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Inference Problems
 Compute the likelihood of observed data
 Compute the marginal distribution            over a particular subset           

of nodes
 Compute the conditional distribution                  for disjoint subsets A

and B
 Compute a mode of the density

 Methods we have

Brute force Elimination
Message Passing
(Forward-backward , Max-product 

/BP, Junction Tree)

Sharing intermediate termsIndividual computations independent
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Sum-Product Revisited
 Tree-structured GMs

 Message Passing on Trees:

 On trees, converge to a unique fixed point after a finite number of iterations
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Junction Tree Revisited
 General Algorithm on Graphs with Cycles

 Steps:

B CS

=> Triangularization => Construct JTs

=> Message Passing on Clique Trees
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Local Consistency
 Given a set of functions                                            associated 

with the cliques and separator sets

 They are locally consistent if:

 For junction trees, local consistency is equivalent to global 
consistency!
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An Ising model on 2-D image
 Nodes encode hidden 

information (patch-
identity).

 They receive local 
information from the 
image (brightness, 
color).

 Information is 
propagated though the 
graph over its edges.

 Edges encode 
‘compatibility’ between 
nodes.
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Why Approximate Inference?
 Why can’t we just run junction tree on this graph?

 If NxN grid, tree width at least N
 N can be a huge number(~1000s of pixels)

 If N~O(1000), we have a clique with 2100 entries
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Approaches to inference
 Exact inference algorithms

 The elimination algorithm
 Message-passing algorithm (sum-product, belief propagation)
 The junction tree algorithms      

 Approximate inference techniques
 Variational algorithms

 Loopy belief propagation 
 Mean field approximation 

 Stochastic simulation / sampling methods
 Markov chain Monte Carlo methods
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Loopy Belief Propogation
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Recap: Belief Propagation

 BP Message-update Rules

 BP on trees always converges to exact marginals (cf. Junction 
tree algorithm)
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Region graphs (Factor Graph)
 It will be useful to look explicitly at the messages being 

passed 
 Messages from variable to factors
 Messages from factors to variables

 Let us represent this graphically
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Beliefs and messages in FG
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What if the graph is loopy?


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Belief Propagation on loopy 
graphs

 BP Message-update Rules

 May not converge or converge to a wrong solution
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 A fixed point iteration procedure that tries to minimize Fbethe

 Start with random initialization of messages and beliefs

 While not converged do

 At convergence, stationarity properties are guaranteed
 However, not guaranteed to converge!

Loopy Belief Propagation
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Loopy Belief Propagation
 If BP is used on graphs with loops, messages may circulate 

indefinitely

 But let’s run it anyway and hope for the best … 

 Empirically, a good approximation is still achievable
 Stop after fixed # of iterations
 Stop when no significant change in beliefs
 If solution is not oscillatory but converges, it usually is a good approximation

Loopy-belief Propagation for Approximate Inference: An Empirical Study 
Kevin Murphy, Yair Weiss, and Michael Jordan. 
UAI '99 (Uncertainty in AI). ]
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So what is going on?
 Is it a dirty hack that you bet your luck?
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Approximate Inference
 Let us call the actual distribution P

 We wish to find a distribution Q such that Q is a “good” 
approximation to P

 Recall the definition of KL-divergence

 KL(Q1||Q2)>=0
 KL(Q1||Q2)=0 iff Q1=Q2

 We can therefore use KL as a scoring function to decide a good Q
 But, KL(Q1||Q2)  KL(Q2||Q1
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Which KL?
 Computing KL(P||Q) requires inference!
 But KL(Q||P) can be computed without performing inference 

on P

 Using 
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Optimization function

 We will call                 the “Free energy” *
 =?

 F(P,Q) >= F(P,P)
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*Gibbs Free Energy

),( PPF
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The Energy Functional
 Let us look at the functional

 can be computed if we have marginals over each  fa

 is harder! Requires summation over all 
possible values

 Computing F, is therefore hard in general.
 Approach 1: Approximate with easy to compute
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Tree Energy Functionals
 Consider a tree-structured distribution

 The probability can be written as:




 involves summation over edges and vertices and is therefore easy to compute
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Bethe Approximation to Gibbs 
Free Energy
 For a general graph, choose

 Called “Bethe approximation” after the physicist Hans Bethe

 Equal to the exact Gibbs free energy when the factor graph is a tree
 In general, HBethe is not the same as the H of a tree
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Bethe Approximation
 Pros:

 Easy to compute, since entropy term involves sum over pairwise and 
single variables

 Cons:
 may or may not be well connected to
 It could, in general, be greater, equal or less than  

 Optimize each b(xa)'s. 
 For discrete belief, constrained opt. with Lagrangian multiplier 
 For continuous belief, not yet a general formula
 Not always converge

betheFQPF 


),( ),( QPF

),( QPF

© Eric Xing @ CMU, 2005-2015 24



Bethe Free Energy for FG
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Minimizing the Bethe Free Energy


 Set derivative to zero
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Constrained Minimization of the 
Bethe Free Energy
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Bethe = BP on FG
 We had:

 Identify
 to obtain BP equations:
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Using ,)()(
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BP Message-update Rules

( A sum product algorithm )
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Summary so far

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 For a distribution p(X|) associated with a complex graph, 
computing the marginal (or conditional) probability of arbitrary 
random variable(s) is intractable

 Variational methods
 formulating probabilistic inference as an optimization problem:
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 But we do not optimize q(X) explicitly, focus on the set of beliefs

 e.g.,

 Relax the optimization problem

 approximate objective:
 relaxed feasible set:

 The loopy BP algorithm: 
 a fixed point iteration procedure that tries to solve b*
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The Theory Behind LBP
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 But we do not optimize q(X) explicitly, focus on the set of beliefs

 e.g.,

 Relax the optimization problem

 approximate objective:
 relaxed feasible set:
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)]([ XqG
)}]([{ rr XbG

Exact:

Regions:

(intractable)

(Kikuchi, 1951)

Region-based Approximations to 
the Gibbs Free Energy
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 Belief in a region is the product of:
 Local information (factors in region)
 Messages from parent regions
 Messages into descendant regions from parents who are not descendants.

 Message-update rules obtained by enforcing marginalization 
constraints.

Generalized Belief Propagation  
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Some results

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Summary
 We defined an objective function (F) for approximate 

inference
 However, we found that optimizing this function was hard
 We first approximated objective function F to simpler Fbethe

 Minima of Fbethe turned out to be fixed points of BP

 Then we extended this to more complicated approximations
 The resulting algorithms come under a family called Generalized Belief 

Propagation

 Next class, we will cover other methods of approximations
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Mean Field Approximation
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Naïve Mean Field
 Fully factorized variational distribution
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Naïve Mean Field for Ising Model
 Optimization Problem

 Update Rule

 resembles “message” sent from node      to   

 forms the “mean field” applied to     from its 
neighborhood
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 Optimize q(XH) in the space of tractable families

 i.e., subgraph of Gp over which exact computation of Hq is  
feasible

 Tightening the optimization space

 exact objective:
 tightened feasible set: 

qH
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qqq
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
  minarg*

T

)( QT 

Mean field methods
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)]([ XpG

)}]([{ cc XqG

Exact:

Clusters:

(intractable)

Cluster-based approx. to the 
Gibbs free energy (Wiegerinck 2001, 

Xing et al 03,04)
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Mean field approx. to Gibbs free 
energy
 Given a disjoint clustering, {C1, … , CI}, of all variables
 Let 

 Mean-field free energy

 Will never equal to the exact Gibbs free energy no matter what clustering is used, 
but it does always define a lower bound of the likelihood 

 Optimize each qi(xc)'s. 
 Variational calculus …
 Do inference in each qi(xc) using any tractable algorithm

),()( i
i

iqq CXX 

      
i

CiCi
i

C
i

Ci
iC

iii

iC

i
qqEqG

xx
xxxx ln)(MF

          
 i x

ii
i

i
x

i
ji

ji
xx

ji
iiji

xqxqxxqxxxqxqG ln)()(       e.g., MF  (naïve mean field)

© Eric Xing @ CMU, 2005-2015 47



),|()( ,,,,
*

ij
iiii qMBHCECHCHi pq



 XxXX

Theorem: The optimum GMF approximation to the 
cluster marginal is isomorphic to the cluster posterior of 
the original distribution given internal evidence and its 
generalized mean fields:

GMF algorithm: Iterate over each qi

The Generalized Mean Field 
theorem
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[xing et al. UAI 2003]

A generalized mean field 
algorithm
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[xing et al. UAI 2003]

A generalized mean field 
algorithm
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Theorem: The GMF algorithm is guaranteed to 
converge to a local optimum, and provides a lower 
bound for the likelihood of evidence (or partition 
function) the model.

Convergence theorem
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Gibbs predictive distribution:
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 Approximate p(X) by fully factorized q(X)=Piqi(Xi)

 For Boltzmann distribution p(X)=exp{i < j qijXiXj+qioXi}/Z :
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 {xjqj : j  Ni} forms the “mean field” applied to Xi from its neighborhood}:{ iqj jX
j

N
jqjX

The naive mean field 
approximation

© Eric Xing @ CMU, 2005-2015 52



Cluster marginal of a square block Ck:














  

 


k
kMBCk

kMBjkCi kC
k

k
Cji

Xqjiij
Ci

iijiijC XXXXXXq
,

)(

'
,, '

exp)(  0

Virtually a reparameterized Ising model of small size.

Example 1: Generalized MF 
approximations to Ising models
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GMF approximation to Ising
models

GMF2x2

GMF4x4

BP

Attractive coupling: positively weighted
Repulsive coupling: negatively weighted
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GMFr

GMFb

BP

Example 2: Sigmoid belief 
network
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Example 3: Factorial HMM
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Automatic Variational Inference

 Currently for each new model we have to 
 derive the variational update equations 
 write application-specific code to find the solution

 Each can be time consuming and error prone

 Can we build a general-purpose inference engine which 
automates these procedures?

... ... ... ...

A AA Ax2 x3x1 xN

yk2 yk3yk1 ykN... 

... 

y12 y13y11 y1N... 

S2 S3S1 SN... 

... ... ... ...

A AA Ax2 x3x1 xN

yk2 yk3yk1 ykN... 

... 

y12 y13y11 y1N... 

S2 S3S1 SN... 

fHMM Mean field approx. Structured variational approx.


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 a general, iterative message passing algorithm 

 clustering completely defines approximation
 preserves dependencies 
 flexible performance/cost trade-off
 clustering automatable 

 recovers model-specific structured VI algorithms, including:
 fHMM, LDA 
 variational Bayesian learning algorithms

 easily provides new structured VI approximations to complex 
models

Cluster-based MF (e.g., GMF)
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