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Probabilistic Graphical Models

Variational Inference:
Loopy Belief Propagation

= — Reading: See class website
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D T
Inference Problems % /%ZQ‘ :‘i

e Compute the likelihood of observed data

e Compute the marginal distribution p(x4) over a particular subset
of nodes ACV

e Compute the conditional distribution p(ralrp) for disjoint subsets A

and B
e Compute a mode of the density & = arg max p(x)
reLm
e Methods we have
4 )

Message Passing

(Forward-backward , Max-product
/BP, Junction Tree)

[ Brute force ] [ Elimination ] I:>

J

Individual computations independent Sharing intermediate terms
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Sum-Product Revisited ot

e Tree-structured GMs

p($1,° H ws xs) H wst xs:-/xt tdé

SEV (s,t)eE

eS~—

—

e Message Passing on Trees:

MHs<xs)Hé{wst(xs,m;)wm [ M)}

— uEN )\ s

e On trees, converge to a unique fixed point after a finite number of iterations
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Junction Tree Revisited S
e General Algorlthm on Graphs with Cycles , %
1 2 26
40\ :> 485 258 '8)
7@ 5 478 689
* Steps: :>Tr|angular|zat|on => Construct JTs

=> Message Passing on Clique Trees

os(zs) < > oplp) -
T B\ S /°) S @
~ N ) )

bo(ze) — Cbs(xs)gbc(xc)
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0000
0000
. ::0
Local Consistency S
e Given a set of functions {rc, C € C} and {rg, S € S} associated
with the cligues and separator sets L
e They are locally consistent if: ¢ Qé
N
ZTS(.Q,“%) =1, VS eS
S ’ ¥

Y re(ap) =r1s(xs), VO EC, SC
rolri=xs - .
U
globa

e [or junction trees, local consistency is equivalent to

consistency! / - _/W "(—9

7

/
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An Ising model on 2-D image os

e Nodes encode hidden
iInformation (patch-
identity).

e They receive local
information from the
Image (brightness,
color).

e Information is
propagated though the
graph over its edges.

e Edges encode
‘compatibility’ between
nodes.
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Why Approximate Inference@“%U ot

e Why can’t we just run junction tree on this graph?

e If NxN grid, tree width at least N

e N can be a huge number(~1000s of pixels)

e If N~O(1000), we have a clique with 2190 entries
© Eric Xing @ CMU, 2005-2015 7



Approaches to inference

e EXxact inference algorithms

e The elimination algorithm
e Message-passing algorithm (sum-product, belief propagation)
e The junction tree algorithms

e Approximate inference techniques

e Variational algorithms
/Loopy belief propagation /
Mean field approximation

e Stochastic simulation / sampling methods

e Markov chain Monte Carlo methods ~
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Loopy Belief Propogation
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Recap: Belief Propagation o°

K

K
® O o ® O6 o

- |

| O—O@—0« @—O—0F

| |
® ‘- @ ® o< o
e BP Message-update Rules
Miaj(xj)ocZvlij(xi’xj)l/ji(xi)HMk»i(xi) bi(Xi)OCWi(Xi)HMk(Xk)

k
L Texternal evidence
Compatibilities (interactions)

e BP on trees always converges to exact marginals (cf. Junction
tree algorithm)
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Region graphs (Factor Graph) -

e It will be useful to look explicitly at the messages being
passed
e Messages from variable to factors

e Messages from factors to variables
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Beliefs and messages in FG os
I b
(%) oc 1(X) Hma_)i(xi)
7 '_ aeN (i)
I T 1
* “beliefs” “messages”
mi—>a(xi) = H mc—>i (Xi)
l . l ceN(i)\a
b (X.)oc f (X | .
—><T> <T><__— a( a) a( a)ieN]i[(a)ml_)a(Xl)

ma—>i(xi): Z fa(xa) Hmjea(xj)

X, \X; jeN (a)\i
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What if the graph is loopy? o°

O ® O
O *—0 -
O ® O




Belief Propagation on loopy
graphs

K

o —0 @

|

.
| —@—8@®« O—O—©
O

Mki

K
T
@
' |
K k
® l O o 9O
e BP Message-update Rules

Miaj(xj) oc er//ij(xﬂxj)lr//i(xi)]:[Mkﬁi(xi) bi(Xi) oC l//i(xi)H Mk(Xk)
Xi k

k
L Texternal evidence
Compatibilities (interactions)

e May not converge or converge to a wrong solution
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Loopy Belief Propagation o°

e A fixed point iteration procedure that tries to minimize F .
e Start with random initialization of messages and beliefs

e While not converged do

b; (X;) o Hma—ﬂ(xi) b, (X,) < f,(X,) Hmi—>a(xi)
aeN (i) <N (a)
m ()= [Imei() M) =2 (X)) [Imi.(x)
ceN(i)\a X \X jeN (a)\i

e At convergence, stationarity properties are guaranteed
e However, not guaranteed to converge!
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Loopy Belief Propagation i) ) 52
ﬂ
e If BP is used on graphs with loops, messages may circulate
iIndefinitely

e But let’s run it anyway and hope for the best ... ©

e Empirically, a good approximation is still achievable
e Stop after fixed # of iterations
e Stop when no significant change in beliefs
° isolution IS not oscillatory but converges, it usually is a good approximation

Loopy-belief Propagation for Approximate Inference: An Empirical Study
Kevin Murphy, Yair Weiss, and Michael Jordan.
UAI '99 (Uncertainty in Al). ]
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So what is going on? -

e Is it a dirty hack that you bet your luck? LB[

o—0—©

© Eric Xing @ CMU, 2005-2015
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Approximate Inference -
e Let us call the actual distribution P Rx)q;; a";d

P(X)=1/Z]] f.(X,) (o< M{7

——— foeF

e We wish to find a distribution Q such that Q is a “good”
approximation to P

e Recall the definition of KL-divergence

KL(Qu11Q2) = Y Qu(X) log(
,_1;\ X

Q,(X)

Qz(X))

o KL(Q]|Qy)>=0 v

o KLQiIIQ,)=0iff Q;=Q,

e We can therefore use KL as a scoring function to decide a good Q

e BuLKL(Q,lIQ) 2KI(QlIQ)
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ktig) lafy 4
Which KL? ‘ (M’)

e Computing KL(P||Q) requires inference!
e But KL(Q||P) can be computed without performing inference

onP — ﬁym
X)=7
KL@Q| P)=ZQ(X)Iog(§§§;) pl )Tw)
X \('/ ‘
:ZQ(XNOQQ(X)—ZQ(X)IogP(x) k//
: o Iogp(x) = ZHY)
e Using P(X)= 1/ZHf(X)

KL(Q || P)——H (X)-E Iog(l/ZHf (X,))

@_ Iogl/_;zepEQ Iog fa®
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Optimization function

KL(QI[P)=

—H,(X)- > Eglog f,(X,)+logZ
faeF

N J
Y

F(P.Q)

e Wewillcall F(P,Q) the “Free energy” *

o F(P,P)=" 'L? 2

o F(P,Q)>=F(P,P)

*Gibbs Free Energy
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S 2Fw) % B -

The Energy Functional - -
e Letuslook at the functional \U" A
{ &=
@_HQ(X)_ Z EQ Iog f@
@og @an be computed if we have marginals over each f,

E‘gQ(X)Iog Q(X) is harder! Requires summation over all
pOSSIb|e values

e Computing F, is therefore hard in general.

e Approach 1: Approximate F(P,Q) with easy to compute F(P,Q)
(2~ = prgnw I

L

\I
E
=i?
> R
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Y AL VNSO B AR OO INPRYIN 1+

' PUXg . &) PlXs X0 |PgR:
Tree Energy Functionals " P& Poay

PUOIPUXG) PLAeL P, Papy

e Consider a tree structured distribution

e The probabrlrty can be written as: b(x) = Hlb’j—[ b (x )1_di

° ——ZZb Jinb, (x,)+ X .—IZb )Inb, (x -
¢ F. ZZb f((x; X(-a) Zb Jin, (x

=Fp+Fyp+ +Fy+Fg-F-FK-F,-F-F-F
e involves summation over edges and vertices and is therefore easy to compute
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Bethe Approximation to Gibbs i

Free Energy F= Ho U gfoglee

e For ageneral graph choose F(P,Q) = Fou

Heoor g 2)Inb, ( Z .—IZb )Inb, (x
FBetheznga(xa)%ZI d,) Zb JInb, (% )£ —(f,(X,)) = Hyena

e Called “Bethe apprOX|mat|on after the phyS|C|st Hans Bethe k\

Fbethe—F12+F23+ +F7+F78 F F 2F 2F

e Equal to the exact Gibbs free energy when the factor graph is a tree

e In general, Hg. IS NOt the same as the H of a tree
© Eric Xing @ CMU, 2005-2015 29



Bethe Approximation Fueae £ F, | &8

e Pros: <

e [Easy to compute, since entropy term involves sum over pairwise-and-
single variables

e Cons:

o F(P/Q) j"e may or may not be well connected to F(P,Q)
e It could, in general, be greater, equal or less than F(P,Q)

e Optimize each b(x,)'s.
e For discrete belief, constrained opt. with Lagrangian multiplier

e [or continuous belief, not yet a general formula FB (L& })\)
e Not always converge 1 — =

© Eric Xing @ CMU, 2005-2015
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Bethe Free Energy for FG 3T
[ b hal =y v Fy
4 z hil) =|
~ :x&w/#cw
/; # S )Inb, (x

—ZZb Jinb,(x,) +Zd le )Inb, (x

I:Bethe - _< 1:a (Xa )> —-H betha
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(b b { = mymsr (Fu) HE
Minimizing the Bethe Free Energy | ::

* L:FBethe_l_Z?/i{l_Z%i)} @
+Z Z Z/Iai(xi);bi(xi)_ Zba(xa)l

a ieN(a) x \ X\ i ™ |

e Set derivati\zei to zero \/E
)L -,
Ohe




Constrained Minimization of the cece
Bethe Free Energy oo

— FBethe + Z%{Z bi (Xi) _1}

LYY S >{zb< )-b(x >}

a ieN(a) x; X, \X

oL
B0 = bi(xi)ocexp[i a;mﬂa.(x)]
o0 = ba(xa>ocexp[—Ea<xa)+ieNz(agai(xi)j
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Bethe = BP on FG ot

e We had:

b (%) o« exp[

—_ d, -1, N (i)
o Identify 2 =log(m.

icN (a)

|—>a IOg H mb—>|

beN (i

e to obtain BP equatlons

l:.
0=

b, (X;) oc () H M, (X;)
— aeN(i)T

“beliefs” “messages”

Z/Ial(x )J ba(Xa)ocexp[—Iog fa(Xa)+ Zﬁ’ai(xi)

b,(¢) % ) T TTmesi(x

ieN(a) ceN(i)\a

_»l al:
!

The “belief” is the BP approximation of

the marginal probability.

© Eric Xing @ CMU, 2005-2015
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BP Message-update Rules E
Using b, ,; (x;) = > b, (X,), we get
Xa \X;
ma—>i(xi): Z fa(xa) H Hmb—>j(xj)
X, \X; jeN(a)\i beN(j)\a

(A sum product algorithm )

i a

O‘i

QD
PP
)

Oi

—
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Summary so far -

P(X)= 1/sz

——> F(P,Q)=-H,(X)- > E,log f,(X,)
/ @
\V F(PlQ) = ZZb log ((:; >(-d) Zb logb, (x

ll

ba(Xa)oceXp[ log f,(X,)+ D A (X ))

ieN (a)

S 1y (x >j

i a N (i) 30

— \Tr._ <=

© Eric Xing @ CMU, 2005_6).1ZX. ) o exp[
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b =p |88

The Theory Behind LBP 4

e [or a distribution p(X|#) associated with a complex graph,
computing the marginal (or conditional) probability of arbitrary

random variable(s) is intractable L.
he
e Variational methods hiw
e formulating probabilistic inference as an optimization problem:
v

q*:argl%{ EBetha(p’q) }

/

S ZZb fEX; 21 d,) Zb )Inb; (%)= —( f,(X,)) = Hoene

q:a (tractable) probability distribution

© Eric Xing @ CMU, 2005-2015 31



The Theory Behind LBP

e But we do not optimize q(X) explicitly, focus on the set of beliefs
- €0, b :{bi,j :T(Xi’xj)’ b, =7(x%)}

e Relax the optimization problem

e approximate objective: H g~ F (b)

relaxed feasible set:
: M—>M, (M, 2M)

b* =argmin { (E), +F(b) |
e The loopy BP algorithm: >0
e afixed point iteration procedure that tries to solve b*

© Eric Xing @ CMU, 2005-2015
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The Theory Behind LBP 4

e But we do not optimize q(X) explicitly, focus on the set of beliefs
« €0, b={b=7(x,X;), by=70%)}
e Relax the optimization problem

e approximate objective: Heera =H (b ;. b))

o relaxed feasible set: M, ={ 720|ZT(XI_):l,zf(xi,xj):r(xj) }

b" =argmin { (E), +F(b) |
e The loopy BP algorithm: 2o
e afixed point iteration procedure that tries to solve b*

© Eric Xing @ CMU, 2005-2015 33



Region-based Approximations to - :G‘O

the Gibbs Free Energy (kikuchi, 1951) .
-_—

Exact: 6&[q(X)] (intractabley

b
Regions:6[{b. (X,)} b —:(7




Generalized Belief Propagation -

e Belief in a region is the product of:
e Local information (factors in region)

e Messages from parent regions
e Messages into descendant regions from parents who are not descendants.

e Message-update rules obtained by enforcing marginalization
constraints.

© Eric Xing @ CMU, 2005-2015
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Generalized Belief Propagation

1245

2356

4578

5689

> > >

25

45

‘e

oY

8

S

’0
*
*
*
*
.
.

.
-
-
-
-
L]
L]
L]

5
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Generalized Belief Propagation

1245

2356

4578

5689

> > >

O
—()
O

)

|
i

Q\l ~
Q=0
O

=2\

8

by ocm,_.m, ;Mg Mg .
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Generalized Belief Propagation os
1245 2356 4578 5689
25 58

5

b45 oC [ f45] [m12—>45m78—>45m2—>5 m6—>5 m8—>5]

© Eric Xing @ CMU, 2005-2015
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------------
......
* L]

&

1245 | || 2356 | | 4578 | 5689

5

58

b1245 oC [ f12 f14 f25 f45][rn36—>25rT]78—>45rn6—>5 m8—>5]
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Some results

local magnetization

2

4 5 6 7 8 9 10¢

HbBP
mGBP

ﬁExact

variable node

© Eric Xing @ CMU, 2005-2015
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L ) i
Summary r :
e

e We defined an objective function (F) for approxitinate
Inference b 40(

e However, we found that optimizing this function was hard

e We first approximated objective function F to simpler F, ..
e Minima of F, ;. turned out to be fixed points of BP

e Then we extended this to more complicated approximations

e The resulting algorithms come under a family called Generalized Belief
Propagation

e Next class, we will cover other methods of approximations

© Eric Xing @ CMU, 2005-2015 41



Mean Field Approximation

© Eric Xing @ CMU, 2005-2015
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Naive Mean Field

e Fully factorized variational distribution

a(x) = ][ a(xs)

seV

© Eric Xing @ CMU, 2005-2015
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Naive Mean Field for Ising Model | ¢

e Optimization Problem

max {ZH [bs + Z Ostfispte + ZH (1ts) }

[0,1]"
nel (s,)EE SEV

e Update Rule

s < 0(93 + Z QSM)

teN (s)
o 1 =p(Xy=1) =E,[X;] resembles “message” sent from node ¢ to s

{E,[X¢],t € N(s)} forms the “mean field” applied to S from its
neighborhood
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Mean field methods ot

e Optimize q(X,) in the space of tractable families

e I.e., subgraph of G, over which exact computation of H, is
feasible

e Tightening the optimization space

e exact objective: H q
e tightened feasible set: Q ST (T <Q)

g =argmin <E>q —H

qeT q

© Eric Xing @ CMU, 2005-2015 45



Cluster-based approx. to the T
Gibbs free energy ~ (uessmocon | 3

Exact: G[p(X)] (intractable)
Clusters: G[{q.(X.)}]

,z.:\« "_f E é (i\,‘a.:'\' _i § é ;’u\\
(i 2 i E N :'\» f 2 g igA %i i
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Mean field approx. to Gibbs free cece
energy g

e Given a disjoint clustering, {C,, ... , C}, of all variables

° Lot q(X) =] a(X,),

e Mean-field free energy

Gy ZZHq( )E(xci)+ZZqi(xci)lnqi(xci)

X, I X,

e.g., GMF :qu Xi)q(Xj)yﬁ(Xin)-l-qu( (X)+ZZC| |nC| (naive mean field)

i<J XX

e Will never equal to the exact Gibbs free energy no matter what clustering is used,
but it does always define a lower bound of the likelihood

e Optimize each g;(x.)'s.
e Variational calculus ...
e Do inference in each g;(x,) using any tractable algorithm
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The Generalized Mean Field T
theorem oo

Theorem: The optimum GMF approximation to the
cluster marginal is isomorphic to the cluster posterior of
the original distribution given internal evidence and its
generalized mean fields:

qi*(XH,Ci) — p(XH,Ci |XE,Ci’<XH,MBi >q )

J#i

GMF algorithm: Iterate over each Q;

© Eric Xing @ CMU, 2005-2015 48



A generalized mean field T
al gor Ithm [xing et al. UAI 2003] oo
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A generalized mean field
al g O I | t h m [xing et al. UAI 2003]

A?:@A
CHD ERD EXD




Convergence theorem

Theorem: The GMF algorithm is guaranteed to

converge to a local optimum, and provides a lower
bound for the likelihood of evidence (or partition
function) the model.

© Eric Xing @ CMU, 2005-2015
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The naive mean field
approximation oo

e Approximate p(X) by fully factorized q(X)=P;q;(X)
e For Boltzmann distribution p(X)=exp{2,; < ; 4; XX+ X }/Z :

mean field equation: Q Q
g (X:) — eXp{Q,-OX,. +j§fi (9,'J' X,’ <XJ >qj -I—A,} Q _»@’4_ Q

=p(X, (X)), 1j e Q/ e

- <Xj> resembles a “message” sent from node j to i
q.

J
"{(X,), 1] €N}orms the “mean field” applied to X; from its neighborhood
J
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Example 1: Generalized MF i
approximations to Ising models .

X080 L8 &L
58888888
SLES 0
B2 E883

Cluster marginal of a square block C,:

A4

q(XCk)oceXp< z Qinin+Z(9ioxi+ Z eijxi<xj>q(xckl)

i,jECk iECk ieCk,jeMBk,
k'eMBCk

Virtually a reparameterized Ising model of small size.
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GMF approximation to Ising
models

55688888
58385088
586885088
58888088

Singleton marginal error CPU time
CME. %

1l ]
GMF,, o5 _

0.87 1

0.6 [ 1
15} '
0.4 . I E 10k |
i { ;I | | |
0— ; : — (i — T . — —

attractive repulsive attractive repulsive

Attractive coupling: positively weighted
Repulsive coupling: negatively weighted
© Eric Xing @ CMU, 2005-2015 54



Example 2: Sigmoid belief i
network .

_________________________

| S50 e o B A T A nr e S S s 30 S AT 3 34 AT

Singleton marginal error CPU time
0.5 ‘ 140
120}
0.4} -GMFr g
1007
0.3r 7 80+
0.2r I _ 60~
407
0.1F ]
20
0w : ] o m N I
no obs with obs no obs with obs
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Example 3: Factorial HMM
9090900 TREG-0-0-0-0-0"
T s
00000 OOO0OO0COOOO0




Automatic Variational Inference :

.. =@ & —O—0—a
—~—EO—E—

fHMM Mean field approx. Structured variational approx.

e Currently for each new model we have to

e derive the variational update equations
e write application-specific code to find the solution

e Each can be time consuming and error prone

e Can we build a general-purpose inference engine which
automates these procedures?
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Cluster-based MF (e.g., GMF) o°

e a general, iterative message passing algorithm

e clustering completely defines approximation

e preserves dependencies
e flexible performance/cost trade-off
e clustering automatable
e recovers model-specific structured VI algorithms, including:
e fHMM, LDA

e Vvariational Bayesian learning algorithms

e easily provides new structured VI approximations to complex
models

© Eric Xing @ CMU, 2005-2015
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