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Probabilistic Topic Models

 Humans cannot afford to deal with (e.g., search, browse, or 
measure similarity) a huge number of text documents

 We need computers to help out …
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How to get started?
 Here are some important elements to consider before you start:

 Task:
 Embedding? Classification? Clustering? Topic extraction? …

 Data representation:
 Input and output (e.g., continuous, binary, counts, …) 

 Model:
 BN? MRF? Regression? SVM? 

 Inference:
 Exact inference? MCMC? Variational? 

 Learning:
 MLE? MCLE? Max margin? 

 Evaluation:
 Visualization? Human interpretability? Perperlexity? Predictive accuracy? 

 It is better to consider one element at a time!
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Tasks: document embedding 
 Say, we want to have a mapping …, so that 

 Compare similarity 
 Classify contents
 Cluster/group/categorizing
 Distill semantics and perspectives 
 .. 
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Summarizing the data using topics
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See how data changes over time
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User interest modeling using topics
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http://cogito-demos.ml.cmu.edu/cgi-bin/recommendation.cgi



Representation:
 Data:

 Each document is a vector in the word space
 Ignore the order of words in a document. Only count matters!

 A high-dimensional and sparse representation
– Not efficient text processing tasks, e.g., search, document 

classification, or similarity measure
– Not effective for browsing

As for the Arabian and Palestinean voices that are against the 
current negotiations and the so-called peace process, they are not 
against peace per se, but rather for their well-founded 
predictions that Israel would NOT give an inch of the West bank 
(and most probably the same for Golan Heights) back to the 
Arabs. An 18 months of "negotiations" in Madrid, and 
Washington proved these predictions. Now many will jump on 
me saying why are you blaming israelis for no-result negotiations. 
I would say why would the Arabs stall the negotiations, what do 
they have to loose ?

Arabian

negotiations
against

peace
Israel

Arabs blaming

Bag of Words Representation
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How to Model Semantic?
 Q: What is it about?
 A: Mainly MT, with syntax, some learning

A Hierarchical Phrase-Based Model 
for Statistical Machine Translation

We present a statistical phrase-based 
Translation model that uses hierarchical 
phrases—phrases that contain sub-phrases. 
The model is formally a synchronous 
context-free grammar but is learned 
from a bitext without any syntactic 
information. Thus it can be seen as a 
shift to the formal machinery of syntax
based translation systems without any 
linguistic commitment. In our experiments
using BLEU as a metric, the hierarchical 

Phrase based model achieves a relative 
Improvement of 7.5% over Pharaoh, 
a state-of-the-art phrase-based system.

Source
Target
SMT

Alignment
Score
BLEU

Parse
Tree
Noun

Phrase
Grammar

CFG

likelihood
EM

Hidden
Parameters
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argMax

MT                    Syntax              Learning

0.6                          0.3                   0.1   

Unigram over vocabulary
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Mixing 
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Topic Models
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Why this is Useful?
 Q: What is it about?
 A: Mainly MT, with syntax, some learning

A Hierarchical Phrase-Based Model 
for Statistical Machine Translation

We present a statistical phrase-based 
Translation model that uses hierarchical 
phrases—phrases that contain sub-phrases. 
The model is formally a synchronous 
context-free grammar but is learned 
from a bitext without any syntactic 
information. Thus it can be seen as a 
shift to the formal machinery of syntax
based translation systems without any 
linguistic commitment. In our experiments
using BLEU as a metric, the hierarchical 

Phrase based model achieves a relative 
Improvement of 7.5% over Pharaoh, 
a state-of-the-art phrase-based system.

MT                    Syntax              Learning

Mixing 
Proportion

0.6                          0.3                   0.1   

 Q: give me similar document?
 Structured way of browsing the collection

 Other tasks
 Dimensionality reduction 

 TF-IDF vs. topic mixing proportion

 Classification, clustering, and more …
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Words in Contexts

 “It was a nice shot. ”
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Words in Contexts (con'd)
 the opposition Labor Party fared even worse,  with a 

predicted 35 seats,  seven less than last election.
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"Words" in Contexts (con'd)

Sivic et al. ICCV 2005
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Topic Models: The Big Picture

Unstructured Collection Structured Topic Network

Topic Discovery

Dimensionality  
Reduction

w1
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x
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x
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x x x

x

Word Simplex Topic Simplex
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Subspace Analysis

 Clustering: (0,1) matrix
 LSI/NMF: “arbitrary” matrices
 Topic Models: stochastic matrix
 Sparse coding:  “arbitrary” sparse matrices
 “Deep Learning”: do the above for multiple layers  

* *

T 
(m x k)


(k x k)

DT

(k x n)

=

X 
(m x n)

Document

Te
rm ...

...

cluster/topic/basis
Distributions
(subspace)

A priori weights Memberships
(coordinates)
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 Objects are bags of elements

 Mixtures are distributions over 
elements

 Objects have mixing vector 
 Represents each mixtures’ 

contributions

 Object is generated as follows:
 Pick a mixture component from 
 Pick an element from that component

Statistical Foundation: 
Admixture Model vs. Mixture Model

money1 bank1 bank1 loan1 
river2 stream2 bank1 money1 
river2 bank1 money1 bank1  
loan1   money1 stream2 
bank1  money1 bank1 bank1 
loan1 river2 stream2 bank1 
money1 river2 bank1 money1 
bank1  loan1   bank1  
money1 stream2 

money1 bank1 bank1 loan1 
river2 stream2 bank1 money1 
river2 bank1 money1 bank1  
loan1   money1 stream2 
bank1  money1 bank1 bank1 
loan1 river2 stream2 bank1 
money1 river2 bank1 money1 
bank1  loan1   bank1  
money1 stream2 

money1 bank1 bank1 loan1 
river2 stream2 bank1 money1 
river2 bank1 money1 bank1  
loan1   money1 stream2 
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money1 stream2 

…

0.1 0.1 0.5…..

0.1 0.5 0.1…..

0.5 0.1 0.1…..

money1 bank1 bank1 loan1 
river2 stream2 bank1 money1 
river2 bank1 money1 bank1  
loan1   money1 stream2 
bank1  money1 bank1 bank1 
loan1 river2 stream2 bank1 
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money1 stream2 
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Aka: Topic Models
Generating a document
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Which prior to use?
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Choices of Priors
 Dirichlet (LDA) (Blei et al. 2003)

 Conjugate prior means efficient inference
 Can only capture variations in each topic’s 

intensity independently

 Logistic Normal (CTM=LoNTAM) 
(Blei & Lafferty 2005, Ahmed & 
Xing 2006)
 Capture the intuition that some topics are highly 

correlated and can rise up in intensity together
 Not a conjugate prior implies hard inference
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Generative Semantic of LoNTAM
Generating a document
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Posterior inference
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Posterior inference results
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Joint probability of all variables
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We are interested in computing the posterior, 
and the data likelihood!



 A possible query:

 Close form solution?

 Sum in the denominator over Tn terms, and integrate over n k-dimensional topic 
vectors

 Learning: What to learn? What is the objective function?

Inference and Learning are both 
intractable 

    















}{

1,,
,

)|()|()|()|()(
mn

n
z

N
n

n
m

nmnzmn dddppzpxpDp  

)(

)|()|()|()|(

)(
),()|(

}{
,,

,

Dp

ddppzpwp

Dp
DpDp

mn

n
z

i
n

n
m

nmnzmn

n
n

    
























?)|(
?)|(

, 


Dzp
Dp

mn

n

24© Eric Xing @ CMU, 2005-2015



Approximate Inference

 Variational Inference

 Mean field approximation (Blei et al)
 Expectation propagation (Minka et al)
 Variational 2nd-order Taylor approximation (Ahmed and Xing)

 Markov Chain Monte Carlo

 Gibbs sampling (Griffiths et al)
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Mean-field assumption
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True posterior  p                                Variational distribution q

 The fully factorized variational distribution

 Closed-form updates for the mean-field approach with 
conditional conjugate assumptions.



Mean-field assumption
 True posterior

 Break the dependency using the fully factorized distribution

 Mean-field family usually does NOT include the true posterior.
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Minimizing the KL-divergence
 We intend to optimize…

 Alternatively, let latent variables be

 We can verify
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Lower bound



Maximize the lower bound
 The lower bound

 The factorized distribution

 To be a little more general,  
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A coordinate ascent algorithm
 Let us find the best             given                         fixed.

 The objective function is 

 The optimal solution is (Bishop, 2006)

 We iterate over all hidden variables until convergence.
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Update each marginals
 Update

 In LDA,

 We obtain 
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This is also a Dirichlet---the same as its prior!



Coordinate ascent algorithm for LDA
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Drawback of coordinate ascent
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 Let’s use                               to indicate the variational topics.
 The previous algorithm can be summarized in a high level,

 What if we have millions of documents? This could be very slow.



The lower bound in a different 
form
 Some algebra shows the lower bound is (verify yourself) 

 This can be simplified as
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The one-parameter lower bound
 Let us maximize the objective w.r.t. to parameter          first

 Let

 The gradient of             has the following form,

 This allows us to stochastic gradient algorithms to estimate   .
 Once     is estimated, each       can be estimated online if 

needed.
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Natural gradient
 But remember our parameter describes a distribution.

 Gradient is usually not the steepest direction.
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Natural gradient
 For distributions, natural gradient is the steepest direction. 
 Since our model is conditional conjugate, variational

distribution is also in exponential family,

 The Riemannian metric describes the local curvature,

 The natural gradient is as follows (please verify)

 Setting                     gives the traditional mean-field update.

© Eric Xing @ CMU, 2005-2015 37



Stochastic variational inference 
using natural inference 
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Tangent Approximation
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How to evaluate?
 Empirical Visualization: e.g., topic discovery on New 

York Times
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How to evaluate?
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• Test on Synthetic Text where ground truth is known:



Comparison: accuracy and speed
L2 error in topic vector est. 
and # of iterations

 Varying Num. of Topics

 Varying Voc. Size

 Varying Num. Words Per 
Document
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Comparison: perplexity
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Classification Result on PNAS 
collection
 PNAS abstracts from 1997-2002

 2500  documents
 Average of 170 words per document

 Fitted 40-topics model using both approaches
 Use low dimensional representation to predict the abstract category

 Use SVM classifier
 85% for training and 15% for testing

Classification Accuracy

-Notable Difference
-Examine the low dimensional
representations below
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What makes topic models useful -
-- The Zoo of Topic Models!
 It is a building block of many models.
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Williamson et al. 2010 Chang & Blei, 2009

Boyd-Graber & Blei, 2008 Wang & Blei, 2008McCallum et al. 2007

Titov & McDonald, 2008
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Conclusion
 GM-based topic models are cool

 Flexible 
 Modular
 Interactive

 There are many ways of implementing topic models
 unsupervised
 supervised

 Efficient Inference/learning algorithms
 GMF, with Laplace approx. for non-conjugate dist.
 MCMC

 Many applications
 …
 Word-sense disambiguation
 Image understanding
 Network inference
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Summary on VI
 Variational methods in general turn inference into an optimization 

problem via exponential families and convex duality

 The exact variational principle is intractable to solve; there are two 
distinct components for approximations:
 Either inner or outer bound to the marginal polytope
 Various approximation to the entropy function

 Mean field: non-convex inner bound and exact form of entropy
 BP: polyhedral outer bound and non-convex Bethe approximation
 Kikuchi and variants: tighter polyhedral outer bounds and better 

entropy approximations (Yedidia et. al. 2002)
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