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Roadmap
 Two families of approximate inference algorithms

 Loopy belief propagation (sum-product)
 Mean-field approximation

 Are there some connections of these two approaches?

 We will re-exam them from a unified point of view based on 
the variational principle:
 Loop BP: outer approximation
 Mean-field: inner approximation 
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Variational Methods
 “Variational”: fancy name for optimization-based formulations

 i.e., represent the quantity of interest as the solution to an optimization problem
 approximate the desired solution by relaxing/approximating the intractable

optimization problem

 Examples:
 Courant-Fischer for eigenvalues:

 Linear system of equations:
 variational formulation:

 for large system, apply conjugate gradient method
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Inference Problems in Graphical Models

 Undirected graphical model (MRF):

 The quantities of interest:

 marginal distributions: 

 normalization constant (partition function): 

 Question: how to represent these quantities in a variational 
form? 

 Use tools from (1) exponential families; (2) convex analysis
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Exponential Families
 Canonical parameterization

 Log normalization constant:

 it is a convex function (Prop 3.1)

 Effective canonical parameters:

Canonical Parameters Sufficient Statistics Log partition Function
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Graphical Models as Exponential Families

 Undirected graphical model (MRF):

 MRF in an exponential form:

 can be written in a linear form after some parameterization 
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Example: Gaussian MRF
 Consider a zero-mean multivariate Gaussian distribution that 

respects the Markov property of a graph
 Hammersley-Clifford theorem states that the precision matrix 

also respects the graph structure

 Gaussian MRF in the exponential form

 Sufficient statistics are
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Example: Discrete MRF

 In exponential form
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Why Exponential Families?
 Computing the expectation of sufficient statistics (mean 

parameters) given the canonical parameters yields the 
marginals

 Computing the normalizer yields the log partition function (or 
log likelihood function)
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Computing Mean Parameter: Bernoulli 

 A single Bernoulli random variable

 Inference = Computing the mean parameter

 Want to do it in a variational manner: cast the procedure of 
computing mean (summation) in an optimization-based 
formulation

© Eric Xing @ CMU, 2005-2015 10



 Given any function , its conjugate dual function is:

 Conjugate dual is always a convex function: point-wise 
supremum of a class of linear functions

Conjugate Dual Function
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Dual of the Dual is the Original
 Under some technical condition on     (convex and lower 

semi-continuous), the dual of dual is itself: 

 For log partition function

 The dual variable      has a natural interpretation as the mean parameters 
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Computing Mean Parameter: Bernoulli 

 The conjugate

 Stationary condition

 If 

 If 

 We have

 The variational form:

 The optimum is achieved at . This is the mean!
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Computation of Conjugate Dual
 Given an exponential family

 The dual function

 The stationary condition:

 Derivatives of A yields mean parameters

 The stationary condition becomes 

 Question: for which does it have a solution        ?
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Computation of Conjugate Dual
 Let’s assume there is a solution         such that 

 The dual has the form

 The entropy is defined as  

 So the dual is when there is a solution
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Remark
 The last few identities are not coincidental but rely on a deep 

theory in general exponential family.
 The dual function is the negative entropy function
 The mean parameter is restricted
 Solving the optimization returns the mean parameter and log partition function

 Next step: develop this framework for general exponential 
families/graphical models.

 However,
 Computing the conjugate dual (entropy) is in general intractable
 The constrain set of mean parameter is hard to characterize
 Hence we need approximation
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Complexity of Computing Conjugate Dual

 The dual function is implicitly defined:

 Solving the inverse mapping for canonical parameters  
is nontrivial 

 Evaluating the negative entropy requires high-dimensional integration 
(summation)

 Question: for which does it have a solution        ? i.e., 
the domain of . 
 the ones in marginal polytope!
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Marginal Polytope
 For any distribution        and a set of sufficient statistics , 

define a vector of mean parameters 

 is not necessarily an exponential family

 The set of all realizable mean parameters

 It is a convex set

 For discrete exponential families, this is called marginal 
polytope
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Convex Polytope
 Convex hull representation

 Half-plane representation
 Minkowski-Weyl Theorem: any non-empty convex polytope can be characterized 

by a finite collection of linear inequality constraints
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Example: Two-node Ising Model

 Sufficient statistics:

 Mean parameters:

 Two-node Ising model
 Convex hull representation

 Half-plane representation
conv{(0,0,0),(1,0,0),(0,1,0),(1,1,1)}

© Eric Xing @ CMU, 2005-2015 20



Marginal Polytope for General Graphs

 Still doable for connected 
binary graphs with 3 nodes: 
16 constraints

 For tree graphical models, 
the number of half-planes 
(facet complexity) grows 
only linearly in the graph 
size

 General graphs?
 extremely hard to characterize the 

marginal polytope
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Variational Principle (Theorem 3.4)

 The dual function takes the form

 satisfies 

 The log partition function has the variational form

 For all          , the above optimization problem is attained 
uniquely at that satisfies
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Example: Two-node Ising Model
 The distribution

 Sufficient statistics

 The marginal polytope is characterized by

 The dual has an explicit form

 The variational problem

 The optimum is attained at   
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Variational Principle
 Exact variational formulation

 : the marginal polytope, difficult to characterize
 : the negative entropy function, no explicit form

 Mean field method: non-convex inner bound and exact form of 
entropy

 Bethe approximation and loopy belief propagation: polyhedral 
outer bound and non-convex Bethe approximation
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Mean Field Approximation
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 For an exponential family with sufficient statistics     defined 
on graph G, the set of realizable mean parameter set

 Idea: restrict p to a subset of distributions associated with a 
tractable subgraph

Tractable Subgraphs
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Mean Field Methods

 For a given tractable subgraph F, a subset of canonical 
parameters is 

 Inner approximation

 Mean field solves the relaxed problem

 is the exact dual function restricted to  
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Example: Naïve Mean Field for Ising Model

 Ising model in {0,1} representation

 Mean parameters

 For fully disconnected graph F,

 The dual decomposes into sum, one for each node

µs = Ep[Xs] = P[Xs = 1] for all s�V, and

µst = Ep[XsXt] = P[(Xs,Xt) = (1,1)] for all (s,t) �E.
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Example: Naïve Mean Field for Ising Model

 Mean field problem

 The same objective function as in free energy based 
approach

 The naïve mean field update equations

 Also yields lower bound on log partition function
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Geometry of Mean Field
 Mean field optimization is always non-convex for any 

exponential family in which the state space        is finite

 Recall the marginal polytope is a convex hull

 contains all the extreme points
 If it is a strict subset, then it must be non-convex

 Example: two-node Ising model

 It has a parabolic cross section along  , hence non-convex
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Bethe Approximation 
and Sum-Product
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Sum-Product/Belief Propagation Algorithm

 Message passing rule:

 Marginals:

 Exact for trees, but approximate for loopy graphs (so called 
loopy belief propagation)

 Question:  
 How is the algorithm on trees related to variational principle?
 What is the algorithm doing for graphs with cycles?
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Tree Graphical Models
 Discrete variables on a tree 

 Sufficient statistics:

 Exponential representation of distribution: 

where

 Mean parameters are marginal probabilities:
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Marginal Polytope for Trees
 Recall marginal polytope for general graphs

 By junction tree theorem (see Prop. 2.1 & Prop. 4.1)

 In particular, if , then 

has the corresponding marginals
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Decomposition of Entropy for Trees

 For trees, the entropy decomposes as 

 The dual function has an explicit form
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Exact Variational Principle for Trees

 Variational formulation

 Assign Lagrange multiplier        for the normalization constraint 
;            and for each marginalization 

constraint

 The Lagrangian has the form
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Lagrangian Derivation
 Taking the derivatives of the Lagrangian w.r.t.      and 

 Setting them to zeros yields 
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Lagrangian Derivation (continued)

 Adjusting the Lagrange multipliers or messages to enforce          

yields

 Conclusion: the message passing updates are a Lagrange 
method to solve the stationary condition of the variational 
formulation
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BP on Arbitrary Graphs
 Two main difficulties of the variational formulation

 The marginal polytope is hard to characterize, so let’s use the tree-
based outer bound

These locally consistent vectors     are called pseudo-marginals.

 Exact entropy lacks explicit form, so let’s approximate it by the 
exact expression for trees
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Bethe Variational Problem (BVP)
 Combining these two ingredient leads to the Bethe variational 

problem (BVP):

 A simple structured problem (differentiable & constraint set is a simple convex 
polytope)

 Loopy BP can be derived as am iterative method for solving a Lagrangian 
formulation of the BVP (Theorem 4.2); similar proof as for tree graphs

 A set of pseudo-marginals given by Loopy BP fixed point in any graph if and only 
if they are local stationary points of BVP
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Geometry of BP
 Consider the following assignment of pseudo-marginals

 Can easily verify 

 However, (need a bit more work) 

 Tree-based outer bound
 For any graph,

 Equality holds if and only if the graph is a tree

 Question: does solution to the BVP ever fall
into the gap?
 Yes, for any element of outer bound         , it is

possible to construct a distribution with it as a BP 
fixed point (Wainwright et. al. 2003) 
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Inexactness of Bethe Entropy Approximation

 Consider a fully connected graph with

 It is globally valid: ; realized by the distribution that places mass 
1/2 on each of configuration (0,0,0,0) and (1,1,1,1)
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Remark
 This connection provides a principled basis for applying the 

sum-product algorithm for loopy graphs

 However,
 Although there is always a fixed point of loopy BP, there is no 

guarantees on the convergence of the algorithm on loopy graphs
 The Bethe variational problem is usually non-convex. Therefore, there 

are no guarantees on the global optimum
 Generally, no guarantees that                  is a lower bound of 

 Nevertheless,
 The connection and understanding suggest a number of avenues for 

improving upon the ordinary sum-product algorithm, via progressively 
better approximations to the entropy function and outer bounds on the 
marginal polytope (Kikuchi clustering)

© Eric Xing @ CMU, 2005-2015 43



Summary
 Variational methods in general turn inference into an optimization 

problem via exponential families and convex duality

 The exact variational principle is intractable to solve; there are two 
distinct components for approximations:
 Either inner or outer bound to the marginal polytope
 Various approximation to the entropy function

 Mean field: non-convex inner bound and exact form of entropy
 BP: polyhedral outer bound and non-convex Bethe approximation
 Kikuchi and variants: tighter polyhedral outer bounds and better 

entropy approximations (Yedidia et. al. 2002)

© Eric Xing @ CMU, 2005-2015 44


