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Roadmap -

e Two families of approximate inference algorithms
e Loopy belief propagation (sum-product)
e Mean-field approximation

e Are there some connections of these two approaches?

e We will re-exam them from a unified point of view based on
the variational principle:
e Loop BP: outer approximation
e Mean-field: inner approximation
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Variational Methods ot

e “Variational”: fancy name for optimization-based formulations
e i.e., represent the quantity of interest as the solution to an optimization problem

e approximate the desired solution by relaxing/approximating the intractable
optimization problem

e Examples:
e Courant-Fischer for eigenvalues: )\maX(A) —

[z][2=1

e Linear system of equations: Ax = b, A > O, r* = A_lb

variational formulation:

1
x* = arg min {ixTA:U — bT:U}

for large system, apply conjugate gradient method
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Inference Problems in Graphical Models °
e Undirected graphical model (MRF):
K
p(z) = = || velzo)
_ CeC
e The quantities of interest:
e marginal distributions: p(mz) — Z p(CE)
xj,]F1
e normalization constant (partition function): 7
e Question: how to represent these quantities in a variational

form?

e Use tools from (1)exponential families; (2) convex analysis
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Exponential Families

e Canonical parameterization

p@(xla e axm)

Canonical Parameters Sufficient Statistics Log partition Function

e Log normalization constant:

A(0) = log

it is a convex function (Prop 3.1)

e Effective canonical parameters:

[ exp(67 o)

© Eric Xing @ CMU, 2005-2015




Graphical Models as Exponential Families | ¢

e Undirected graphical model (MRF):

(X (9 H @D Xc,(gc)

e MRF in an exponential form:

(XHeXp{Zlog¢C@ log Z (6 }

ceC

* log ¢(Xc; gc)can be written in ain_eirj)rm after some parameterization
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Example: Gaussian MRF .o

e Consider a zero-mean multivariate Gaussian distribution that
respects the Markov property of a graph

e Hammersley-Clifford theorem states that the precision matrix A — 2_1
also respects the graph structure

1 9 :
:
,
3 .
5 :
4 -
(a) (b)

e Gaussian MRF in the exponential form

p(x) = exp {1 (0, xxT) — A(@)} where © = —A

2

o Sufficient statistics are {582, S €& V; TsTt, (S, If) S E}
S
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Example: Discrete MRF -
9515(37573775)
Qt(%j)ﬂ i o Os(xy) . ,
O—0O—0—0 : 1 ifzxs =7
Indicators: [(xs) =
O—0O—0O — 0 otherwise
O——<C
X Parameters: 0s =1{0s.,7 € Xs}

Ost = {Hst;jlm (.]7 k) € Xs X Xt}
e

e |n exponential form

\

p(x;0) o< exp < ZZHS?H Ts) + Z st 15 xs)ﬂk(a:t)>

(s€EV J (s,t)eE

~——
e ——
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Why Exponential Families? -

e Computing the expectation of sufficient statistics (mean
parameters) given the canonical parameters yields the
marginals

Ms;j = Ep[ﬂj(Xs)] — IE)[XS — ll vy € X,

————

Mst;ik = Ep[ﬂst;jk(X&Xt)] — P[Xs — j,Xt — k] \V/(],k) € X € X;tﬂ

N

e Computing the normalizer yields the log partition function (or
log likelihood function)

log Z(0) = A(6)
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Computing Mean Parameter: Bernoulli o

e A single Bernoulli random variable @ 0

p(x;0) = exp{z — A0}, € {0,1}, A() = log(1 + €%)

‘\
—_—

e Inference = Computing the mean parameter

69

14 e

R
1(0) =Eg[X]=1-p(X=1:0)+0-p(X =0;0) =

e \Want to do it in a variational manner: cast the procedure of
computing mean (summation) in an optimization-based
formulation
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Conjugate Dual Function .o

e Given any function f{ 9), its conjugate dual function is:

£ (u) = sgp{@/@ — £(0)}

o, = (w)

e Conjugate dual is always a convex function: point-wise
supremum of a class of linear functions
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Dual of the Dual is the Original os

e Under some technical condition on f (convex and lower
semi-continuous), the dual of dual is itself:

f=0")
f(0) =sup {0, ) — f" (1)}

— 122 —

e For log partition function

A(9) = Stﬂlbp{<9,u> — A% ()}, e

e The dual variable [l has a natural interpretation as the mean parameters
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Computing Mean Parameter: Bernoulli g
e The conjugate A*(u) := sup {,u@—log[l—l—exp(@)]}
O cR
0
(&
o Stationary condition 4 = 5 e (u=VA@®))
e If pe(0.1), 0(u)=log (ﬁ) A () = plog() + (1 — ) log(1 — )

o If pg[0,1], A%(n) = +o0

e We have A*(u) = {%“{(1 #)log(1 — 7> if € [0,1]

+00 otherwise.

e The variational form: A(f) = max,, c1o.1) {1 -0 — A* (1) }.

69

e The optimum is achieved at u(0) = [ ef This is the mean!
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Computation of Conjugate Dual

e Given an exponential family

d
p(x1, ..., Tm;0) = exp {Sj i () — A(H)}

e [The dual function

A" (p) = sup 1w, 0) — A(0)}

e The stationary condition: p—VA(#) = 0

e Derivatives of A yields mean parameters

0A
55 (0) = Eolon(X / bi(a

e The stationary condition becomes 1 = Ey[¢p(X)]

e Question: for which i € R does it have a solution ¢
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Computation of Conjugate Dual

Let’s assume there is a solution #(u) such that p = E@Qg):

The dual has the form

A%(p) =

—_

(O(k), > A(f(w))
Egu) [10gp(X ;0(1)]

The entropy is defined as

Hip(x)) = ip@) log p(x) dz

So the dual is A™(p) =

© Eric Xing @ CMU, 2005-2015

— A(0(n)]

\
PCk. )

O—9

l

-

ﬂ&\\; >
)5t
x

—H(p(x;0(1)) when there is a solution 6(u)
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Remark JA &Y= 1 o2

P

-—
-

e The last few identities are not coincidental but rely on a deep
theory in general exponential family.
e The dual function is the negative entropy function
e The mean parameter is restricted
e Solving the optimization returns the mean parameter and log partition function

e Next step: develop this framework for general exponential
families/graphical models.

e However,

e Computing the conjugate dual (entropy) is in general intractable
e The constrain set of mean parameter is hard to characterize
e Hence we need approximation
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Complexity of Computing Conjugate Dual ° |
e The dual function is implicitly defined: T :’Z\,(l;}"ﬁ’
O(p) &
po —= (VA = —H(po) [ A

———

I\—-—-

e Solving the inverse mapping M Eg [gb(X)] for canonical parameters
am, is nontrivial

e Evaluating the negative entropy requires high-dimensional integration
(summation)

e Question: for which ;;, ¢ R¢does it have a solution O(p)? i-e.,
the domain of A*(u). T

e the ones inmarginal polytope!
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Marginal Polytope 4+

e For any distribution p(x) and a set of sufficient statistics gb(:v)
define a vector of mean parameters

i = ByJ6:0)) = [ ou(a)po) da

e p(x)is not necessarily an exponential family

S—

e The set of all realizable mean parameters

M= {peR [ Ips.t. Eo(X)] = pu}

e Itis aconvex set

e For discrete exponential families, this is called marginal
polytope
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Convex Polytope 4+

e Convex hull representation

M = {u € RY| Z o(x)p(x) = p, for some p(x) > 0, Z p(x) = 1}

a’.e(]c’rn. xeXT?’L

= C.onvd olx)r e X m’}

e Half-plane representation

e Minkowski-Weyl Theorem: any non-empty convex polytope can be characterized
by a finite collection of linear inequality constraints

M = {u c R‘ﬂa}u > bj, Vj € j}v
where | 7| is finite. \a‘j

<aj7 :u> = bj

© Eric Xing @ CMU, 2005-2015 19



Example: Two-node Ising Model os

e Sufficient statistics: ¢(CI3) — (5131,332;5’31332)

H1 = P(Xl — 1),,&2 — P(XQ — 1)
H12 = P(Xl = 1,X2 — 1)

e Mean parameters:

e [wo-node Ising model

e Convex hull representation

oonv{(0,0,0),(1,0,0),(0,1,0),(1,1,1)}

e Half-plane representation

p1 = p12
po = 412
piz = 0
L+pi2 = p1+ pe
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Marginal Polytope for General Graphs

e Still doable for connected
binary graphs with 3 nodes:
16 constraints

e For tree graphical models,
the number of half-planes
(facet complexity) grows
only linearly in the graph
size

e General graphs?

e extremely hard to characterize the
marginal polytope
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Variational Principle (Theorem 3.4)

e [he dual function takes the form

A*( ) _ —H(pg('u)) if [IRS M°
8 +00 if ¢ M.

o O(u) satisfies 1 = Eg(y) (X))
e The log partition function has the variational form

A(0) = sup {071 — A" ()}

e Forall g € O, the above optimization problem is attained
uniquely at Mthat satisfies

p(0) = Eg[p(X)]

© Eric Xing @ CMU, 2005-2015
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Example: Two-node Ising Model

X, X,
e The distribution p(z;0) < exp{6yz1 + Oozo + 012212} M
/

e Sufficient statistics ()(1) — {,1’1. T, .I"l.l‘g}
\_/'\

p1 = 12

e The marginal polytope is characterized by gy > o
12 = 0

e The dual has an explicit form L+ > 1+ pe

@9 = pizlog pio + (p1 — pa2) log(pr — pa2) + (M2 — p12) log(pa — p12)
+(1+ pa2 — pa — po) log(1 + pao — p1 —

e The variational problem #(s) =  ma Q a1+ Oapiz + Oz — A ()]
H1,M2,1012

exp{0:1} + exp{f1 + 02 + 012}
1 + exp{0:1} + exp{O2} + exp{01 + 02 + 012}

e The optimum is attained at

p1(0) =

© Eric Xing @ CMU, 2005-2015 23
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Variational Principle °
e Exact variational formulation
A(0) = sup {0" p — A ()}
,LLEM
° Qﬁ: the marginal polytope, difficult to characterize ¥
° A*: the negative entropy function, no explicit form a ff_&LZ

e Mean field method: non-convex inner bound and exact form of
entropy V< m’

e Bethe approximation and loopy belief propagation: polyhedral
outer bound and non- convex Bethe e approximation

MM A
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Mean Field Approximation

© Eric Xing @ CMU, 2005-2015
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Tractable Subgraphs o

e For an exponential family with sufficient statistics ¢ defined
on graph G, the set of realizable mean parameter set

M(G:¢) == {n € R | Fp st. By[¢(X)[ =71

e |dea: restrict p to a subset of distributions associated with a

tractable subgraph
(2= {9 e RYA(6) < +oo}

= T (1(1/
K 7; z e T
O O
Fp:° o °© :
0 . o 1 :
© O O
Q(Fh) = {0 € Q[0 =0V (s;) €E}. QT) 1= {0 €Q |0y =0V (s,t) ¢ E(T)}.
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Mean Field Methods ot

e For a given tractable subgraph F, a subset of canonical
parameters is

M(F;¢) := {1 € R* | 7 = Eg[¢p(X)] for some 6 € Q(F)}

e Inner approximation

M(F; ¢)° € M(G; ¢)°

e Mean field solves the relaxed problem

max (7.0 — A(r)}

o A% = A*‘/Y‘\F(G) is the exact dual function restricted to M p(G)
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MY £ U acoqn) |oo8
Example: Naive Mean Field for Ising Model 2

1

2
O

]
O

e Ising model in {0,1} representation ¢
4(\ Sf‘\ 6f‘\
p(x) o< exp Z xs0, + Z TsT10gt R
seV (s,t)eE O O O
7 8 9
e Mean parameters S
s = Eg[Xs]= PIXs=1] fordl sV, and
4 5 6
bst = Ep[XsXt] = P[(Xe, Xt) = (1,1)] for dl (s,t) LE. o0 Y
e For fully disconnected graph F, o 9 9
mDMﬁ(G) ={reRVIHEN 0 <7, <1,Vs € V7, = TST;:)V(S,t) c B}

A

e The dual decomposes into sum, one for each node

A*F_le = Z[Ts log 75 + (1 — Ts) I%(l - TS)]
seV -
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Example: Naive Mean Field for Ising Model 2

e Mean field problem ; :

e The same objective function as in free energy based
approach

e The naive mean field update equations

Te < O (HS—I— Z 0.1y

teN(s)

e Also yields lower bound on log partition function
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Geometry of Mean Field  “em* )

e Mean field optimization is always non-convex for any
exponential family in which the state space X’™ is finite

e Recall the marginal polytope is a convex hull

M(G) = conv{gp(e);e € X}
e Mpg(G) contains all the extreme points

e Ifitis a strict subset, then it must be non-convex
— o~

e Example: two-node Ising model
Mp(G) ={0<11 <1,0<» <1, 79 =T T2}

e It has a parabolic cross section along 71 = 79 , hence non-convex
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Bethe Approximation
and Sum-Product

© Eric Xing @ CMU, 2005-2015
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Sum-Product/Belief Propagation Algorithm | ¢

e Message passing rule:
Mus(zs) e & Z{wsxxs,x;)wt(ag;) T Mut@c;)}
) ueN(t)/s
e Marginals:

,Us(xs — was -773 H M;; 373
teN(s

e EXxact for trees, but approximate for loopy graphs (so called
loopy belief propagation)

e Question:
e How is the algorithm on trees related to variational principle?
e What is the algorithm doing for graphs with cycles?

© Eric Xing @ CMU, 2005-2015
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Tree Graphical Models -

e Discrete variables X, € {0,1,...,ms —1}onatree T =(V,E)

o o () fors=1,...n, je& X
e Sufficient statistics: @ ,
[ik(zs, ) for(s,t) e B, (j,k) € Xs x A,

e EXxponential representation of distribution:

P(X;0) o< exp{ X ey o) B (o e Our (20, 7))

where 0s(zs) = ZjEXS Os.;1;(xs) (and similarly for Os¢(xs, zt))

e Mean parameters are marginal probabilities:
Hsij = pMS)] =PX,=j] VjedX, ns(rs)= Z ps;ili(zs) = P(Xs = )

JEXs
fstjre = Bpllspin(Xs, Xp)] = P[Xs = j, Xy = k] V(j, k) € Xs € At
/vbst(-rs;xt) — Z Mst;jkﬂjlc(iﬁs;mt) — P(Xs = Xg, Xt = xt)

(.77k)€Xs XXt
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Marginal Polytope for Trees

e Recall marginal polytope for general graphs

M(G) = {p € RY | Ip with marginals Ls:is Mst:ik |
~— —_

e By junction tree theorem (see Prop. 2.1 & Prop. 4.1)“

= {u >0 | Z@f: 1, @s,m = us(aﬁs)}
- Ts —Li E
T

e In particular, if 4 € M(T) then
—

,ust Ls,
C{Q o s (@) e ()

has the corresponding marginals

© Eric Xing @ CMU, 2005-2015
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Decomposition of Entropy for Trees- | ¢

e For trees, the entropy decomposes as
(p(a; ) D= = p(x; p) log p(a; o)
— Z ( T Hs(xs) log /Ls(xs) ) o

seV T

A\ - 7
N~

Hs(ps)

B Z (Zﬂst(ﬂfs,xt)log pist (L5, ) )

(Sat)EE fs,xt 'LLS (IS)/’Lt (.fljt)

Lt (pst), K;;Divergence
Q Ho(is) = 3 Tulji)
(s,t)eER

e The dual function has an explicit fornr{ A" (1) = —H (p(z; 1))

© Eric Xing @ CMU, 2005-2015
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Exact Variational Principle for Trees :

e Variational formulation

ey ™
A<9) — N@Z { <9,,LL> + Z HS(IUS Z Ist ,ust D

seV (s,t)eEE

7

e Assign Lagrange multiplier Ag for the normalization constraint
Cos(p) :=1—=3", pstrs) =0 and A (x,)for each marginalization
constraint Cis(zs; 1) = ps(ws) — >, pse(ws, ) = 0

e The Lagrangian has the form

'C(,uy )\) = <‘97,U> + Z HS(NS Z Ist ,ust + Z )\SSCSS :LL)

= scV 5,1)EE SEV — —

+ Z Y)\St a:t Cst CUt —|—Z>\ts T's Cts(xs ]

(s,t)EE  x¢
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Lagrangian Derivation

e Taking the derivatives of the Lagrangian w.r.t. is and ps:

oL
— 98(333) — 1Og ,Us(ms) + Z )\ts<333) + C
8/.L5 (373) teN (s)
8£ //l/St(x.Sj xt)

- )\ts(xs) - )\st(fct) ‘|‘ C/

= Ost(zs,xt) — log

Opist (s, Tt) prs (Ts) pe ()

e Setting them to zeros yields

ps(zs) oc exp{fs(xs)} H exp{)\ts $S)}
teN (s)

Mts<xs)
ps(xs,we) o< exp{0s(xs) + O(xe) + Ose (s, 2¢) } X

H exp {Aus(zs) } H exp {Avt (z¢) }

wEN (s)\t vEN (t)\s
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Lagrangian Derivation (continued) |s¢

e Adjusting the Lagrange multipliers or messages to enforce
Cts(335§ ,LL) ‘= ,LLS($S) — th ,Ust(xSa th) =0
yields

Mis(zs) <« Z exp {Qt(xt) + Ost(xs, 9075)} H Myt ()

Tt wEN (t)\s

e Conclusion: the message passing updates are a Lagrange
method to solve the stationary condition of the variational
formulation

© Eric Xing @ CMU, 2005-2015
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BP on Arbitrary Graphs o

e [Two main difficulties of the variational formulati; /%K? _
A(0) = sup {0" pp — A" ()}

peM

e The marginal polytope A1 is hard to characterize, so let’s use the tree-
based outer bound

L(G) = {T >0 | ZTS(J?S) = I,ZTSt(a}s,xt) = Ts(xsﬁ
L Lt

These locally consistent vectors Tare called pseudo-marginals.)

e Exact entropy :-Aiéﬁb) lacks explicit form, so let’'s approximate it by the
exact expression for trees

—A*(7) ~ Hpeine() = Y Hy(1s) = Y La(7s).
seV (W
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Bethe Variational Problem (BVP) | ¢

e Combining these two ingredient leads to the Bethe variational

problem (BVP): \/
max{HT -I—ZH Ts) Z Istht}
TE%)L seV (s,t)eEE

e A simple structured problem (differentiable & constraint set is a simple convex
polytope)

e Loopy BP can be derived as am iterative method for solving a Lagrangian
formulation of the BVP (Theorem 4.2); similar proof as for tree graphs

e A set of pseudo-marginals given by Loopy BP fixed point in any graph if and only

if they are local stationary points of BVP
A = mﬂm (6w A

© Eric Xing @ CMU, 2005-2015 40



Geometry of BP .o

e Consider the following assignment of pseudo-marginals

0.5]
e Caneasilyverify T € L(G) l0_5j
o However, T ¢ M(G) (need a bit more work)

l0.4 U.ljl

0.4 0.1]
0.1 0.4]

0.1 0.4]

e Iree-based outer bound

e For any graph, M(G) C L(G) lUj] [0.4 0.1} lm}
— 0.5 0.5
e Equality holds if and only if the graph is a tree
s
e Question: does solution to the BVP ever fall -
into the gap? T
e Yes, for any element of outer bound L(G) itis
possible to construct a distribution with it as a BP
fixed point (Wainwright et. al. 2003)
L(G)
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Inexactness of Bethe Entropy Approximation 2

e Consider a fully connected graph with

ps(xs) = (0.5 0.5] for s=1,2,3,4 @ ®
0.5 0
pst(Ts, 1) = K 0.5] V (s,t) € E. @ @

e ltisgloballyvalid: 1 & MS)G?) realized by the distribution that places mass
1/2 on each of configuration (0,0,0,0) and (1,1,1,1)

* Hpethe(pt) = 4log2 — 6log2 = —2log2 < 0,
T —A*(p) =log2 > 0.
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Remark

e This connection provides a principled basis for applying the
sum-product algorithm for loopy graphs

e However,

e Although there is always a fixed point of loopy BP, there is no
guarantees on the convergence of the algorithm on loopy graphs

e The Bethe variational problem is usually non-convex. Therefore, there
are no guarantees on the global optimum

e Generally, no guarantees that Apene(6) is a lower bound of A(6)

e Nevertheless,

e The connection and understanding suggest a number of avenues for
improving upon the ordinary sum-product algorithm, via progressively
better approximations to the entropy function and outer bounds on the
marginal polytope (Kikuchi clustering)

© Eric Xing @ CMU, 2005-2015
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Summary .

e Variational methods in general turn inference into an optimization
problem via exponential families and convex duality

e The exact variational principle is intractable to solve; there are two
distinct components for approximations:

e Either inner or outer bound to the marginal polytope
e Various approximation to the entropy function

e Mean field: non-convex inner bound and exact form of entropy

e BP: polyhedral outer bound and non-convex Bethe approximation

e Kikuchi and variants: tighter polyhedral outer bounds and better
entropy approximations (Yedidia et. al. 2002)
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