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A road map to more complex cece
dynamic models oo

discrete discrete continuous

discrete continuous
Mixture model Mixture model
e.g., mixture of multinomials e.g., mixture of Gaussians
ONONOREN® ORONOREE®
HMM HMM
(for discrete sequential data, e.g., text) (for continuous sequential data,

e.g., speech signal)

Factorial HMM Switching SSM
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Recall multivariate Gaussian

e Multivariate Gaussian density:

expl 3 (x- 1) =7 (x- )}

%) =
p(x|u,X) (27[),,,2‘2‘1/2

e A joint Gaussian:

Xy _ X4 M| | 2y 2
P(L{j 42)= ‘/V(LJ L‘j | {221 zzj)

e How to write down p(x;), p(x;|x,) or p(x,|x;) using the block
elements in zand £?

e Formulas to remember:

p(x;) = A (x,|m7,V,") P(X1‘X2) = A (x |m1|2,V1|2)
m; = [, my, = i + Z122512 (x; —15)

V' =%, Vip =2y _2122512221
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Review: i
The matrix inverse lemma o2

e Consider a block-partitioned matrix: M =

e First we diagonalize M

| -FH*|[E F][ 1 0] [E-FH?G 0
0 I [|G HI||-H'G I| | o0 H
e Schur complement: M/H = E-FH G
e Then we inverse, using this formula: xXyz=w = Y*'=27WX

w6 8] L S ]

| (MH)T -(MIH ) FH™ _|ET+ET'F(M/E)'GE™ -ET'F(M/E)”
-H'G(MH)" H*+H'G(M/MH) FH" -(M/E)'GE™ (M/E)™

e Matrix inverse lemma
(E-FH'G)" =E*+E'F(H-GE'F) GE"
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Review:
Some matrix algebra

e Trace and derivatives tr[A]dif Zaﬁ

e Cyclical permutations

tr[ABC | = tr|CAB|=tr[BCA]

e Derivatives

itr[BA]: B'
OA

a%\ tr[xT Ax] = a% tr[xxT A] = XX'

e Determinants and derivatives

0
—_log|A|= A
on 9IA
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| T
Factor analysis “ -
e An unsupervised linear regression model AO v [\XI t6

6~ Wny
{P(X)=/V(x;0,l) . /\
p(y[x) = 4 (vt g ) LW

where A is called a factor loading matrix, and ¥ is diagonal.

‘).3

e Geometric interpretation | \ 4 %)

X ) P ) /< “ —— ' LD)

L oy

Bt

e To generate data, first generate a point within the manifold then add noise.
_,_.9 p @qu%inrtes of point are components of latent variable.
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e A marginal Gaussian (e.g., p(x)) times a conditional Gaussian
(e.g., p(y|x)) Is a joint Gaussian

e Any marginal (e.g., p(y) of a joint Gaussian (e.g., p(x,y)) IS
also a Gaussian

e Since the marginal is Gaussian, we can determine it by just computing its mean

and variance. (Assume noise uncorrelated with data.) U=
EIYIF E[u+AX+W]  where W ~ #(0,9) Vl-o-”/”“
y+AE[X]+ E[W] . 2 v =1 =
ﬂ_+0+0@] T ay= A4y
Var[Y]F E|[(Y - u (Y - )
b :E;(,u+AX+W—,u)(,u+AX+W—,u)T] 2/\( “d(XN \V’W;D
—E[(AX+ W)AX+ W) ] \(’Q’Mﬂ
L/,AE|XXT AT+ E[wwT ] = &) (Ax tm ew)
SAA LW = & (k' )
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FA = Constrained-Covarianc T
Gaussian = -

e Marginal density for factor analysis (y is p-dim, x is k-dim):

p(y|0) =W (y;u, AN +¥)

e 50 the effective covariance is the low-rank outer product of
two long skinny matrices plus a diagonal matrix:
P

A N o= [

Cov[y] = |A + NG \ < g

—

e In other words, factor analysis is just a constrained Gaussian
model. (If ¥ were not diagonal then we could model any
Gaussian and it would be pointless.)

© Eric Xing @ CMU, 2005-2015 8



FA joint distribution

e Model p(x) =4 (x,0,1)

p(y[x) = A (y; 1+ Ax, )
e Covariance between x and y

Cov[X,Y]=E|(X-0)Y - ) |= E[X(u+ AX+ W= 1) |
= E[XXTAT + XW' ]
= A

e Hence the joint distribution of x and y:
X x| |0 !
y Y1 LH

A AN +V¥

——

e Assume noise Is uncorrelated with data or latent variables.
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{ (M/H)* (MH)'FH* }_{E +EF(M/E)"GE® -ElF(M/E)_l}
HIG(MH)" HE+HIG(MH)'FH | | _(M/E)'GE® (MIE)*
G ‘= = o000

Inference in Factor Analysis ¢ -5 |3
T o —

o Apply the Gaussian conditioning formulas to the joint( =A
distribution we derived above, where

S, = ¥ ~¥§
215 :leT :/._\T 'b ~— M3
%, = (AAT + W)

we can now derive the posterior of the latent variable x given
observation y, p(xly) = # (x|my,, V,,) , where

my, =t +212222 (y — 1) Vip =2y — Z12222221
= A" (AN + ) (y - ) =1 A (AAT+¥ Ai D”ﬂ

Applying the matrix inversion lemma (E-FH'le) _ElLE- F(H GE |: GEL

- :
— Vip = A m,, V12AT\P 1()’_,U

Here we only need to invert a matrix of size |x|x|x|, instead of |y|x]y|.
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Geometric interpretation:
Inference Is linear projection

e The posterior is:
PQ“Y) = (x;myp,, Vi)

B -1 _

—

e Posterior covariance does not depend on observed data y!
e Computing the posterior mean is iust_a“ linear operation:

_\.3

A
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RN 3
Learning FA PLyp) . N wHSe

e Now, assume that we are given {y,} (the observation OH Igh-
dimensional data) only

e \We have derived how to estimate x, from P(X]|Y)

e How can we learning the model?

e Loading matrix A
e Manifold center p
e Variance ¥
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Y 000
EM for Factor Analysis by PO

e Incomplete data log likelihood function (marginal density of y)

/(6,D) = —%Iog AN +V¥ —%Z(yn —u) (\W

_ _%log AAT + W —%tr[(AAT +\P)‘1S], whereS = > (y, —k)(y, - 1)

e Estimating pu is trivial: ks :%Z Yy,
n
e Parameters A and ¥ are coupled nonlinearly in log-likelihood

e Complete log likelihood

£,(6,D) =Zlog PXo:Ya) =Zlog p(x,)+10gp(y,|x,)

:——Iog\ \——Zx ——Iog\‘P\——Z(yn Ax,) ¥y, —Ax,)

- Dhtoar] -2 e - Dlsw ] wheres = ¥ (v, - Ax, )y, ~ A%,
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E-step for Factor Analysis os

o CompUte <[ @, D)>p(xl>’)

(£.(0,D)) = ——Iog\\P\——Zt[M] Suls)

{S)= ST =y (XTI = AT T+ AXT )

(X )=ElX, 1y, ]

XX ) =varlX, 1y, [ EDX 1y, JEIX, 1y, ]

e Recall that we have derived:
Tw-14 V! _ Ty -1
Vip = (1 + AW A m,, =V, AT (y — 1)

—> Xo=m,, =V AWy, -x) and  (XX])=Vp+m, m]
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M-step for Factor Analysis -

e Take the derivates of the expected complete log likelihood
wrt. parameters.
e Using the trace and determinant derivative rules:

8\51 (€)= 551 (—%Iog“?‘—%;trkxnx,f >]_%tL[<S>qJ_1 j

:%\P —%<S> — ( :£:t+1 _ <S>

2 -2 (Mool s sy ] )N L

B S (T X A T A )

ST E) = GO -[snba)| 26ox))
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Model Invariance and 444

—

dentifiability AL |3

o

e

e There is degeneracy in the FA model.

e Since A only appears as outer product AAT, the model is
Invariant to rotation and axis flips of the latent space.

e We can replace A with AQ for any orthonormal matrix Q and
the model remains the same: (AQ)(AQ)"=A(QQT)AT=AAT.

e This means that there is no “one best” setting of the
parameters. An infinite number of parameters all give the ML
score!

e Such models are called un-identifiable since two people both
fitting ML parameters to the identical data will noj/be
guaranteed to identify the same parameters./

- <
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A road map to more complex cece
dynamic models oo

discrete discrete continuous
discrete continuous continuous
Mixture model Mixture model Factor analysis
e.g., mixture of multinomials e.g., mixture of Gaussians
HMM HMM
(for discrete sequential data, e.g., text) (for continuous sequential data,

e.g., speech signal)

Factorial HMM Switching SSM
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State space models (SSM) o°

e A sequential FA or a continuous state HMM

= Ax, . +Gw

e
w, ~ 4 (0;Q), v, ~A4(0;R)

® O ® - ® o)

This is a linear dynamic system.

e In general,
X, = F(x,1) +Gw,

Ve = 0(x, 1) +V,

where f is an (arbitrary) dynamic model, and g is an (arbitrary)
observation model

© Eric Xing @ CMU, 2005-2015 18



LDS for 2D tracking

e Dynamics: new position = old position + Axvelocity + noise
(constant velocity model, Gaussian noise)

1

x) (1 0 A 0)(x,
|01 0 A + noise
.1 1
X; 0 0 1 0f|x,
X’ 0 00 1)\x

t 1

e Observation: project out first two components (we observe
Cartesian position of object - linear!)

+ noise
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The inference problem 1 o

e Filtering = givenyy, ..., y, estimate x. P(X,|y.)

e The Kalman filter is a way to perform exact online inference (sequential
Bayesian updating) in an LDS.

e Itis the Gaussian analog of the forward algorithm for HMMs:
pPX, =i lyw) =t o ply, |X, =0)D p(X, =i X,y = j)ei,
J

Oy = Oy =) @, =

PPY

)OO ©

© Eric Xing @ CMU, 2005-2015
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The inference problem 2 o

e Smoothing = giveny;, ..., y, estimate X, (t<T)

e The Rauch-Tung-Strievel smoother is a way to perform exact off-line inference in
an LDS. It is the Gaussian analog of the forwards-backwards (alpha-gamma)
algorithm:

Yo & Vi<&= 1) & T
=> U

P(X, =1]Yy) = 7/ti o Zatip(xtju | Xij)?/tj+1
J
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Kalman filtering in the brain? os

The World The Estimator

Hidden State

("Internal" to :
the World) function)

(Inverse

("External") aappiiig)

("Internal" to
the Estimator)

The World The Estimator
(Internal Model of the World)

m
r(t-1) r(t)- l|(t) T(J) i»?(r)?(r )

@ \‘ Kalman Filter J

Conversion to Predicted
Temporal Dynamics Visible State Visible State Estimated Dynamics
of Hidden State ‘v* (Image ‘T") (Image ‘T") of Hidden State ‘1’
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Kalman filtering derivation ¢y, v ) ::

e Since all CPDs are linear Gaussian, the system defines a
large multivariate Gaussian.

e Hence all marginals are Gaussian.
e Hence we can represent the belief state p(X|y;.) as a Gaussian with

mean & ( Xtl ’0!:1] = Mett  and covariance & ¥e-Maug )kt~ Met) "= Pert

e Itis common to work with the inverse covariance (precision) matrix ;
this is called information form.

state:

e Predict step: compute p(Xi,,|y;.) from prior belief
p(Xiy;,) and dynamical model p(X,,|X) --- time update

e Update step: compute new belief p(Xleom
prediction p(X.,,]y;.), observation y,,; and observation

model p(y,1|X;1) --- measurement update
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Kalman filtering derivation -

e Kalman filtering is a recursive procedure to update the belief

state: (%) .. (%) @

e Predict step: compute p(Xi,,|y;.) from prior belief
p(Xily;.) and dynamical model p(X.,;|X,) --- time update w &

e Update step: compute new belief p(X,1|y;..+1) from @ @ @
prediction p(X.,,]y;.), observation y,,; and observation
model P(th|X +1) -—- measyrement update OROND®
( l [

&'\]N[m | B RSB

h T h
2+
2| ~ X+
Pl Vi) = P LAt D) D PO, Y| W
o P )ty (Xee) P W,
CRUFULI v
’ b
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ot ly) | B
Predict step ~ (AP | 22

e Dynamical Model: x,,,=Ax,+Gw,, w, ~4(0;Q)
e One step ahead prediction ofAstate: A A @ (@.‘@
E\Wul‘ﬁl:t) ’E(A\(ttcw):A X¢lt t0 =N th = Xfﬂﬂ’ Q
A N -
S (eet = Xhe) (Xt X )y
A

= E[ (A% f&\:/\- Xttt ) (AX¢ thw - g‘fﬂl-‘ )ZJ -
= & Al Rttt ) e R W= 6 0G4 Ree k't B4

e Observation model: y,=Cx,+v,, v,~#(0;R)
e Ope step ahead prediction of observation: (v) () ()
AR

2
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Predict step

e Dynamical Model: x, , = Ax, +Gw,,
e One step ahead prediction of state:

. ~4(0;Q)

~ ~ e -
Xt 11 :E(Xt+1|y11"'1yt):AXtrt @

Pt+1|t =E(Xy, - §t+l|t)(xt+1 - it+l|t)T | ¥iseen¥e)

= E(AX, +GW, — X,y J(AX, +GW, —X.g)" | ¥1,-,¥,)

= AP, A+GQG'

e Observation model: y,=Cx, +v,, v,~4(0;R)

e One step ahead prediction of observation:

E(Yeia Vi ¥ ) = BE(CXp g +Veiq [ ¥1s
E(Yt+1 o yt+1|t)(Yt+l o g’t+l|t)T | AETREE
E(Yt+l o }A't+1|t)(xt+1 - §t+l|t)T | Yir-oo

© Eric Xing @ CMU, 2005-2015
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Y1) =CPyC" +R

1yt) - CI:)'[Jrllt
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Update step -

e Summarizing results from previous slide, we have
p(Xt+11Yt+1|yl:t) - ‘/V(mt+1’ Vt+1)1 Where

)et +1t Pt+1rt Pt+1rtCT
+1 = " ) V — 1
rnt : (Cxt +1ft J £ {Cpt it CB:JrlrtCT +R

e Remember the formulas for conditional Gaussian
distributions:

X1 Y= g Xy M| | 21 2Zpp
P(Lj“l’ )= (Lj{ﬂj[zm sz)

p(x;) = A (x,|m7,V;") P(X1‘X2) = A (x |m1|2,V1|2)
m; = /i, my, = i + Z122512 (x; —14,)
Vzm =25, V1|2 =2y _2122512221
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Kalman Filter o2

e Measurement updates:

Xpoqper = Xpgqp T Kiaa Vi — CXt+1|t)

Pt+1rt+1 = I:)t+1|'l: o KCPtJrlrt

e where K, is the Kalman gain matrix

Kt+1 = Pt+1rtCT (CI:)t+1|'l:CT + R)l
e Time updates: . .
P Xt = Axtrt

Pt = AR, A+GQG'

e K, can be pre-computed (since it is independent of the data).

© Eric Xing @ CMU, 2005-2015
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Example of KF In 1D oo

e Consider noisy observations of a 1D particle doing a random

walk:
Xepy =X W, w~H(0,0,) 2z =xq+v, v~H#(0,0,)

e KFequations: B, =APR,A+GQG" =0, +0, , X, =AX

Kt+1 - Pt+1rtCT (CPt+1|tCT + R)l - (Gt +Gx)(6t +6x +GZ)

~ 0.45 1
~ ~ ~ (0 +0 )Z +0,X
B o t x J=t z7 Mt 04 {
Xt+1rt+1 o Xt+1|t + Kt+1 (Zt+1 B Cxt+l|t) o 0.35 {
O, +GX +O'z
0.3 {
= 0.25
(0 +0 )0 e
_ _ t X Z 0.15 {
Pt+1rt+1 - I:zf+1|'t B KCPH”& a 0.1 1
O -I-Gx -I-Gz '
0.05 {
0 v —Sy '
-10 -5 0 5 10

X position
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KF Iintuition :

e The KF update of the mean is
(Gt +(7X )Zt +Gz)2trt

~

Xt+1|t+1 - Xt+1rt T Kt+1 (zt+l ) Cxt+1|t) -

o,+0, +0,
e theterm (Z,,,—CXx,.y) is called the innovation

e New belief is convex combination of updates from prior and
observation, weighted by Kalman Gain matrix:

Kt+1 - F3f+1|'tCT (CF2c+1rtCT T R)l

e If the observation is unreliable, o, (i.e., R) is large so K., IS
small, so we pay more attention to the prediction.

e |[f the old prior is unreliable (large o,) or the process is very
unpredictable (large o,), we pay more attention to the
observation.

© Eric Xing @ CMU, 2005-2015

31



Complexity of one KF step o°

e Let X, eR™ and y cR™ ,

e Computing B,,,, = AP,,A+GQG' takes O(N,?) time, assuming
dense P and dense A.

e ComputingK,,, =P,,,C"(CP,,C" +R)" takes O(N,’) time.

e So overall time is, in general, max {N,? N3}

© Eric Xing @ CMU, 2005-2015
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The inference problem 2 o

e Smoothing = giveny;, ..., y, estimate X, (t<T)

e The Rauch-Tung-Strievel smoother is a way to perform exact off-line inference in
an LDS. It is the Gaussian analog of the forwards-backwards (alpha-gamma)
algorithm:

Yo & Vi<&= 1) & T
=> U

P(X, =1]Yy) = 7/ti o Zatip(xtju | Xij)th+1
J
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Rauch-Tung-Strievel smoother 4

’A‘trr = ’A‘trc +L (§t+1[r "A‘mrt) ﬁ@

Rtrr - Rtrt T Lt(Pt+1|T - Pt+1rt )LtT L, = PtrtAT Rtllut é @

e General structure: KF results + the difference of the "smoothed" and predicted results
of the next step

e Backward computation: Pretend to know things at t+1 — such conditioning makes
things simple and we can remove this condition finally

e The difficulty: X, |y y
t L 1 VT

* The tricki iy | 712 elelx 1v.2]1 2] (Hw!)

Var[X |Z |=Var|E[X |Y,Z || Z |+ Ear[X |Y,Z ]| Z]

Xer = EX, 1Yy yr J2 EEEXG I X Ve Ve Y v ]

=E[EX 1 Xty Vel sy ]
—E[X, | X,.t. Vi Ve | Same for Pyy
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RTS derivation ot

e Following the results from previous slide, we need to derive
p(Xt+1’Xt|YI:t) - ./V(m, V)’ where

m :E i?trt j V _ Pt|t Pt|tAT
Xt+1rt APtrt 'Dt+1rt |

e all the quantities here are available after a forward KF pass

e Remember the formulas for conditional Gaussian distributions:

X X, [l | 124 Z p(xz) = H (x, | m37, V7') p(xy[x;) = A (x; | my,, Vi)
p( |ﬂ’z)=‘/’/( | 1 ) 1 mm: _ Z 271 _
X, Xo | [ M2 ] |21 Zop 2 =t my, =ty + 2, 22(Xp = 115)
m _ R
Vo =2z Vi =2y _2122212221

e The RTS smoother

def R
Xy = E[X, |Xt+1,y1,...,yt] Pr :Var[xt[!' |)’1:T]+ Elvar[X, |Xt+1'Y1.'t]|Y1:T]

~ ~ ~ T
= Xt t Lt (Xt+1rr 'Xt+1rt) - Ptrt + I—t(Rler o Pt+1|'t )Lt
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Learning SSMs -

e Complete log likelihood

£.(0,D)= Zlogp(x Yn) Zlogp(xl)+ZZlogp(xntlxnt 1)+ZZlogp(yntlxnt)
= £,(X;Zo) +B({X, XJI X, XX, .Vt},A,Q,G)+f3({XtXtT,Xt vt }C,R)

e EM
e E-step: compute <XtXtT_1> <X XT ‘Y1 Yr

these quantities can be inferred via KF and RTS filters, etc.,
.0, (XX )=var(X,X] ) +E(X,)* =Py + X5

e M-step: MLE using

(£.0.0)) = (X 2o )+ (XX ) (X XT V(X ) vt A Q.G+ (X XT ) (X, ): vt {C.R)
c.f., M-step in factor analysis
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0000
0000
. ::0
Nonlinear systems °
e In robotics and other problems, the motion model and the
observation model are often nonlinear:
X, =f (X,4)+w, , Y. = g(X;)+Vv,
e An optimal closed form solution to the filtering problem is no longer

possible.

e The nonlinear functions f and g are sometimes represented by
neural networks (multi-layer perceptrons or radial basis function
networks).

e The parameters of f and g may be learned offline using EM, where
we do gradient descent (back propagation) in the M step, c.f.
learning a MRF/CRF with hidden nodes.

e Or we may learn the parameters online by adding them to the state
space: x;'= (x;, 6). This makes the problem even more nonlinear.

© Eric Xing @ CMU, 2005-2015

37



Extended Kalman Filter (EKF) os

e The basic idea of the EKF is to linearize f and g using a
second order Taylor expansion, and then apply the standard
KF.

e i.e., we approximate a stationary nonlinear system with a non-stationary
linear system.

x, =f ()?t—lrt—l) +A;

t-1t -1

(Xt—l o Xt—lrt—l) W,

Y: = g(Xtrt—l) +CX}¢_1 (Xt _Xtrt—l) Vi

~ ~ def af
where X, ; =f (X, 1) and A, S

X

def
and C; = a9
o0X

X

e The noise covariance (Q and R) is not changed, i.e., the
additional error due to linearization is not modeled.
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000
0000
o000
. . . 0o0
Online vs offline inference o
filtering _1 PX(Wly(1:0)
1
Viterbi _1 argmax P(x(1:t) | y(1:t))
(L:t)
1 X
pediction [ P(X(t+delta)ly(1:1))
delta
—]
t
fixed-lag (NN A=ty L)
smoothing au
t T
fixed interval [  P(X(Dly(1:T))
smoothing T
(offline)
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KF, RLS and LMS oe

e The KF update of the mean is

Xt+1rt+1 - AX + Kt+1()/t+1 B CXt+1|t)

e Consider the special case where the hidden state is a
constant, x, =6, but the “observation matrix” C is a time-
varying vector, C = x,.

. . . T .
e Hence the observation model at each time slide, y, =X, ¢ +v,, is a
linear regression

e \We can estimate recursively using the Kalman filter:
T
Ht+1 _9 + t+1R (Yt+1 9 )X
This is called the recursive least squares (RLS) algorithm.

e We can approximate P, ,R' ~ 7, , by a scalar constant. This is
called the least mean squares (LMS) algorithm.

e We can adapt 7, online using stochastic approximation theory.

© Eric Xing @ CMU, 2005-2015 40



