Probabilistic Graphical Models

Theory of Variational Inference:
 Inner and Outer Approximation

Eric Xing
Lecture 14, March 2, 2015

Reading: W \& J Book Chapters

Roadmap

- Two families of approximate inference algorithms
- Loopy belief propagation (sum-product)
- Mean-field approximation
- Are there some connections of these two approaches?
- We will re-exam them from a unified point of view based on the variational principle:
- Loop BP: outer approximation
- Mean-field: inner approximation

Variational Methods

- "Variational": fancy name for optimization-based formulations
- i.e., represent the quantity of interest as the solution to an optimization problem
- approximate the desired solution by relaxing/approximating the intractable optimization problem
- Examples:
- Courant-Fischer for eigenvalues: $\quad \lambda_{\max }(A)=\max _{\|x\|_{2}=1} x^{T} A x$
- Linear system of equations: $\quad A x=b, A \succ 0, x^{*}=A^{-1} b$
- variational formulation:

$$
x^{*}=\arg \min _{x}\left\{\frac{1}{2} x^{T} A x-b^{T} x\right\}
$$

- for large system, apply conjugate gradient method

Inference Problems in Graphical Models

- Undirected graphical model (MRF):

$$
p(x)=\frac{1}{Z} \prod_{C \in \mathcal{C}} \psi_{C}\left(x_{C}\right)
$$

- The quantities of interest:
- marginal distributions: $p\left(x_{i}\right)=\sum_{x_{j}, j \neq i} p(x)$
- normalization constant (partition function): $\quad Z$
- Question: how to represent these quantities in a variational form?
- Use tools from (1) exponential families; (2) convex analysis

Exponential Families

- Canonical parameterization

$$
\xrightarrow[\text { al }]{p_{\theta}\left(x_{1}, \cdots, x_{m}\right)=\exp \left\{\theta_{\text {Parameters }} \theta_{\text {Sufficient Statistics }}^{\top} \phi(x)-A(\theta)\right\} \text { Log partition Function }}
$$

- Log normalization constant:

$$
A(\theta)=\log \int \exp \left\{\theta^{T} \phi(x)\right\} d x
$$

- it is a convex function (Prop 3.1)
- Effective canonical parameters:

$$
\Omega:=\left\{\theta \in \mathbb{R}^{d} \mid A(\theta)<+\infty\right\}
$$

Graphical Models as Exponential Families

- Undirected graphical model (MRF):

$$
p(\mathbf{x} ; \theta)=\frac{1}{Z(\theta)} \prod_{C \in \mathcal{C}} \psi\left(\mathbf{x}_{C} ; \theta_{C}\right)
$$

- MRF in an exponential form:

$$
p(\mathbf{x} ; \theta)=\exp \left\{\sum_{C \in \mathcal{C}} \log \psi\left(\mathbf{x}_{C} ; \theta_{C}\right)-\log Z(\theta)\right\}
$$

- $\log \psi\left(\mathbf{x}_{C} ; \theta_{C}\right)$ can be written in a linear form after some parameterization

Example: Gaussian MRF

- Consider a zero-mean multivariate Gaussian distribution that respects the Markov property of a graph
- Hammersley-Clifford theorem states that the precision matrix

$$
\Lambda=\Sigma^{-1}
$$ also respects the graph structure

(a)

(b)

- Gaussian MRF in the exponential form

$$
p(\mathbf{x})=\exp \left\{\frac{1}{2}\left\langle\Theta, \mathbf{x x}^{T}\right\rangle-A(\Theta)\right\}, \text { where } \Theta=-\Lambda
$$

- Sufficient statistics are

$$
\left\{x_{s}^{2}, s \in V ; x_{s} x_{t},(s, t) \in E\right\}
$$

Example: Discrete MRF

$$
\begin{aligned}
& \mathbb{I}_{j}\left(x_{s}\right)= \begin{cases}1 & \text { if } x_{s}=j \\
0 & \text { otherwise }\end{cases} \\
& \underline{\text { Parameters: }} \begin{array}{l}
\theta_{s}=\left\{\theta_{s ; j}, j \in \mathcal{X}_{s}\right\} \\
\\
\theta_{s t}=\left\{\theta_{s t ; j k},(j, k) \in \mathcal{X}_{s} \times \mathcal{X}_{t}\right\}
\end{array}
\end{aligned}
$$

- In exponential form

$$
p(x ; \theta) \propto \exp \left\{\sum_{s \in V} \sum_{j} \theta_{s ; j} \mathbb{I}_{j}\left(x_{s}\right)+\sum_{(s, t) \in E} \theta_{s t ; j k} \mathbb{I}_{j}\left(x_{s}\right) \mathbb{I}_{k}\left(x_{t}\right)\right\}
$$

Why Exponential Families?

- Computing the expectation of sufficient statistics (mean parameters) given the canonical parameters yields the marginals

$$
\begin{gathered}
\mu_{s ; j}=\mathbb{E}_{p}\left[\mathbb{I}_{j}\left(X_{s}\right)\right]=\mathbb{P}\left[X_{s}=j\right] \quad \forall j \in \mathcal{X}_{s}, \\
\mu_{s t ; j k}=\mathbb{E}_{p}\left[\mathbb{I}_{s t ; j k}\left(X_{s}, X_{t}\right)\right]=\mathbb{P}\left[X_{s}=j, X_{t}=k\right] \quad \forall(j, k) \in \mathcal{X}_{s} \in \mathcal{X}_{i} .
\end{gathered}
$$

- Computing the normalizer yields the log partition function (or log likelihood function)

$$
\log Z(\theta)=A(\theta)
$$

Computing Mean Parameter: Bernoulli

- A single Bernoulli random variable

$$
p(x ; \theta)=\exp \{\theta x-A(\theta)\}, x \in\{0,1\}, A(\theta)=\log \left(1+e^{\theta}\right)
$$

- Inference = Computing the mean parameter

$$
\mu(\theta)=\mathbb{E}_{\theta}[X]=1 \cdot p(X=1 ; \theta)+0 \cdot p(X=0 ; \theta)=\frac{e^{\theta}}{1+e^{\theta}}
$$

- Want to do it in a variational manner: cast the procedure of computing mean (summation) in an optimization-based formulation

Conjugate Dual Function

- Given any function $f(\theta)$, its conjugate dual function is:

$$
f^{*}(\mu)=\sup _{\theta}\{\langle\theta, \mu\rangle-f(\theta)\}
$$

- Conjugate dual is always a convex function: point-wise supremum of a class of linear functions

Dual of the Dual is the Original

- Under some technical condition on f (convex and lower semi-continuous), the dual of dual is itself:

$$
\begin{gathered}
f=\left(f^{*}\right)^{*} \\
f(\theta)=\sup _{\mu}\left\{\langle\theta, \mu\rangle-f^{*}(\mu)\right\}
\end{gathered}
$$

- For log partition function

$$
A(\theta)=\sup _{\mu}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\}, \quad \theta \in \Omega
$$

- The dual variable μ has a natural interpretation as the mean parameters

Computing Mean Parameter: Bernoulli

- The conjugate $A^{*}(\mu):=\sup _{\theta \in \mathbb{R}}\{\mu \theta-\log [1+\exp (\theta)]\}$
- Stationary condition $\quad \mu=\frac{e^{\theta}}{1+e^{\theta}} \quad(\mu=\nabla A(\theta))$
- If $\mu \in(0,1), \theta(\mu)=\log \left(\frac{\mu}{1-\mu}\right), A^{*}(\mu)=\mu \log (\mu)+(1-\mu) \log (1-\mu)$
- If $\mu \notin[0,1], A^{*}(\mu)=+\infty$
- We have $A^{*}(\mu)=\left\{\begin{array}{ll}\mu \log \mu+(1-\mu) \log (1-\mu) & \text { if } \mu \in[0,1] \\ +\infty & \text { otherwise. }\end{array}\right.$.
- The variational form: $A(\theta)=\max _{\mu \in[0,1]}\left\{\mu \cdot \theta-A^{*}(\mu)\right\}$.
- The optimum is achieved at $\mu(\theta)=\frac{e^{\theta}}{1+e^{\theta}}$. This is the mean!

Remark

- The last few identities are not coincidental but rely on a deep theory in general exponential family.
- The dual function is the negative entropy function
- The mean parameter is restricted
- Solving the optimization returns the mean parameter and log partition function
- Next step: develop this framework for general exponential families/graphical models.
- However,
- Computing the conjugate dual (entropy) is in general intractable
- The constrain set of mean parameter is hard to characterize
- Hence we need approximation

Computation of Conjugate Dual

- Given an exponential family

$$
p\left(x_{1}, \ldots, x_{m} ; \theta\right)=\exp \left\{\sum_{i=1}^{d} \theta_{i} \phi_{i}(x)-A(\theta)\right\}
$$

- The dual function

$$
A^{*}(\mu):=\sup _{\theta \in \Omega}\{\langle\mu, \theta\rangle-A(\theta)\}
$$

- The stationary condition: $\mu-\nabla A(\theta)=0$
- Derivatives of A yields mean parameters

$$
\frac{\partial A}{\partial \theta_{i}}(\theta)=\mathbb{E}_{\theta}\left[\phi_{i}(X)\right]=\int \phi_{i}(x) p(x ; \theta) d x
$$

- The stationary condition becomes $\mu=\mathbb{E}_{\theta}[\phi(X)]$
- Question: for which $\mu \in \mathbb{R}^{d}$ does it have a solution $\theta(\mu)$?

Computation of Conjugate Dual

- Let's assume there is a solution $\theta(\mu)$ such that $\mu=\mathbb{E}_{\theta(u)}[\phi(X)]$
- The dual has the form

$$
\begin{aligned}
A^{*}(\mu) & =\langle\theta(\mu), \mu\rangle-A(\theta(\mu)) \\
& =\mathbb{E}_{\theta(\mu)}[\langle\theta(\mu), \phi(X)\rangle-A(\theta(\mu)] \\
& =\mathbb{E}_{\theta(\mu)}[\log p(X ; \theta(\mu)]
\end{aligned}
$$

- The entropy is defined as

$$
H(p(x))=-\int p(x) \log p(x) d x
$$

- So the dual is $A^{*}(\mu)=-H(p(x ; \theta(\mu))$ when there is a solution $\theta(\mu)$

Complexity of Computing Conjugate Dual

- The dual function is implicitly defined:

- Solving the inverse mapping $\mu=\mathbb{E}_{\theta}[\phi(X)]$ for canonical parameters $\theta(\mu)$ is nontrivial
- Evaluating the negative entropy requires high-dimensional integration (summation)
- Question: for which $\mu \in \mathbb{R}^{d}$ does it have a solution $\theta(\mu)$? i.e., the domain of $A^{*}(\mu)$.
- the ones in marginal polytope!

Marginal Polytope

- For any distribution $p(x)$ and a set of sufficient statistics $\phi(x)$, define a vector of mean parameters

$$
\mu_{i}=\mathbb{E}_{p}\left[\phi_{i}(X)\right]=\int \phi_{i}(x) p(x) d x
$$

- $p(x)$ is not necessarily an exponential family
- The set of all realizable mean parameters

$$
\mathcal{M}:=\left\{\mu \in \mathbb{R}^{d} \mid \exists p \text { s.t. } \mathbb{E}_{p}[\phi(X)]=\mu\right\}
$$

- It is a convex set
- For discrete exponential families, this is called marginal polytope

Convex Polytope

- Convex hull representation

$$
\begin{aligned}
\mathcal{M} & =\left\{\mu \in \mathbb{R}^{d} \mid \sum_{x \in \mathcal{X}^{m}} \phi(x) p(x)=\mu, \text { for some } p(x) \geq 0, \sum_{x \in \mathcal{X}^{m}} p(x)=1\right\} \\
& \triangleq \operatorname{conv}\left\{\phi(x), x \in \mathcal{X}^{m}\right\}
\end{aligned}
$$

- Half-plane representatıon
- Minkowski-Weyl Theorem: any non-empty convex polytope can be characterized by a finite collection of linear inequality constraints

$$
\mathcal{M}=\left\{\mu \in \mathbb{R}^{d} \mid a_{j}^{\top} \mu \geq b_{j}, \forall j \in \mathcal{J}\right\},
$$

where $|\mathcal{J}|$ is finite.

Example: Two-node Ising Model

- Sufficient statistics: $\phi(x):=\left(x_{1}, x_{2}, x_{1} x_{2}\right)$
- Mean parameters: $\quad \mu_{1}=\mathbb{P}\left(X_{1}=1\right), \mu_{2}=\mathbb{P}\left(X_{2}=1\right)$

$$
\mu_{12}=\mathbb{P}\left(X_{1}=1, X_{2}=1\right)
$$

- Two-node Ising model
- Convex hull representation
$\operatorname{conv}^{(0,0,0),(1,0,0),(0,1,0),(1,1,1)\}}$
- Half-plane representation

$$
\begin{aligned}
\mu_{1} & \geq \mu_{12} \\
\mu_{2} & \geq \mu_{12} \\
\mu_{12} & \geq 0 \\
1+\mu_{12} & \geq \mu_{1}+\mu_{2}
\end{aligned}
$$

Marginal Polytope for General Graphs

- Still doable for connected binary graphs with 3 nodes: 16 constraints
- For tree graphical models, the number of half-planes (facet complexity) grows only linearly in the graph size
- General graphs?
- extremely hard to characterize the marginal polytope

Variational Principle (Theorem 3.4)

- The dual function takes the form

$$
A^{*}(\mu)= \begin{cases}-H\left(p_{\theta(\mu)}\right) & \text { if } \mu \in \mathcal{M}^{\circ} \\ +\infty & \text { if } \mu \notin \overline{\mathcal{M}}\end{cases}
$$

- $\theta(\mu)$ satisfies $\mu=\mathbb{E}_{\theta(u)}[\phi(X)]$
- The log partition function has the variational form

$$
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\theta^{T} \mu-A^{*}(\mu)\right\}
$$

- For all $\theta \in \Omega$, the above optimization problem is attained uniquely at $\mu(\theta) \in \mathcal{M}^{o}$ that satisfies

$$
\mu(\theta)=\mathbb{E}_{\theta}[\phi(X)]
$$

Example: Two-node Ising Model

- The distribution $p(x ; \theta) \propto \exp \left\{\theta_{1} x_{1}+\theta_{2} x_{2}+\theta_{12} x_{12}\right\}$
- Sufficient statistics $\phi(x)=\left\{x_{1}, x_{2}, x_{1} x_{2}\right\}$
- The marginal polytope is characterized by
- The dual has an explicit form

$$
\begin{aligned}
A^{*}(\mu) & =\mu_{12} \log \mu_{12}+\left(\mu_{1}-\mu_{12}\right) \log \left(\mu_{1}-\mu_{12}\right)+\left(\mu_{2}-\mu_{12}\right) \log \left(\mu_{2}-\mu_{12}\right) \\
& +\left(1+\mu_{12}-\mu_{1}-\mu_{2}\right) \log \left(1+\mu_{12}-\mu_{1}-\mu_{2}\right)
\end{aligned}
$$

- The variational problem $A(\theta)=\underset{\left\{\mu_{1}, \mu_{2}, \mu_{12}\right\} \in \mathcal{M}}{\max }\left\{\theta_{1} \mu_{1}+\theta_{2} \mu_{2}+\theta_{12} \mu_{12}-A^{*}(\mu)\right\}$
- The optimum is attained at

$$
\mu_{1}(\theta)=\frac{\exp \left\{\theta_{1}\right\}+\exp \left\{\theta_{1}+\theta_{2}+\theta_{12}\right\}}{1+\exp \left\{\theta_{1}\right\}+\exp \left\{\theta_{2}\right\}+\exp \left\{\theta_{1}+\theta_{2}+\theta_{12}\right\}}
$$

Variational Principle

- Exact variational formulation

$$
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\theta^{T} \mu-A^{*}(\mu)\right\}
$$

- \mathcal{M} : the marginal polytope, difficult to characterize
- A^{*} : the negative entropy function, no explicit form
- Mean field method: non-convex inner bound and exact form of entropy
- Bethe approximation and loopy belief propagation: polyhedral outer bound and non-convex Bethe approximation

Mean Field Approximation

Tractable Subgraphs

- For an exponential family with sufficient statistics ϕ defined on graph G , the set of realizable mean parameter set

$$
\mathcal{M}(G ; \phi):=\left\{\mu \in \mathbb{R}^{d} \mid \exists p \text { s.t. } \mathbb{E}_{p}[\phi(X)]=\mu\right\}
$$

- Idea: restrict p to a subset of distributions associated with a tractable subgraph

$$
T:
$$

 $\Omega\left(F_{0}\right):=\left\{\theta \in \Omega \mid \theta_{(s, t)}=0 \forall(s, t) \in E\right\} . \quad \Omega(T):=\left\{\theta \in \Omega \mid \theta_{(s, t)}=0 \forall(s, t) \notin E(T)\right\}$.

Mean Field Methods

- For a given tractable subgraph F, a subset of canonical parameters is

$$
\mathcal{M}(F ; \phi):=\left\{\tau \in \mathbb{R}^{d} \mid \tau=\mathbb{E}_{\theta}[\phi(X)] \text { for some } \theta \in \Omega(F)\right\}
$$

- Inner approximation

$$
\mathcal{M}(F ; \phi)^{o} \subseteq \mathcal{M}(G ; \phi)^{o}
$$

- Mean field solves the relaxed problem

$$
\max _{\tau \in \mathcal{M}_{F}(G)}\left\{\langle\tau, \theta\rangle-A_{F}^{*}(\tau)\right\}
$$

- $A_{F}^{*}=\left.A^{*}\right|_{\mathcal{M}_{F}(G)}$ is the exact dual function restricted to $\mathcal{M}_{F}(G)$

Example: Naïve Mean Field for Ising Model

- Ising model in $\{0,1\}$ representation

$$
p(x) \propto \exp \left\{\sum_{s \in V} x_{s} \theta_{s}+\sum_{(s, t) \in E} x_{s} x_{t} \theta_{s t}\right\}
$$

- Mean parameters

$$
\begin{aligned}
\mu_{s} & =E_{p}\left[X_{s}\right]=P\left[X_{s}=1\right] \text { for all s } V \text {, and } \\
\mu_{s t} & =E_{p}\left[X_{s} X_{t}\right]=P\left[\left(X_{s}, X_{t}\right)=(1,1)\right] \text { for all }(s, t) \quad E .
\end{aligned}
$$

- For fully disconnected graph F,

$$
\mathcal{M}_{F}(G):=\left\{\tau \in \mathbb{R}^{|V|+|E|} \mid 0 \leq \tau_{s} \leq 1, \forall s \in V, \tau_{s t}=\tau_{s} \tau_{t}, \forall(s, t) \in E\right\}
$$

- The dual decomposes into sum, one for each node

$$
A_{F}^{*}(\tau)=\sum_{s \in V}\left[\tau_{s} \log \tau_{s}+\left(1-\tau_{s}\right) \log \left(1-\tau_{s}\right)\right]
$$

Example: Naïve Mean Field for Ising Model

- Mean field problem

$$
A(\theta) \geq \max _{\left(\tau_{1}, \ldots, \tau_{m}\right) \in[0,1]^{m}}\left\{\sum_{s \in V} \theta_{s} \tau_{s}+\sum_{(s, t) \in E} \theta_{s t} \tau_{s} \tau_{t}-A_{F}^{*}(\tau)\right\}
$$

- The same objective function as in free energy based approach
- The naïve mean field update equations

$$
\tau_{s} \leftarrow \sigma\left(\theta_{s}+\sum_{t \in N(s)} \theta_{s} \tau_{t}\right)
$$

- Also yields lower bound on log partition function

Geometry of Mean Field

- Mean field optimization is always non-convex for any exponential family in which the state space \mathcal{X}^{m} is finite
- Recall the marginal polytope is a convex hull

$$
\mathcal{M}(G)=\operatorname{conv}\left\{\phi(e) ; e \in \mathcal{X}^{m}\right\}
$$

- $\mathcal{M}_{F}(G)$ contains all the extreme points
- If it is a strict subset, then it must be non-convex
- Example: two-node Ising model

$$
\mathcal{M}_{F}(G)=\left\{0 \leq \tau_{1} \leq 1,0 \leq \tau_{2} \leq 1, \tau_{12}=\tau_{1} \tau_{2}\right\}
$$

- It has a parabolic cross section along $\tau_{1}=\tau_{2}$, hence non-convex

Bethe Approximation and Sum-Product

Sum-Product/Belief Propagation Algorithm

- Message passing rule:

$$
M_{t s}\left(x_{s}\right) \leftarrow \kappa \sum_{x_{t}^{\prime}}\left\{\psi_{s t}\left(x_{s}, x_{t}^{\prime}\right) \psi_{t}\left(x_{t}^{\prime}\right) \prod_{u \in N(t) / s} M_{u t}\left(x_{t}^{\prime}\right)\right\}
$$

- Marginals:

$$
\mu_{s}\left(x_{s}\right)=\kappa \psi_{s}\left(x_{s}\right) \prod_{t \in N(s)} M_{t s}^{*}\left(x_{s}\right)
$$

- Exact for trees, but approximate for loopy graphs (so called loopy belief propagation)
- Question:
- How is the algorithm on trees related to variational principle?
- What is the algorithm doing for graphs with cycles?

Tree Graphical Models

- Discrete variables $X_{s} \in\left\{0,1, \ldots, m_{s}-1\right\}$ on a tree $T=(V, E)$
- Sufficient statistics: $\quad \mathbb{I}_{j}\left(x_{s}\right) \quad$ for $s=1, \ldots n, \quad j \in \mathcal{X}_{s}$

$$
\mathbb{I}_{j k}\left(x_{s}, x_{t}\right) \quad \text { for }(s, t) \in E, \quad(j, k) \in \mathcal{X}_{s} \times \mathcal{X}_{t}
$$

- Exponential representation of distribution:

$$
p(X ; \theta) \propto \exp \left\{\sum_{s \in V} \theta_{s}\left(x_{s}\right)+\sum_{(s, t) \in E} \theta_{s t}\left(x_{s}, x_{t}\right)\right\}
$$

where $\theta_{s}\left(x_{s}\right):=\sum_{j \in \mathcal{X}_{s}} \theta_{s ; j} \mathbb{I}_{j}\left(x_{s}\right) \quad$ (and similarly for $\theta_{s t}\left(x_{s}, x_{t}\right)$)

- Mean parameters are marginal probabilities:

$$
\begin{gathered}
\mu_{s ; j}=\mathbb{E}_{p}\left[\mathbb{I}_{j}\left(X_{s}\right)\right]=\mathbb{P}\left[X_{s}=j\right] \quad \forall j \in \mathcal{X}_{s}, \quad \mu_{s}\left(x_{s}\right)=\sum_{j \in \mathcal{X}_{s}} \mu_{s ; j} \mathbb{I}_{j}\left(x_{s}\right)=\mathbb{P}\left(X_{s}=x_{s}\right) \\
\mu_{s t ; j k}=\mathbb{E}_{p}\left[\mathbb{I}_{s t ; j k}\left(X_{s}, X_{t}\right)\right]=\mathbb{P}\left[X_{s}=j, X_{t}=k\right] \quad \forall(j, k) \in \mathcal{X}_{s} \in \mathcal{X}_{t} \\
\mu_{s t}\left(x_{s}, x_{t}\right)=\sum_{(j, k) \in \mathcal{X}_{s} \times \mathcal{X}_{t}} \mu_{s t ; j k \mathbb{I}_{j k}\left(x_{s}, x_{t}\right)=\mathbb{P}\left(X_{s}=x_{s}, X_{t}=x_{t}\right)}
\end{gathered}
$$

Marginal Polytope for Trees

- Recall marginal polytope for general graphs

$$
\mathcal{M}(G)=\left\{\mu \in \mathbb{R}^{d} \mid \exists p \text { with marginals } \mu_{s ; j}, \mu_{s t ; j k}\right\}
$$

- By junction tree theorem (see Prop. 2.1 \& Prop. 4.1)

$$
\mathcal{M}(T)=\left\{\mu \geq 0 \mid \sum_{x_{s}} \mu_{s}\left(x_{s}\right)=1, \sum_{x_{t}} \mu_{s t}\left(x_{s}, x_{t}\right)=\mu_{s}\left(x_{s}\right)\right\}
$$

- In particular, if $\mu \in \mathcal{M}(T)$, then

$$
p_{\mu}(x):=\prod_{s \in V} \mu_{s}\left(x_{s}\right) \prod_{(s, t) \in E} \frac{\mu_{s t}\left(x_{s}, x_{t}\right)}{\mu_{s}\left(x_{s}\right) \mu_{t}\left(x_{t}\right)}
$$

has the corresponding marginals

Decomposition of Entropy for Trees

- For trees, the entropy decomposes as

$$
\begin{aligned}
H(p(x ; \mu))= & -\sum_{x} p(x ; \mu) \log p(x ; \mu) \\
= & \sum_{s \in V}(-\underbrace{\sum_{x_{s}} \mu_{s}\left(x_{s}\right) \log \mu_{s}\left(x_{s}\right)}_{H_{s}\left(\mu_{s}\right)})- \\
& -\sum_{(s, t) \in E}(\underbrace{\left.\sum_{x_{s}, x_{t}} \mu_{s t}\left(x_{s}, x_{t}\right) \log \frac{\mu_{s t}\left(x_{s}, x_{t}\right)}{\mu_{s}\left(x_{s}\right) \mu_{t}\left(x_{t}\right)}\right)}_{I_{s t}\left(\mu_{s} t\right), \text { KL-Divergence }} \\
= & \sum_{s \in V} H_{s}\left(\mu_{s}\right)-\sum_{(s, t) \in E} I_{s t}\left(\mu_{s t}\right)
\end{aligned}
$$

- The dual function has an explicit form $A^{*}(\mu)=-H(p(x ; \mu))$

Exact Variational Principle for Trees

- Variational formulation

$$
A(\theta)=\max _{\mu \in \mathcal{M}(T)}\left\{\langle\theta, \mu\rangle+\sum_{s \in V} H_{s}\left(\mu_{s}\right)-\sum_{(s, t) \in E} I_{s t}\left(\mu_{s t}\right)\right\}
$$

- Assign Lagrange multiplier $\lambda_{s s}$ for the normalization constraint $C_{s s}(\mu):=1-\sum_{x_{s}} \mu_{s}\left(x_{s}\right)=0$ and $\lambda_{t s}\left(x_{s}\right)$ for each marginalization constraint $C_{t s}\left(x_{s} ; \mu\right):=\mu_{s}\left(x_{s}\right)-\sum_{x_{t}} \mu_{s t}\left(x_{s}, x_{t}\right)=0$
- The Lagrangian has the form

$$
\begin{aligned}
\mathcal{L}(\mu, \lambda)= & \langle\theta, \mu\rangle+\sum_{s \in V} H_{s}\left(\mu_{s}\right)-\sum_{(s, t) \in E} I_{s t}\left(\mu_{s t}\right)+\sum_{s \in V} \lambda_{s s} C_{s s}(\mu) \\
& +\sum_{(s, t) \in E}\left[\sum_{x_{t}} \lambda_{s t}\left(x_{t}\right) C_{s t}\left(x_{t}\right)+\sum_{x_{s}} \lambda_{t s}\left(x_{s}\right) C_{t s}\left(x_{s}\right)\right]
\end{aligned}
$$

Lagrangian Derivation

- Taking the derivatives of the Lagrangian w.r.t. μ_{s} and $\mu_{s t}$

$$
\begin{gathered}
\frac{\partial \mathcal{L}}{\partial \mu_{s}\left(x_{s}\right)}=\theta_{s}\left(x_{s}\right)-\log \mu_{s}\left(x_{s}\right)+\sum_{t \in \mathcal{N}(s)} \lambda_{t s}\left(x_{s}\right)+C \\
\frac{\partial \mathcal{L}}{\partial \mu_{s t}\left(x_{s}, x_{t}\right)}=\theta_{s t}\left(x_{s}, x_{t}\right)-\log \frac{\mu_{s t}\left(x_{s}, x_{t}\right)}{\mu_{s}\left(x_{s}\right) \mu_{t}\left(x_{t}\right)}-\lambda_{t s}\left(x_{s}\right)-\lambda_{s t}\left(x_{t}\right)+C^{\prime}
\end{gathered}
$$

- Setting them to zeros yields

$$
\begin{gathered}
\mu_{s}\left(x_{s}\right) \propto \exp \left\{\theta_{s}\left(x_{s}\right)\right\} \prod_{t \in \mathcal{N}(s)} \underbrace{\exp \left\{\lambda_{t s}\left(x_{s}\right)\right.}_{M_{t s}\left(x_{s}\right)}\} \\
\mu_{s}\left(x_{s}, x_{t}\right) \propto \exp \left\{\theta_{s}\left(x_{s}\right)+\theta_{t}\left(x_{t}\right)+\theta_{s t}\left(x_{s}, x_{t}\right)\right\} \times \\
\prod_{u \in \mathcal{N}(s) \backslash t} \exp \left\{\lambda_{u s}\left(x_{s}\right)\right\} \prod_{v \in \mathcal{N}(t) \backslash s} \exp \left\{\lambda_{v t}\left(x_{t}\right)\right\}
\end{gathered}
$$

Lagrangian Derivation (continued)

- Adjusting the Lagrange multipliers or messages to enforce

$$
C_{t s}\left(x_{s} ; \mu\right):=\mu_{s}\left(x_{s}\right)-\sum_{x_{t}} \mu_{s t}\left(x_{s}, x_{t}\right)=0
$$

yields

$$
M_{t s}\left(x_{s}\right) \leftarrow \sum_{x_{t}} \exp \left\{\theta_{t}\left(x_{t}\right)+\theta_{s t}\left(x_{s}, x_{t}\right)\right\} \prod_{u \in \mathcal{N}(t) \backslash s} M_{u t}\left(x_{t}\right)
$$

- Conclusion: the message passing updates are a Lagrange method to solve the stationary condition of the variational formulation

BP on Arbitrary Graphs

- Two main difficulties of the variational formulation

$$
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\theta^{T} \mu-A^{*}(\mu)\right\}
$$

- The marginal polytope \mathcal{M} is hard to characterize, so let's use the treebased outer bound

$$
\mathbb{L}(G)=\left\{\tau \geq 0 \mid \sum_{x_{s}} \tau_{s}\left(x_{s}\right)=1, \sum_{x_{t}} \tau_{s t}\left(x_{s}, x_{t}\right)=\tau_{s}\left(x_{s}\right)\right\}
$$

These locally consistent vectors τ are called pseudo-marginals.

- Exact entropy $-A^{*}(\mu)$ lacks explicit form, so let's approximate it by the exact expression for trees

$$
\begin{gathered}
-A^{*}(\tau) \approx H_{\text {Bethe }}(\tau):=\sum_{s \in V} H_{s}\left(\tau_{s}\right)-\sum_{(s, t) \in E} I_{s t}\left(\tau_{s t}\right) .
\end{gathered}
$$

Bethe Variational Problem (BVP)

- Combining these two ingredient leads to the Bethe variational problem (BVP):

$$
\max _{\tau \in \mathbb{L}(G)}\left\{\langle\theta, \tau\rangle+\sum_{s \in V} H_{s}\left(\tau_{s}\right)-\sum_{(s, t) \in E} I_{s t}\left(\tau_{s t}\right)\right\} .
$$

- A simple structured problem (differentiable \& constraint set is a simple convex polytope)
- Loopy BP can be derived as am iterative method for solving a Lagrangian formulation of the BVP (Theorem 4.2); similar proof as for tree graphs
- A set of pseudo-marginals given by Loopy BP fixed point in any graph if and only if they are local stationary points of BVP

Geometry of BP

- Consider the following assignment of pseudo-marginals
- Can easily verify $\tau \in \mathbb{L}(G)$
- However, $\tau \notin \mathcal{M}(G)$ (need a bit more work)
- Tree-based outer bound
- For any graph, $\mathcal{M}(G) \subseteq \mathbb{L}(G)$
- Equality holds if and only if the graph is a tree

- Question: does solution to the BVP ever fall into the gap?
- Yes, for any element of outer bound $\mathbb{L}(G)$ it is possible to construct a distribution with it as a fixed point (Wainwright et. al. 2003)

Inexactness of Bethe Entropy Approximation

- Consider a fully connected graph with

$$
\begin{aligned}
\mu_{s}\left(x_{s}\right) & =\left[\begin{array}{ll}
0.5 & 0.5
\end{array}\right] \quad \text { for } s=1,2,3,4 \\
\mu_{s t}\left(x_{s}, x_{t}\right) & =\left[\begin{array}{cc}
0.5 & 0 \\
0 & 0.5
\end{array}\right] \quad \forall(s, t) \in E .
\end{aligned}
$$

- It is globally valid: $\quad \tau \in \mathcal{M}(G)$; realized by the distribution that places mass $1 / 2$ on each of configuration $(0,0,0,0)$ and ($1,1,1,1$)
- $H_{\text {Bethe }}(\mu)=4 \log 2-6 \log 2=-2 \log 2<0$,
- $-A^{*}(\mu)=\log 2>0$.

Remark

- This connection provides a principled basis for applying the sum-product algorithm for loopy graphs
- However,
- Although there is always a fixed point of loopy BP, there is no guarantees on the convergence of the algorithm on loopy graphs
- The Bethe variational problem is usually non-convex. Therefore, there are no guarantees on the global optimum
- Generally, no guarantees that $A_{\text {Bethe }}(\theta)$ is a lower bound of $A(\theta)$
- Nevertheless,
- The connection and understanding suggest a number of avenues for improving upon the ordinary sum-product algorithm, via progressively better approximations to the entropy function and outer bounds on the marginal polytope (Kikuchi clustering)

Summary

- Variational methods in general turn inference into an optimization problem via exponential families and convex duality
- The exact variational principle is intractable to solve; there are two distinct components for approximations:
- Either inner or outer bound to the marginal polytope
- Various approximation to the entropy function
- Mean field: non-convex inner bound and exact form of entropy
- BP: polyhedral outer bound and non-convex Bethe approximation
- Kikuchi and variants: tighter polyhedral outer bounds and better entropy approximations (Yedidia et. al. 2002)

