

Probabilistic Graphical Models

Theory of Variational Inference: Inner and Outer Approximation

Eric Xing Lecture 14, March 2, 2015

Reading: W & J Book Chapters

© Eric Xing @ CMU, 2005-2015

Roadmap

- Two families of approximate inference algorithms
 - Loopy belief propagation (sum-product)
 - Mean-field approximation
- Are there some connections of these two approaches?
- We will re-exam them from a unified point of view based on the variational principle:
 - Loop BP: outer approximation
 - Mean-field: inner approximation

Variational Methods

- "Variational": fancy name for optimization-based formulations
 - i.e., represent the quantity of interest as the solution to an optimization problem
 - *approximate* the desired solution by *relaxing/approximating* the *intractable* optimization problem
- Examples:
 - Courant-Fischer for eigenvalues:

 $\lambda_{\max}(A) = \max_{\|x\|_2 = 1} x^T A x$

• Linear system of equations:

$$Ax = b, A \succ 0, x^* = A^{-1}b$$

• variational formulation:

$$x^* = \arg\min_{x} \left\{ \frac{1}{2} x^T A x - b^T x \right\}$$

• for large system, apply conjugate gradient method

Inference Problems in Graphical Models

• Undirected graphical model (MRF):

$$p(x) = \frac{1}{Z} \prod_{C \in \mathcal{C}} \psi_C(x_C)$$

- The quantities of interest:
 - marginal distributions:

$$p(x_i) = \sum_{x_j, j \neq i} p(x)$$

• normalization constant (partition function):

- Question: how to represent these quantities in a variational form?
 - Use tools from (1) exponential families; (2) convex analysis

Exponential Families

$$p_{\theta}(x_1, \cdots, x_m) = \exp\left\{ \begin{array}{c} \theta^{\mathsf{T}} \phi(x) - A(\theta) \end{array} \right\}$$

Canonical Parameters Sufficient Statistics Log partition Function

• Log normalization constant:

$$A(\theta) = \log \int \exp\{\theta^T \phi(x)\} dx$$

- it is a **convex** function (Prop 3.1)
- Effective canonical parameters:

$$\Omega := \left\{ \underbrace{\theta \in \mathbb{R}^d | A(\theta)}_{} < +\infty \right\}$$

Graphical Models as Exponential Families

$$p(\mathbf{x};\theta) = \frac{1}{Z(\theta)} \prod_{C \in \mathcal{C}} \psi(\mathbf{x}_C;\theta_C)$$

• MRF in an exponential form:

$$p(\mathbf{x}; \theta) = \exp\left\{\sum_{C \in \mathcal{C}} \log \psi(\mathbf{x}_C(\theta_C) - \log Z(\theta))\right\}$$

• $\log \psi(\mathbf{x}_C; \theta_C)$ can be written in a *linear* form after some parameterization

Example: Gaussian MRF

• Hammersley-Clifford theorem states that the precision matrix also respects the graph structure

• Gaussian MRF in the exponential form

$$p(\mathbf{x}) = \exp\left\{\frac{1}{2}\left\langle\Theta, \mathbf{x}\mathbf{x}^{T}\right\rangle - A(\Theta)\right\}, \text{where } \Theta = -\Lambda$$

• Sufficient statistics are $\{x_s^2, s \in V; x_s x_t, (s, t) \in E\}$

 $\Lambda = \Sigma^{-1}$

Example: Discrete MRF

• In exponential form

$$p(x;\theta) \propto \exp\left\{\sum_{s \in V} \sum_{j} \theta_{s;j} \mathbb{I}_j(x_s) + \sum_{(s,t) \in E} \theta_{st;jk} \mathbb{I}_j(x_s) \mathbb{I}_k(x_t)\right\}$$

Why Exponential Families?

• Computing the expectation of sufficient statistics (mean parameters) given the canonical parameters yields the marginals

$$\mu_{s;j} = \mathbb{E}_p[\mathbb{I}_j(X_s)] = \mathbb{P}[X_s = j] \quad \forall j \in \mathcal{X}_s,$$

$$\underline{\mu_{st;jk}} = \mathbb{E}_p[\mathbb{I}_{st;jk}(X_s, X_t)] = \mathbb{P}[X_s = j, X_t = k] \quad \forall (j,k) \in \mathcal{X}_s \in \mathcal{X}_t.$$

• Computing the normalizer yields the log partition function (or log likelihood function)

$$\log Z(\theta) = A(\theta)$$

Computing Mean Parameter: Bernoulli

• A single Bernoulli random variable

$$p(x;\theta) = \exp\{\theta x - A(\theta)\}, x \in \{0,1\}, A(\theta) = \log(1+e^{\theta})$$

• Inference = Computing the mean parameter

$$\mu(\theta) = \mathbb{E}_{\theta}[X] \stackrel{?}{=} 1 \cdot p(X = 1; \theta) + 0 \cdot p(X = 0; \theta) = \frac{e^{\theta}}{1 + e^{\theta}}$$

• Want to do it in a variational manner: cast the procedure of computing mean (summation) in an optimization-based formulation

Conjugate Dual Function

• Given any function $f(\theta)$, its conjugate dual function is:

 <u>Conjugate</u> dual is always a convex function: point-wise supremum of a class of linear functions

Dual of the Dual is the Original

• Under some technical condition on f (convex and lower semi-continuous), the dual of dual is itself:

$$f = (f^*)^*$$
$$f(\theta) = \sup_{\mu} \{ \langle \theta, \mu \rangle - f^*(\mu) \}$$

• For log partition function

$$\underline{A(\theta)} = \sup_{\mu} \{ \langle \theta, \mu \rangle - A^*(\mu) \}, \quad \theta \in \Omega$$

• The dual variable μ has a natural interpretation as the mean parameters

Computing Mean Parameter: Bernoulli

- The conjugate $A^*(\mu) := \sup_{\theta \in \mathbb{R}} \left\{ \mu \theta \log[1 + \exp(\theta)] \right\}$ Stationary condition $\mu = \frac{e^{\theta}}{1 + e^{\theta}} \quad (\mu = \nabla A(\theta))$

• If
$$\mu \in (0,1), \ \theta(\mu) = \log\left(\frac{\mu}{1-\mu}\right), \ A^*(\mu) = \mu \log(\mu) + (1-\mu)\log(1-\mu)$$

• If
$$\mu \notin [0,1], A^*(\mu) = +\infty$$

• We have
$$A^*(\mu) = \begin{cases} \mu \log \mu + (1-\mu) \log(1-\mu) & \text{if } \mu \in [0,1] \\ +\infty & \text{otherwise.} \end{cases}$$
.

• The variational form: $A(\theta) = \max_{\mu \in [0,1]} \{ \mu \cdot \theta - A^*(\mu) \}.$

• The optimum is achieved at $\mu(\theta) = \frac{e^{\theta}}{1 + e^{\theta}}$. This is the mean!

Computation of Conjugate Dual

• Given an exponential family

$$p(x_1, \dots, x_m; \theta) = \exp\left\{\sum_{i=1}^d \theta_i \phi_i(x) - A(\theta)\right\}$$

• The dual function

$$A^*(\mu) := \sup_{\theta \in \Omega} \left\{ \langle \mu, \theta \rangle - A(\theta) \right\}$$

- The stationary condition: $\mu \nabla A(\theta) = 0$
- Derivatives of A yields mean parameters

$$\frac{\partial A}{\partial \theta_i}(\theta) = \mathbb{E}_{\theta}[\phi_i(X)] = \int \phi_i(x) p(x;\theta) \, dx$$

- The stationary condition becomes $\mu = \mathbb{E}_{\theta}[\phi(X)]$
- Question: for which $\mu \in \mathbb{R}^d$ does it have a solution $\theta(\mu)$?

Computation of Conjugate Dual

- Let's assume there is a solution $\theta(\mu)$ such that $\mu = \mathbb{E}_{\theta(\mu)}[\phi(X)]$
- The dual has the form

$$A^{*}(\mu) = \langle \theta(\mu), \mu \rangle - A(\theta(\mu)) \\ = \mathbb{E}_{\theta(\mu)} \left[\langle \theta(\mu), \phi(X) \rangle - A(\theta(\mu)) \right] \\ = \mathbb{E}_{\theta(\mu)} \left[\log p(X; \theta(\mu)) \right]$$

• The entropy is defined as

$$\underbrace{H(p(x))}_{} = -\int p(x)\log p(x) \, dx$$

• So the dual is $\underline{A}^*(\mu) = -H(p(x; \theta(\mu)))$ when there is a solution $\theta(\mu)$

PCK.B)

Remark

• The last few identities are not coincidental but rely on a deep theory in general exponential family.

7×1 7×1 1×1)=m

- The dual function is the negative entropy function
- The mean parameter is restricted
- Solving the optimization returns the mean parameter and log partition function
- Next step: develop this framework for general exponential families/graphical models.
- However,
 - Computing the conjugate dual (entropy) is in general intractable
 - The constrain set of mean parameter is hard to characterize
 - Hence we need approximation

Complexity of Computing Conjugate Dual

• The dual function is implicitly defined:

$$\mu \longrightarrow (\nabla A)^{-1} \longrightarrow \theta(\mu) -H(p_{\theta(\mu)}) \longrightarrow A^*(\mu)$$

- Solving the inverse mapping $\mu = \mathbb{E}_{\theta}[\phi(X)]$ for canonical parameters $\theta(\mu)$ is nontrivial
- Evaluating the negative entropy requires high-dimensional integration (summation)
- Question: for which $\mu \in \mathbb{R}^d$ does it have a solution $\underline{\theta(\mu)}$? i.e., the domain of $A^*(\mu)$.
 - the ones in marginal polytope!

U = agnast

Marginal Polytope

• For any distribution p(x) and a set of sufficient statistics $\phi(x)$, define a vector of mean parameters

$$\mu_i = \mathbb{E}_p[\phi_i(X)] = \int \phi_i(x) p(x) \, dx$$

- p(x) is not necessarily an exponential family
- The set of all realizable mean parameters

$$\mathcal{M} := \{ \mu \in \mathbb{R}^d \mid \exists p \text{ s.t. } \mathbb{E}_p[\phi(X)] = \mu \}.$$

- It is a convex set
- For discrete exponential families, this is called marginal polytope

Convex Polytope

• Convex hull representation

$$\mathcal{M} = \left\{ \mu \in \mathbb{R}^d | \sum_{x \in \mathcal{X}^m} \phi(x) p(x) = \mu, \text{ for some } p(x) \ge 0, \sum_{x \in \mathcal{X}^m} p(x) = 1 \right\}$$
$$\triangleq \operatorname{conv} \left\{ \phi(x) | x \in \mathcal{X}^m \right\}$$

- Half-plane representation
 - Minkowski-Weyl Theorem: any non-empty convex polytope can be characterized by a finite collection of linear inequality constraints

$$\mathcal{M} = \Big\{ \mu \in \mathbb{R}^{\underline{d}} | a_j^\top \mu \ge b_j, \ \forall j \in \mathcal{J} \Big\},\$$

where $|\mathcal{J}|$ is finite.

Example: Two-node Ising Model

• Sufficient statistics:

$$\phi(x) := (x_1, x_2, x_1 x_2)$$

- Mean parameters:
- $\mu_1 = \mathbb{P}(X_1 = 1), \mu_2 = \mathbb{P}(X_2 = 1)$ $\mu_{12} = \mathbb{P}(X_1 = 1, X_2 = 1)$
- Two-node Ising model
 - Convex hull representation
 - $conv{(0,0,0), (1,0,0), (0,1,0), (1,1,1)}$
 - Half-plane representation

Marginal Polytope for General Graphs

- Still doable for connected binary graphs with 3 nodes: 16 constraints
- For tree graphical models, the number of half-planes (facet complexity) grows only *linearly* in the graph size
- General graphs?
 - extremely hard to characterize the marginal polytope

Variational Principle (Theorem 3.4)

• The dual function takes the form

$$A^{*}(\mu) = \begin{cases} -H(p_{\theta(\mu)}) & \text{if } \mu \in \mathcal{M}^{\circ} \\ +\infty & \text{if } \mu \notin \overline{\mathcal{M}}. \end{cases}$$

•
$$\theta(\mu)$$
 satisfies $\mu = \mathbb{E}_{\theta(u)}[\phi(X)]$

• The log partition function has the variational form

$$A(\theta) = \sup_{\mu \in \mathcal{M}} \{ \theta^T \mu - A^*(\mu) \}$$

 For all θ ∈ Ω, the above optimization problem is attained uniquely at μ(θ) ∈ M^o that satisfies

$$\underbrace{\mu(\theta)}{=} \mathbb{E}_{\theta}[\phi(X)]$$

Variational Principle

• Exact variational formulation

$$A(\theta) = \sup_{\mu \in \mathcal{M}} \{\theta^T \mu - \underline{A^*(\mu)}\}$$

- \mathcal{M} : the marginal polytope, difficult to characterize
- A^* : the negative entropy function, no explicit form
- Mean field method: non-convex inner bound and exact form of entropy
- Bethe approximation and loopy belief propagation: polyhedral outer bound and non-convex Bethe approximation
 M^{*} C M^{*}

U -

Mean Field Approximation

Tractable Subgraphs

• For an exponential family with sufficient statistics ϕ defined on graph G, the set of realizable mean parameter set

$$\mathcal{M}(G;\phi) := \{ \mu \in \mathbb{R}^d \mid \exists p \text{ s.t. } \mathbb{E}_p[\phi(X)] = \mu \}$$

Idea: restrict *p* to a subset of distributions associated with a tractable subgraph

 $\Omega(F_0) := \{ \theta \in \Omega \mid \theta_{(s,t)} = 0 \; \forall \; (s,t) \in E \}. \quad \Omega(T) := \{ \theta \in \Omega \mid \theta_{(s,t)} = 0 \; \forall \; (s,t) \notin E(T) \}.$

Mean Field Methods

• For a given tractable subgraph F, a subset of canonical parameters is

 $\mathcal{M}(F;\phi) := \{ \tau \in \mathbb{R}^d \mid \tau = \mathbb{E}_{\theta}[\phi(X)] \text{ for some } \theta \in \Omega(F) \}$

• Inner approximation

$$\mathcal{M}(F;\phi)^o \subseteq \mathcal{M}(G;\phi)^o$$

• Mean field solves the relaxed problem

$$\max_{\tau \in \mathcal{M}_F(G)} \{ \langle \tau, \theta \rangle - \mathcal{A}_F^*(\tau) \}$$

• $A_F^* = A^* |_{\mathcal{M}_F(G)}$ is the exact dual function restricted to $\mathcal{M}_F(G)$

Example: Naïve Mean Field for Ising Model

© Eric Xing @ CMU, 2005-2015

Example: Naïve Mean Field for Ising Model

- The same objective function as in free energy based approach
- The naïve mean field update equations

$$\tau_s \leftarrow \sigma \left(\theta_s + \sum_{t \in N(s)} \theta_s \tau_t \right)$$

• Also yields lower bound on log partition function

 $\mathcal{M}(G)$

 $\mathcal{M}_F(G) = \{ 0 \le \tau_1 \le 1, 0 \le \tau_2 \le 1, \tau_{12} = \tau_1 \tau_2 \}$

- It has a parabolic cross section along $au_1 = au_2$, hence non-convex
- Example: two-node Ising model
- $\mathcal{M}_F(G)$ contains all the extreme points If it is a strict subset, then it must be non-convex

exponential family in which the state space \mathcal{X}^m is finite

 $\mathcal{M}(G) = \operatorname{conv}\{\phi(e); e \in \mathcal{X}^m\}$

Geometry of Mean Field Mean field optimization is always **non-convex** for any

 $\phi(e)$

Bethe Approximation and Sum-Product

Sum-Product/Belief Propagation Algorithm

• Message passing rule:

$$M_{ts}(x_s) \leftarrow \kappa \sum_{x'_t} \left\{ \psi_{st}(x_s, x'_t) \psi_t(x'_t) \prod_{u \in N(t)/s} M_{ut}(x'_t) \right\}$$

• Marginals:

$$\mu_s(x_s) = \kappa \, \psi_s(x_s) \prod_{t \in N(s)} M^*_{ts}(x_s)$$

- Exact for trees, but approximate for loopy graphs (so called loopy belief propagation)
- Question:
 - How is the algorithm on trees related to variational principle?
 - What is the algorithm doing for graphs with cycles?

s

Tree Graphical Models

- Sufficient statistics:
- Exponential representation of distribution:

$$p(X;\theta) \propto \exp\{\sum_{s \in V} \theta_s(x_s) + \sum_{(s,t) \in E} \theta_{st}(x_s, x_t)\}$$

where $\theta_s(x_s) := \sum_{j \in \mathcal{X}_s} \theta_{s;j} \mathbb{I}_j(x_s)$ (and similarly for $\theta_{st}(x_s, x_t)$)

• Mean parameters are marginal probabilities:

$$\mu_{s;j} = \mathbb{E}_p[\mathbb{I}_j(X_s)] = \mathbb{P}[X_s = j] \quad \forall j \in \mathcal{X}_s, \quad \mu_s(x_s) = \sum_{j \in \mathcal{X}_s} \mu_{s;j} \mathbb{I}_j(x_s) = \mathbb{P}(X_s = x_s)$$
$$\mu_{st;jk} = \mathbb{E}_p[\mathbb{I}_{st;jk}(X_s, X_t)] = \mathbb{P}[X_s = j, X_t = k] \quad \forall (j,k) \in \mathcal{X}_s \in \mathcal{X}_t.$$
$$\mu_{st}(x_s, x_t) = \sum_{(j,k) \in \mathcal{X}_s \times \mathcal{X}_t} \mu_{st;jk} \mathbb{I}_{jk}(x_s, x_t) = \mathbb{P}(X_s = x_s, X_t = x_t)$$

Marginal Polytope for Trees

• Recall marginal polytope for general graphs

$$\mathcal{M}(G) = \{\mu \in \mathbb{R}^d \mid \exists p \text{ with marginals } \mu_{s;j}, \mu_{st;jk}\}$$

• By junction tree theorem (see Prop. 2.1 & Prop. 4.1)

$$\mathcal{M}(T) = \left\{ \mu \ge 0 \mid \underbrace{\sum_{x_s} \mu_s(x_s)}_{x_t} = 1, \underbrace{\sum_{x_t} \mu_{st}(x_s, x_t)}_{x_t} = \mu_s(x_s) \right\}$$

• In particular, if
$$\mu \in \mathcal{M}(T)$$
, then

$$p_{\mu}(x) := \prod_{s \in V} \mu_s(x_s) \prod_{(s,t) \in E} \frac{\mu_{st}(x_s, x_t)}{\mu_s(x_s)\mu_t(x_t)}.$$

has the corresponding marginals

Decomposition of Entropy for Trees

• For trees, the entropy decomposes as

$$\begin{split} H(p(x;\mu)) &= -\sum_{x} p(x;\mu) \log p(x;\mu) \\ &= \sum_{s \in V} \left(-\sum_{x_s} \mu_s(x_s) \log \mu_s(x_s) \right) - \\ &= \sum_{s \in V} \left(\sum_{x_s, x_t} \mu_{st}(x_s, x_t) \log \frac{\mu_{st}(x_s, x_t)}{\mu_s(x_s)\mu_t(x_t)} \right) \\ &= \sum_{s \in V} H_s(\mu_s) - \sum_{(s,t) \in E} I_{st}(\mu_{st}) \\ &= \sum_{s \in V} H_s(\mu_s) - \sum_{(s,t) \in E} I_{st}(\mu_{st}) \\ \end{split}$$

• The dual function has an explicit form $A^*(\mu) = -H(p(x;\mu))$

Exact Variational Principle for Trees

• Variational formulation

$$A(\theta) = \max_{\mu \in \mathcal{M}(T)} \left\{ \langle \theta, \mu \rangle + \sum_{s \in V} H_s(\mu_s) - \sum_{(s,t) \in E} I_{st}(\mu_{st}) \right\}$$

- Assign Lagrange multiplier λ_{ss} for the normalization constraint $C_{ss}(\mu) := 1 \sum_{x_s} \mu_s(x_s) = 0$ and $\lambda_{ts}(x_s)$ for each marginalization constraint $C_{ts}(x_s; \mu) := \mu_s(x_s) \sum_{x_t} \mu_{st}(x_s, x_t) = 0$
- The Lagrangian has the form

$$\mathcal{L}(\mu,\lambda) = \langle \theta, \mu \rangle + \sum_{s \in V} H_s(\mu_s) - \sum_{(s,t) \in E} I_{st}(\mu_{st}) + \sum_{s \in V} \lambda_{ss} C_{ss}(\mu) + \sum_{(s,t) \in E} \left[\sum_{x_t} \lambda_{st}(x_t) C_{st}(x_t) + \sum_{x_s} \lambda_{ts}(x_s) C_{ts}(x_s) \right]$$

© Eric Xing @ CMU, 2005-2015

Lagrangian Derivation

• Taking the derivatives of the Lagrangian w.r.t. μ_s and μ_{st}

$$\frac{\partial \mathcal{L}}{\partial \mu_s(x_s)} = \theta_s(x_s) - \log \mu_s(x_s) + \sum_{t \in \mathcal{N}(s)} \lambda_{ts}(x_s) + C$$
$$\frac{\partial \mathcal{L}}{\partial \mu_{st}(x_s, x_t)} = \theta_{st}(x_s, x_t) - \log \frac{\mu_{st}(x_s, x_t)}{\mu_s(x_s)\mu_t(x_t)} - \lambda_{ts}(x_s) - \lambda_{st}(x_t) + C'$$

• Setting them to zeros yields

$$\mu_{s}(x_{s}) \propto \exp\{\theta_{s}(x_{s})\} \prod_{t \in \mathcal{N}(s)} \underbrace{\exp\{\lambda_{ts}(x_{s})\}}_{M_{ts}(x_{s})}$$
$$\mu_{s}(x_{s}, x_{t}) \propto \exp\{\theta_{s}(x_{s}) + \theta_{t}(x_{t}) + \theta_{st}(x_{s}, x_{t})\} \times \prod_{u \in \mathcal{N}(s) \setminus t} \exp\{\lambda_{us}(x_{s})\} \prod_{v \in \mathcal{N}(t) \setminus s} \exp\{\lambda_{vt}(x_{t})\}$$

Lagrangian Derivation (continued)

• Adjusting the Lagrange multipliers or messages to enforce

$$C_{ts}(x_s;\mu) := \mu_s(x_s) - \sum_{x_t} \mu_{st}(x_s, x_t) = 0$$

yields

$$M_{ts}(x_s) \leftarrow \sum_{x_t} \exp\left\{\theta_t(x_t) + \theta_{st}(x_s, x_t)\right\} \prod_{u \in \mathcal{N}(t) \setminus s} M_{ut}(x_t)$$

• Conclusion: the message passing updates are a Lagrange method to solve the stationary condition of the variational formulation

BP on Arbitrary Graphs

• Two main difficulties of the variational formulation A_{BT} -

$$A(\theta) = \sup_{\mu \in \mathcal{M}} \{\theta^T \mu - \underline{A^*(\mu)}\}$$

• The marginal polytope \mathcal{M} is hard to characterize, so let's use the tree-based outer bound

$$\mathbb{L}(G) = \left\{ \tau \ge 0 \mid \sum_{x_s} \tau_s(x_s) = 1, \sum_{x_t} \tau_{st}(x_s, x_t) = \tau_s(x_s) \right\}$$

These locally consistent vectors τ are called pseudo-marginals.

• Exact entropy $-A^*(\mu)$ lacks explicit form, so let's approximate it by the exact expression for trees

$$-A^*(\tau) \approx \underline{H_{\text{Bethe}}(\tau)} := \sum_{s \in V} H_s(\tau_s) - \sum_{(s,t) \in E} I_{st}(\tau_{st}).$$

© Eric Xing @ CMU, 2005-2015

Bethe Variational Problem (BVP)

• Combining these two ingredient leads to the Bethe variational problem (BVP):

$$\max_{\tau \in \mathbb{L}(G)} \left\{ \langle \theta, \tau \rangle + \sum_{s \in V} H_s(\tau_s) - \sum_{(s,t) \in E} I_{st}(\tau_{st}) \right\}.$$

- A simple structured problem (differentiable & constraint set is a simple convex polytope)
- Loopy BP can be derived as am iterative method for solving a Lagrangian formulation of the BVP (Theorem 4.2); similar proof as for tree graphs
- A set of pseudo-marginals given by Loopy BP fixed point in any graph if and only if they are local stationary points of BVP $A = \operatorname{angles}_{A \in M} \left(\operatorname{angles}_{A \in M} \right)$

Geometry of BP

- Consider the following assignment of pseudo-marginals
 - Can easily verify $au \in \mathbb{L}(G)$
 - However, $au
 ot\in \mathcal{M}(G)$ (need a bit more work)
- Tree-based outer bound
 - For any graph, $\mathcal{M}(G) \subseteq \mathbb{L}(G)$
 - Equality holds if and only if the graph is a tree
- Question: does solution to the BVP ever fall of into the gap?
 - Yes, for any element of outer bound L(G) it is possible to construct a distribution with it as a fixed point (Wainwright et. al. 2003)

Inexactness of Bethe Entropy Approximation

• Consider a fully connected graph with

$$\mu_s(x_s) = \begin{bmatrix} 0.5 & 0.5 \end{bmatrix} \text{ for } s = 1, 2, 3, 4$$
$$\mu_{st}(x_s, x_t) = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix} \quad \forall (s, t) \in E.$$

- It is globally valid: $\tau \in \mathcal{M}(G)$; realized by the distribution that places mass 1/2 on each of configuration (0,0,0,0) and (1,1,1,1)
- $H_{\text{Bethe}}(\mu) = 4\log 2 6\log 2 = -2\log 2 < 0,$

•
$$-A^*(\mu) = \log 2 > 0.$$

Remark

• This connection provides a principled basis for applying the sum-product algorithm for loopy graphs

• However,

- Although there is always a fixed point of loopy BP, there is no guarantees on the convergence of the algorithm on loopy graphs
- The Bethe variational problem is usually non-convex. Therefore, there are no guarantees on the global optimum
- Generally, no guarantees that $A_{
 m Bethe}(heta)$ is a lower bound of A(heta)

• Nevertheless,

• The connection and understanding suggest a number of avenues for improving upon the ordinary sum-product algorithm, via progressively better approximations to the entropy function and outer bounds on the marginal polytope (Kikuchi clustering)

Summary

- Variational methods in general turn inference into an optimization problem via exponential families and convex duality
- The exact variational principle is intractable to solve; there are two distinct components for approximations:
 - Either inner or outer bound to the marginal polytope
 - Various approximation to the entropy function
- Mean field: non-convex inner bound and exact form of entropy
- <u>BP</u>: polyhedral outer bound and non-convex Bethe approximation
- <u>Kikuchi and variants</u>: tighter polyhedral outer bounds and better entropy approximations (Yedidia et. al. 2002)