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Goals of Inference 
Recall, the goals of inference in graphical models include: 

l  Computing the likelihood of observed data (in models with 
latent variables). 

l  Computing the marginal distribution over a given subset of 
nodes in the model. 

l  Computing the conditional distribution over a subsets of nodes 
given a disjoint subset of nodes. 

l  Computing a mode of the density (for the above distributions). 
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Approaches to Inference 
Recall, approaches to inference include: 

l  Exact inference algorithms: 
l  Brute force. 
l  The elimination algorithm. 
l  Message passing (sum-product algorithm, belief propagation). 
l  Junction tree algorithm. 

l  Approximate inference algorithms: 
l  Loopy belief propagation (ß Last Class) 
l  Variational (Bayesian) inference + mean field approximations (ß Today) 
l  Stochastic simulation / sampling / MCMC (ß Future Classes) 
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From Last Class: Loopy Belief 
Propagation 

Recall, from last class: 

l  We introduced message passing (“belief propagation”) on 
loopy graphs (non-trees). 
l  Messages may circulate indefinitely. 
l  However, it often seems to work empirically. 

l  But what is happening, theoretically, when it works? 

l  We can view it as a case of “variational inference”. 
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From Last Class: Loopy Belief 
Propagation 

Viewing Loopy Belief Propagation as variational inference: 

l  We wrote down the KL-divergence between an approximate 
distribution Q and the distribution P we want to infer. 

l  We defined a similar value: the (Gibbs) “Free Energy”. 
l  This Free Energy consists of an entropy term and an expected log marginal term. 

l  Computing the Free Energy is hard, in general, so we instead 
use approximations, such as the Bethe approximation. 

l  We then minimize the Bethe Free Energy (i.e. the Free 
Energy with Bethe approximation). 

l  We also described another approximation in “generalized 
belief propagation”. 
l  Allows for a more general variational approximation. 
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Variational (Bayesian) Inference 
and 

Mean Field Approximations 
 

(Notation and examples from David Blei’s  
tutorial on Variational Inference) 
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Notation 

We use the following notation for the rest of the lecture: 

l  n observations: 

l  m latent variables: 

l  fixed parameters: 
l  These parameters could be for the distribution over the observations or over the 

hidden variables. 

l  This notation can describe (just about) any graphical model.  
l  (i.e. any Bayes net or Markov random field). 

l  Example graphical model ---------------> 
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x = x1∶n
z = z1∶m
↵

↵

x

z



Problem Setup 
l  In modern machine learning, variational (Bayesian) inference, 

which we will refer to here as variational Bayes, is most often 
used to infer the conditional distribution over the latent 
variables given the observations (and parameters). 

l  This is also known as the posterior distribution over the 
latent variables. 

l  With our notation, the posterior is written: 
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p(z�x,↵) = p(z, x�↵)
∫z p(z, x�↵)



Motivating Example 
l  Why do we often need to use an approximate inference 

methods (such as variational Bayes) to compute the posterior 
distribution over nodes in our graphical model? 

l  It’s because we cannot directly compute the posterior 
distribution for many interesting models. 
l  I.e. the posterior density is in an intractable form (often involving integrals) which 

cannot be easily analytically solved. 

l  As a motivating example, we will try to compute the posterior 
for a (Bayesian) mixture of Gaussians. 
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Motivating Example 
Bayesian mixture of Gaussians 
l  The likelihood (i.e. the generative process): 

l  Note that we have observed variables,       , latent 
variables         and       , and parameters                 . 
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1. Draw µk ∼N (0, ⌧2) for k = 1, . . . ,K.

2. For i = 1, . . . , n
(a) Draw zi ∼ Cat(⇡).
(b) Draw xi ∼N (µzi ,�

2).
x1∶n

z1∶nµ1∶k {⌧2,⇡,�2}



Motivating Example 
 
l  We can write the posterior distribution as: 
 
 
 
 
 
l  Where we have suppressed  writing the parameters for ease of 

notation. 
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p(µ1∶K , z1∶n�x1∶n) = ∏K
k=1 p(µk)∏n

i=1 p(zi)p(xi�zi, µ1∶K)
∫µ1∶K ∑z1∶n∏K

k=1 p(µk)∏n
i=1 p(zi)p(xi�zi, µ1∶K)



Motivating Example 
l  Can we compute this density? 
l  The numerator can be computed for any choice of the latent 

variables. 
l  The problem is the denominator (the marginal probability of the 

observations): 

l  This integral cannot easily be computed analytically. 
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p(x1∶n) = �
µ1∶K
�
z1∶n

K�
k=1

p(µk) n�
i=1

p(zi)p(xi�zi, µ1∶K)
= �

µ1∶K

K�
k=1

p(µk) n�
i=1�z1∶n p(zi)p(xi�zi, µ1∶K)



Variational Bayes 
The main idea behind variational Bayes: 
 

l  Choose a family of distributions over the latent variables     
with its own set of variational parameters     , i.e.  

l  Then, we find the setting of the parameters that makes our 
approximation     closest to the posterior distribution. 
l  This is where optimization algorithms come in. 

l  Then we can use     with the fitted parameters in place of the 
posterior. 
l  E.g. to form predictions about future data, or to investigate the posterior 

distribution over the hidden variables, find modes, etc. 
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⌫

q(z1∶m�⌫)
z1∶m

q

q



Kullback-Leibler Divergence 
l  We measure the closeness of the two distributions with the 

Kullback-Leibler (KL) divergence, defined to be 

l  Intuitively, there are three “cases” of importance: 
l  If q is high and p is high, then we are happy (i.e. low KL divergence). 
l  If q is high and p is low then we pay a price (i.e. high KL divergence). 
l  If q is low then we don’t care (i.e. also low KL divergence, regardless of p). 
 

l  Intuitively, it might make more sense to consider                
l  however, we do not do this for computational reasons (which we will explain). 
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KL(q��p) = �
z
q(z) log q(z)

p(z�x) = Eq �log q(z)
p(z�x)�

KL(p��q)



The Evidence Lower Bound 
l  So: to do variational Bayes, we want to minimize the KL 

divergence between our approximation     and our posterior    . 

l  However, we can’t actually minimize this quantity (we will show 
why later), but we can minimize a function that is equal to it up 
to a constant. 

l  This function is known as the evidence lower bound (ELBO). 

l  Recall that the “evidence” is a term used for the marginal 
likelihood of observations (or the log of that). 
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q p



Deriving the Evidence Lower 
Bound 

l  First recall Jensen’s inequality (applied to random variables X): 
     When     is concave,                                    . 

l  We apply Jensen’s inequality to the log (marginal) probability 
of the observations to get the ELBO. 
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f f (E [X]) ≥ E [f (X)]

log p(x) = log�
z
p(x, z)

= log�
z
p(x, z)q(z)

q(z)
= log�Eq �p(x, z)

q(z) ��
≥ Eq [log p(x, z)] −Eq [log q(z)]

This final line is the 
ELBO! It is a lower 
bound for the evidence. 



The Evidence Lower Bound 

All together, the Evidence Lower Bound (ELBO) for a 
probability model             and approximation         to the     
posterior is : 

 

 

l  This quantity is less than or equal to the evidence (log 
marginal probability of the observations). 

l  We optimize this quantity (over densities        ) in Variational 
Bayes to find an “optimal approximation”. 
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Eq [log p(x, z)] −Eq [log q(z)]

p(x, z) q(z)

q(z)



The Evidence Lower Bound 

Notes: 

l  We choose a family of variational distributions (i.e. a family of 
approximations) such that these two expectations can be 
computed. 

l  The second expectation is the “entropy”, another quantity from 
information theory. 

l  In variational inference, we find settings of the variational 
parameters     that maximize the ELBO, which is equivalent to 
minimizing the KL divergence. 
l  Why is this? On next slide. 
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The Evidence Lower Bound 

Why do we maximize the ELBO? 

l  First recall that 

l  Next, we can write the KL divergence as: 
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p(z�x) = p(z, x)
p(x)

KL(q��p) = Eq �log q(z)
p(z�x)�

= Eq [log q(z)] −Eq [log p(z�x)]= Eq [log q(z)] −Eq [log p(z, x)] + log p(x)= − (Eq [log p(z, x)] −Eq [log q(z)]) + log p(x)

This final line is the 
negative ELBO plus a 
constant (that does 
not depend on q). 



The Evidence Lower Bound 

Hence… 

l  Therefore, finding an approximation    that maximizes the 
ELBO is equivalent to finding the    that minimizes the KL 
divergence to the posterior! 

l  Note: the difference between the ELBO and the KL divergence 
is the log normalizer (i.e. the evidence), which is the quantity 
that the ELBO bounds. 
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q

q



Quick Recap 

Quick recap on what we’ve covered so far: 
 

l  We often cannot compute posteriors, and so we need to 
approximate them, using (for e.g.) variational methods. 

l  In variational Bayes, we’d like to find an approximation within 
some family that minimizes the KL divergence to the posterior, 
but we can’t directly minimize this. 

l  Therefore, we defined the ELBO, which we can maximize, and 
this is equivalent to minimizing the KL divergence. 

l  Next, we will discuss a specific family of approximations. 
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Mean Field Variational Inference 
l  We now describe a popular family of variational 

approximations called mean field approximations. 

l  In this type of variational inference, we assume the variational 
distribution over the latent variables factorizes as 

     (where we omit variational parameters for ease of notation). 
l  We refer to           , the variational approximation for a single latent variable, as a 

“local variational approximation”. 

l  In the above expression, the variational approximation        
over each latent variable      is independent. 
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q(z1, . . . , zm) = m�
j=1

q(zj)

q(zj)
zj

q(zj)



Mean Field Variational Inference 
l  Note that this is a fairly general setup; we can also partition 

the latent variables                  into R groups                      , 
and use the approximation: 

l  Often called “generalized mean field” versus (the above) “naïve mean field”. 
l  More on this later, applied to Markov random fields. 

l  Typically, this approximation does not contain the true 
posterior (because the latent variables are dependent). 
l  E.g.: in the (Bayesian) mixture of Gaussians model, all of the cluster assignments 

for                         are dependent on each other and on the cluster locations         ,        
given data          . 
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q(z1, . . . , zm) = q(zG1 , . . . , zGR) = R�
r=1 q(zGr)

z1, . . . , zm zG1 , . . . , zGR

zi
i = 1, . . . , n

x1∶n
µ1∶K



Optimizing the ELBO in Mean 
Field Variational Inference 

How do we optimize the ELBO in mean field variational 
inference? 
 

l  Typically, we use coordinate ascent optimization. 

l  I.e. we optimize each latent variable’s variational 
approximation           in turn while holding the others fixed. 
l  At each iteration we get an updated “local” variational approximation. 
l  And we iterate through each latent variable until convergence. 

l  Note: this is not the only way to optimize the ELBO in mean 
field approximations (e.g. one can do gradient ascent, using 
the “natural gradient”), however it is a very popular method. 
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q(zj)



Optimizing the ELBO in Mean 
Field Variational Inference 

l  First, recall that the (probability) chain rule gives: 

     Note that the latent variables in this product can occur in any 
order (i.e. the indexing from 1 to m is arbitrary)---this will be 
important later. 

l  Second, note that we can decompose the entropy term of the 
ELBO (using the mean field variational approximation) as 

© Eric Xing @ CMU, 2005-2015 25 

p(z1∶m, x1∶n) = p(x1∶n) m�
j=1

p(zj �z1∶(j−1), x1∶n)

Eq [log q(z1∶m)] = m�
j=1

Eqj [log q(zj)]



Optimizing the ELBO in Mean 
Field Variational Inference 

l  Third, using the previous two facts, we can decompose the 
ELBO      for the mean field variational approximation into a nice 
form. 

l  Recall that the ELBO is defined as: 

l  Therefore, under the mean field approximation, the ELBO can be 
written: 
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L

Eq [log p(x, z)] −Eq [log q(z)]

L = log p(x1∶n) + m�
j=1

Eq �log p(zj �z1∶(j−1), x1∶n)� −Eqj [log q(zj)](                                                                 ) 



Optimizing the ELBO in Mean 
Field Variational Inference 

Before we can continue, we need to introduce some terminology: 
 

l  “The conditional” for latent variable      is: 

l  Where the       notation denotes all indices other than the      . 

l  This is actually the “posterior conditional” of     , given all other 
latent variables and observations. 

l  This posterior conditional is very important in mean field 
variational Bayes, and will be important in future inference 
algorithms used in this class, such as Gibbs sampling. 
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−j jth

zj

p(zj �z1, . . . , zj−1, zj+1, . . . , zm, x) = p(zj �z−j , x)

zj



Optimizing the ELBO in Mean 
Field Variational Inference 

l  Again, we wrote the ELBO      for the mean field variational 
approximation as: 

l  Next, we want to derive the coordinate ascent update for a 
latent variable     , keeping all other latent variables fixed. 
l  i.e. we want the                      . 

l  Removing the parts that do not depend on         , we can write:  
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L

zj
argmaxqjL

argmaxqjL = argmaxqj �Eq [log p(zj �z−j , x)] −Eqj [log q(zj)]�
= argmaxqj �� q(zj)Eq−j [log p(zj �z−j , x)]dzj −� q(zj) log q(zj)dzj�
= argmaxqjLj

L = log p(x1∶n) + m�
j=1

Eq �log p(zj �z1∶(j−1), x1∶n)� −Eqj [log q(zj)](                                                                 ) 

q(zj)



Optimizing the ELBO in Mean 
Field Variational Inference 

Notes: 
l  In the previous expression, to get the term                               , 

we have re-ordered the latent variables in our sum so that    
the        latent variable comes last. 

l  The notation          is the expectation over all “other” latent 
variables (except for the      ). 

l  We define the term inside the argmax on the last line to be 
called       , i.e. 

 

l  Note here that we have decomposed the expectation over    as 
an integral over      of an expectation over           .  
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Lj

Lj = � q(zj)Eq−j [log p(zj �z−j , x)]dzj −� q(zj) log q(zj)dzj

Eq−j
jth

zj
q

jth

Eq [log p(zj �z−j , x)]

q(z−j)



Optimizing the ELBO in Mean 
Field Variational Inference 

l  To find this argmax, we take the derivative of       with respect 
to           , use Lagrange multipliers, and set the derivative to 
zero: 

 
 

l  From this, we arrive at the coordinate ascent update: 

l  However, since the denominator of the conditional does not 
depend on      , we can equivalently write: 
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q(zj)
dLj

dq(zj) = Eq−j [log p(zj �z−j , x)] − log q(zj) − 1 = 0

Lj

q

∗(zj)∝ exp

�Eq−j [log p(zj �z−j , x)]�

q

∗(zj)∝ exp

�Eq−j [log p(zj , z−j , x)]�
zj



Optimizing the ELBO in Mean 
Field Variational Inference 

Notes: 
l  This coordinate ascent procedure convergences to a local 

maximum. 
l  The coordinate ascent update for           only depends on the 

other, fixed approximations          ,         . 
l  While this determines the optimal          , we haven’t yet 

specified the form (i.e. what specific distribution family) of     
we aim to use, only the factorization. 

l  Depending on what form we use, the coordinate update       
might not be easy to work with (and might not be in the same 
form as          …). 
l  But in many cases it is! 
l  And we will specify what forms yield good coordinate updates. 
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q(zk) q(zj)
k ≠ j

q
q(zj)

q∗(zj)
q(zj)



Optimizing the ELBO in Mean 
Field Variational Inference 

Simple Example: multinomial conditionals 
l  Suppose we have chosen a model whose conditional 

distribution is a multinomial, i.e. 

l  Then the optimal (coordinate update for)           is: 
 

l  Which is also a multinomial, and is easy to compute. So 
choosing a multinomial family of approximations for each 
latent variable gives closed form coordinate ascent updates. 
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p(zj �z−j , x) = ⇡(z−j , x)
q(zj)

q

∗(zj)∝ exp{E [log⇡(z−j , x)]}



Quick Recap 

Quick recap on what we’ve covered: 
 

l  We defined a family of approximations called “mean field” 
approximations, in which there are no dependencies between 
latent variables (and also a generalized version of this). 

l  We decomposed the ELBO into a nice form under mean field 
assumptions. 

l  We derived coordinate ascent updates to iteratively optimize 
each local variational approximation under mean field 
assumptions. 

l  Next, we will discuss specific forms for the local variational 
approximations in which we can easily compute (closed-form) 
coordinate ascent updates. 
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Exponential Family Conditionals 
l  Is there a general form for models in which the coordinate 

updates in mean field variational inference are easy to 
compute and lead to closed-form updates? 

l  Yes: the answer is exponential family conditionals. 

l  I.e. models with conditional densities that are in an 
exponential family, i.e. of the form: 

where    ,    ,    , and     are functions that parameterize the 
exponential family. 
l  Different choices of these parameters lead to many popular 

densities (normal, gamma, exponential, Bernouilli, Dirichlet, 
categorical, beta, Poisson, geometric, etc.). 
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p(zj �z−j , x) = h(zj) exp�⌘(z−j , x)�t(zj) − a(⌘(z−j , x))�
h ⌘ t a



Exponential Family Conditionals 
l  We call these “exponential-family-conditional” models. 

l  Also known as “conditionally conjugate models”. 

l  Many popular models fall into this category, including: 
l  Bayesian mixtures of exponential family models with conjugate priors. 
l  Hierarchical hidden Markov models. 
l  Kalman filter models and switching Kalman filters. 
l  Mixed-membership models of exponential families. 
l  Factorial mixtures / hidden Markov models of exponential families. 
l  Bayesian linear regression. 
l  Any model containing only conjugate pairs and multinomials. 

l  Some popular models do not fall into this category, including: 
l  Bayesian logistic regression and other nonconjugate Bayesian generalized linear 

models. 
l  Correlated topic model, dynamic topic model. 
l  Discrete choice models. 
l  Nonlinear matrix factorization models. 
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Exponential Family Conditionals 
l  We can derive a general formula for the coordinate ascent 

update for all exponential-family-conditional models. 

l  First, we will choose the form of our local variational 
approximation          to be the same as the conditional 
distribution (i.e. in an exponential family). 

l  When we perform our coordinate ascent update, we will see 
that the update yields an optimal           in the same family. 

l  Recall from above that we derived the coordinate ascent 
updates for optimizing the ELBO (under the mean field 
assumption) as: 
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q

∗(zj)∝ exp

�Eq−j [log p(zj �z−j , x)]�

q(zj)

q(zj)



Exponential Family Conditionals 
Coordinate ascent updates for exponential-family-conditional 
models (under the mean field approximation): 
l  The log of the conditional: 

l  The expectation of this with respect to            is: 

l  The last term does not depend on         , so we have the update: 

l  So the optimal           is in the same exponential family as the 
conditional. 
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log p(zj �z−j , x) = logh(zj) + ⌘(z−j , x)�t(zj) − a(⌘(z−j , x))
q(z−j)

q(zj)

q(zj)

Eq−j [log p(zj �z−j , x)] = logh(zj) +Eq−j [⌘(z−j , x)]� t(zj) −Eq−j [a(⌘(z−j , x))]

q

∗(zj)∝ h(zj) exp�Eq−j [⌘(z−j , x)]� t(zj)�



Exponential Family Conditionals 
Writing this update in terms of variational parameters    . 
l  Give each latent variable a variational parameter     . Under the 

mean field assumption, we can write the full approximation as : 
 
 
where each local variational approximation has an exponential 
family form. 

l  Then the coordinate ascent algorithm updates each variational 
parameter, in turn, as: 

© Eric Xing @ CMU, 2005-2015 38 

⌫

⌫j

q(z1∶m�⌫) = m�
j=1

q(zj �⌫j)

⌫

∗
j = Eq−j [⌘(z−j , x)]



Quick Recap 

Quick recap on what we’ve covered: 
 

l  We found a family of models (exponential-family-conditional 
models) in which we have closed form coordinate ascent 
updates to optimize the ELBO. 
l  And we gave a number of examples (and non-examples) of these models. 

l  We gave an explicit form for the coordinate ascent update for 
these exponential-family-conditional models. 
l  And also looked at the update in terms of the local variational parameters. 
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Mean Field for Markov Random 
Fields 

l  We can also apply similar mean field approximations for 
Markov random fields (such as the Ising model): 
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q(x) =�
s∈V

q(xs)



Mean Field for Markov Random 
Fields 

l  We can also apply more general forms of mean field 
approximations (involving clusters) to the Ising model: 

l  Instead of making all latent variables independent (i.e. naïve 
mean field, previous figure), clusters of (disjoint) latent 
variables are independent. 
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Generalized (Cluster-based) 
Mean Field for MRFs 
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l  For these MRFs there exist a general, iterative message 
passing algorithm for inference (similar to the loopy-BP 
algorithm learned in the previous class). 

l  Clustering completely defines the approximation. 
l  Preserves dependencies. 
l  Allows for a flexible performance/cost trade-off. 
l  Clustering can be done in an automated fashion. 

l  Generalizes model-specific structured VI algorithms, 
including: 
l  fHMM, LDA. 
l  Variational Bayesian learning algorithms 

l  Provides new structured VI approximations to complex 
models 



Some Results: Factorial HMMs  
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Some Results: Sigmoid Belief 
Networks  
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Some Results: Ising Models 
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Attractive coupling: positively weighted 
Repulsive coupling: negatively weighted 


