)) (43)
fe = Ko(Xo, X)[Ko (X, X) +0°1) "y, (44)
COV(f*) = KQ(X*,X*) - K@(X*7X)[K9(X7X) + 021}71K9(X,X*) .
(45)



Inference using an RBF kernel

» Specify f(x) ~ GP(0,k).

1112
> Choose kg (x,x') = a2 exp(— B51E

T
» Observe data, look at the prior and posterior over functions.

). Choose values for ay and 4.

Samples from GP Prior Samples from GP Posterior

Output, f(x)
Output, f(x)

» Does something look strange about these functions?



Increase the length-scale /.

Output, f(x)

Samples from GP Prior

Samples from GP Posterior

Output, f(x)

30

0
Input, x

(a)

10

-4
-10 -5

37/53



p(Mily) = ”WZ—&”(M (46)

We can write the evidence of the model as

pOyIMy) = / POl MOp(F)f 7

~—

Complex Model Jr Data
—— Simple Model 3 —— Simple
~——— Appropriate Model , Complex
~——— Appropriate

plyIm)

Output, f(x)

y ~ - -2 0 2
All Possible Datasets Input, x

() (b)
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Learning and Model Selection

» We can integrate away the entire Gaussian process f(x) to obtain the
marginal likelihood, as a function of kernel hyperparameters 6 alone.

P(y16,X) = / POV X)p(f10.X)df 48)

model fit complexity penalty

1 1 N
logp(y|0,X) = —EyT(Kg + o7y - 3 log |Kg + o1 —5 log(27) .
(49)
» An extremely powerful mechanism for kernel learning.

Samples from GP Prior Samples from GP Posterior

Output, f(x)
Output, f(x)




Learning and Model Selection

» A fully Bayesian treatment would integrate away kernel
hyperparameters 6.

X X,y) = / p(f.|X.. X,y, O)p(01y)d0 (50)

» For example, we could specify a prior p(8), use MCMC to take J
samples from p(8|y) x p(y|0)p(80), and then find

J
IZ . .

i=1

» If we have a non-Gaussian noise model, and thus cannot integrate away
[, the strong dependencies between Gaussian process f and
hyperparameters @ make sampling extremely difficult. In my
experience, the most effective solution is to use a deterministic
approximation for the posterior p(f|y) which enables one to work with
an approximate marginal likelihood.



LetT =x—x':

ksg(T) = exp(—0.572/0%) (52)

kva(T) = a(1 + g)exp(—g) (53)
2

keo(r) = (14 5773)™" (54)

kpe () = exp(—2sin® (7 7 w)/¢%) (55)
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1. Learning: Optimize marginal likelihood,

model fit complexity penalty

~

1 1 N
logp(y|0,X) = —EyT(Kg + 021) ly — > log |Ke + 021| -7 log(27),

with respect to kernel hyperparameters 6.

2. Inference: Conditioned on kernel hyperparameters 6, form the
predictive distribution for test inputs X,:

f*|X*7Xaya 9 ~ N(f‘*,COV(j‘*)) 9
fe = Ko(X., X)[Ko(X, X) + °1] "y,
cov(f.) = Ko(X., X..) — Ko(Xo, X)[Ko (X, X) + 017 'Kp(X, X.,) .
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Gaussian process graphical model
Observations D @
Gaussian field

» Squared are observed, circles are latent, the thick bar is a set of fully
connected nodes.

» Each y; is conditionally independent given f;.

» Because of the marginalization property of a GP, addition of further
inputs x, and unobserved targets y,. does not change the distribution of
any other variables.

Figure from GPML, Rasmussen and Williams (2006)
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Example from Rasmussen and Williams (2006), Gaussian Processes for
Machine Learning.
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2
» Long rising trend: k; (x,,x,) = 67 exp (—%)

> Quasi-periodic seasonal changes: k»(x,,x,) =

— in? m —
krgr (X, %g ) kpER (X, Xg) = 9% exp (_ (xpze;q) _ 2sin’( 9(5;,, xq))>
Multi-scale medium term irregularities:
6
ko) = 03 (1+ L)

20563
» Correlated and i.i.d. noise: k4(x,,x,) = 03 exp (—(—x’%&ﬁ) + 03,0pq

Ktotal (Xp, Xq) = ki (2, X4) + k2 (%, X%4) + k3 (xp, X4) + ka(xp, X4)
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Worked Example: Combining Kernels, CO, Data

420 — T T T

3801

360

340

CO2 concentration, ppm

320, J
1960 1970 1980

1 1 1 1
1990 2000 2010 2020

year

» Hand crafted a kernel combination to perform extrapolation

» Confidence in the extrapolation is high (suggests that model is well
specified).

» Can interpret the learned kernel hyperparameters 6 to learn information
about our dataset.

» A lot of the interesting pattern recognition has been done by a human in
this example. We would like to completely automate this modelling
procedure.



We can no longer analytically integrate away the Gaussian process. But we
can use a simple Monte carlo sum:

Pl X o) = / P e () df

Nl'ﬂ

J
Z FlFx), f9 ~p(fly)

But how do we sample from p(f]y)?
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We can no longer analytically integrate away the Gaussian process. But we
can use a simple Monte carlo sum:

Mﬁan)=/Mﬂ%&WVM#

J
~ ISP ) S~ p)
j=1

But how do we sample from p(f|y)?

Elliptical slice sampling. Murray et. al. AISTATS 2010.
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But what about hyperparameters? It’s easy to implement Gibbs sampling:

p(fly,0) < pylf)p(f16) (56)
p(BIf.y) < p(f10)p(0) - )]

But this won’t work because of strong correlations between f and 6.
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But what about hyperparameters? It’s easy to implement Gibbs sampling:

p(fly,0) o p(ylf)p(f16) (58)
p(OIf,y) < p(f|0)p(0) . (59)

But this won’t work because of strong correlations between f and 6.

» Transform into a whitened space, f = Lv, and sample from v and 6,
which decouples correlations.
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Non-Gaussian Likelihoods

But what about hyperparameters? It’s easy to implement Gibbs sampling:

p(fly, 0) < p(y|f)p(f10) (60)
p(8lf,y) x p(f|O)p(8). (61)

But this won’t work because of strong correlations between f and 6.

» Transform into a whitened space, f = Lv, and sample from v and 6,
which decouples correlations.

» Use a deterministic approach to approximately integrate away f to
access a marginal likelihood, conditioned only on kernel
hyperparameters 6:

p(y16) = / POIPF10)df ©2)

» The Laplace approximation, for example, approximates p(f|y) as a
Gaussian.
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C. Rasmussen and C. Williams, GPML, Ch. 4, 5
Y. Saatchi, PhD Thesis, 2011. Chapter 5

J. Candela and C.E. Rasmussen, A unifying view of sparse
approximation Gaussian process regression, JMLR 2005.
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A.G. Wilson and R.P. Adams. Gaussian process kernels for pattern
discovery and extrapolation, ICML 2013.
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