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Probabilistic Topic Models .o

e Humans cannot afford to deal with (e.g., search, browse, or
measure similarity) a huge number of text documents

e We need computers to help out ...
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How to get started? 4+

e Here are some important elements to consider before you start:
e Task:
Embedding? Classification? Clustering? Topic extraction? ...
e Data representation:
Input and output (e.g., continuous, binary, counts, ...)
e Model:
BN? MRF? Regression? SVM?

e Inference:
Exact inference? MCMC? Variational?

e Learning:
MLE? MCLE? Max margin?
e Evaluation:

Visualization? Human interpretability? Perperlexity? Predictive accuracy?

e Itis better to consider one element at a time!
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Tasks: document embedding

e Say, we want to have a mapping ..., so that

4

e Compare similarity * g
e Classify contents

e Cluster/group/categorizing

e Distill semantics and perspectives
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Summarizing the data using topics

—

Bayesian
modeling

Visual
cortex

Education

Bayesian
model
inference
models
probability
probabilistic
Markov
prior
hidden
approach

cortex
cortical
areas
visual
area
primary
connections
ventral
cerebral
sensory

students
education
learning
educational
teaching
school
student
skills
teacher
academic
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market
economic
financial
economics
markets
returns
price
stock
value
Investment
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2/27/2007 4/24/2007 6/26/2007 8/28/2007 10/23/2007 12/25/2007 2/19/2008
healthcare healthcare healthcare healthcare kucinich obama obama
abc abc wisconsin wisconsin ron clinton clinton
wisconsin wisconsin vegas vegas obama paul hillary
vegas vegas superdelegate superdelegate healthcare ron barack
superdelegate superdelegate nevada kucinich paul kucinich campaign
nevada nevada abc nevada wisconsin hillary democratic
delegate delegate fundraising fundraising vegas iowa iowa
civil civil delegate delegate superdelegate campaign kucinich
recount fundraising civil florida iowa new paul
florida recount florida civil nevada barack ron
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User interest modeling using topics o
e

User interest profile (adjustable with sliders---Changing these changes recommendations.)

Weight User preferred topics

. : learning machine training vector learn machines kernel learned classifiers classifier
: online classification digital library libraries browsing classify classifying labels catalog
: two differences active hypothesis arise difference evolved morphological modify morphology

: experiments ability demonstrated produced contexts situations instances fail recognize string
: features class classes subset java characteristic earlier represented defines separate

: process making presents objective steps reports distinquish exploit maintaining select
: algorithm signal input signals output exact performs music sound iterative

: database databases contains version list comprehensive release stored update curated

: applications application provide built numerous proven providing discusses tremendous presents
10: text literature discovery mining biomedical full extract discovering texts themes

-
O 0N U A WN -

http://cogito-demos.ml.cmu.edu/cgi-bin/recommendation.cgi
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Representation:

e Data: Bag of Words Representation

As for the Arabian and Palestinean voices that are against the
current negotiations and the so-called peace process, they are not

against peace per se, but rather for their we

II-founded

predictions that Israel would NOT give an inch of the West bank
(and most probably the same for Golan Heights) back to the
Arabs. An 18 months of *'negotiations' in Madrid, and
Washington proved these predictions. Now many will jump on
me saying why are you blaming israelis for no-result negotiations.
I would say why would the Arabs stall the negotiations, what do

they have to loose ?

e Each document is a vector in the word space

e Ignore the order of words in a document. Only count matters! /%
Jourral of A riificial Lelliggenc:

\ \

e A high-dimensional and sparse representation (|V| > D)

Not efficient text processing tasks, e.g.,
classification, or similarity measure
Not effective for browsing

search, document
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How to Model Semantic?

e Q: What is it about?

e A: Mainly MT, with syntax, some learning

l /

e

0.6 0.3 0.1
MT Syntax Learning
Source Parse likelihood
Target
Tree EM
SMT '
: Noun Hidden
Alignment
Phrase Parameters
Score imati
. Grammar Estimation
CFG argMax

\M

Unigram over vocabulary

Mixing
Proportion

Topics

Topic Models
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A Hierarchical Phrase-Based Model
for Statistical Machine Translation

We present a statistical phrase-based
Translation model that uses hierarchical
phrases—phrases that contain sub-phrases.
The model is formally a synchronous
context-free grammar but is learned
from a bitext without any syntactic
information. Thus it can be seen as a
shift to the formal machinery of syntax
based translation systems without any
linguistic commitment. In our experiments
using BLEU as a metric, the hierarchical
Phrase based model achieves a relative
Improvement of 7.5% over Pharaoh,

a state-of-the-art phrase-based system.
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Why this is Useful?

e Q: Whatis it about?

e A: Mainly MT, with syntax, some learning

l

/

e

0.6

0.3

0.1

MT

Syntax

Learning

e Q: give me similar document?

Structured way of browsing the collection

e Other tasks

Dimensionality reduction
TF-IDF vs. topic mixing proportion

Classification, clustering, and more ...

Mixing
Proportion
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A Hierarchical Phrase-Based Model
for Statistical Machine Translation

We present a statistical phrase-based
Translation model that uses hierarchical
phrases—phrases that contain sub-phrases.
The model is formally a synchronous
context-free grammar but is learned
from a bitext without any syntactic
information. Thus it can be seen as a
shift to the formal machinery of syntax
based translation systems without any
linguistic commitment. In our experiments
using BLEU as a metric, the hierarchical
Phrase based model achieves a relative
Improvement of 7.5% over Pharaoh,

a state-of-the-art phrase-based system.
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Words in Contexts

“It was a nice shot. ”

£

SONY

£
H
4
-
]
~
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A

Bayesian Visual
modeling cortex Education Market
Bayesian cortex students market
model cortical education economic
inference areas learning financial
models visual educational economics
probability area teaching markets
probabilistic primary school returns
Markov connections student price
prior ventral skills stock
hidden cerebral teacher value
approach sensory academic investment
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Words in Contexts (con'd)

Bayesian Visual
modeling cortex Education Market
Bayesian cortex students market
model cortical education economic
inference areas learning financial
models visual educational economics
probability area teaching markets
probabilistic primary school returns
Markov connections student price
prior ventral skills stock
hidden cerebral teacher value
approach sensory academic investment

e the opposition Labor Party fared even worse, with a
predicted 35 seats, seven less than last election.
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Bayesian Visual

modeling cortex Education Market
Bayesian cortex students market
model cortical education economic
inference areas learning financial
models visual educational economics
' ' ' ' u ' probability area teaching markets
probabilistic primary school returns
O r s I n o n texts c O n Markov connections student price
prior ventral skills stock
hidden cerebral teacher value
approach sensory academic investment

*}

T h @™

et al. ICCV 2005




Topic Models: The Big Picture

Unstructured Collection

Structured Topic Network

Topic Discovery

\

W

>

Dimensionality
Reduction

2

Word Simplex

Topic Simplex
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LS| versus Topic Model 434
(probabilistic LSI) o

documents topic
topic documents
) wn (@)
o o o Q _ =
g X — g Wi gl A 5 DT X=W'd
LSI
documents topics
o documents
= S| N 2 Topic-Mixing is via repeated
S P (W) = 9| = IS P(z) word labeling
= =| T
Topic models
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Subspace Analysis o
Document

Term

T A DT
(M x n) (m x k) (k x k) (k x n)
cluster/topic/basis o
Distributions A priori weights Memberships
(subspace) (coordinates)

e Clustering: (0,1) matrix

e LSI/NMF: “arbitrary” matrices

e Topic Models: stochastic matrix

e Sparse coding: “arbitrary” sparse matrices

e “Deep Learning”: do the above for multiple layers
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Statistical Foundation:

Admixture Model vs. Mixture Model

e Objects are bags of elements Jﬂf

e Mixtures are distributions over a

elements '
e Objects have mixing vector 9 -[ox o1 .. 05
e Represents each mixtures’ /0.1 0.5 0.1
contributions ' 0.5 gel e 0.1

1
)
1
1

1
1
I
1
1

\
\

e Object is generated as foIIO\\iv\s“;

e Pick a mixture component from 0 B
e Pick an element from that component

© Eric Xing @ CMU, 2005-2015
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o000
o000
0000
- e
Aka: Topic Models 2
Generating a document
— Draw @ from the prior Prior
For each word n
- Draw z, from multinomia 1(8) o
-Draw w, | z,, {8, } from multinomial(ﬁzn)
z
BO———Om
K N,
Which prior to use? N

© Eric Xing @ CMU, 2005-2015
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Choices of Priors o

e Dirichlet (LDA) (Blei et al. 2003)

e Conjugate prior means efficient inference

e Can only capture variations in each topic’s
intensity independently

E i k: H

8 2 8

g o ]
.

e Logistic Normal (CTM=LoNTAM)
(Blel & Lafferty 2005, Ahmed &

Xing 2006) A AL A b
e Capture the intuition that some topics are highly A‘ & ::

correlated and can rise up in intensity together

19

e Not a conjugate prior implies hard inference
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(Y X
o000
8252
Generative Semantic of LONTAM | :¢
Generating a document T <2 z
— Draw @ from the prior ?
For each word n
- Draw z, from multinomia I(9) E?Y
-Draw w, | z,,{f,, } from multinomia I(,an)
BN ?
K\\
6~ LN, (,u, 2) W N
7/~NK—1(/U’Z) yk =0 \0® dN
A\®)
(®)

Cly)- Iog;(1+:<Z;e7i

\

il
<

i exp{yi W Iog(1+ Tz_;e% )}

Q’Q

- Log Partition Function

J
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Posterior inference

Topic proportions

Topic assignments

|
T

I

|

|

|

! 1
1

|

|

|

1

oobooao

Friston K.

Abstract

This article is about how the brain data mines its sensory
principles of functional brain anatomy that have emerged f
over the past century. These principles are considered in |

Learning and inference in the bram

The Wellcome Department of Imaging Neuroscience, Institute of Neur
London WC1N 3BG, UK. k.friston@fl.ion.ucl.ac.uk
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Posterior inference results

Topic proportions
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Joint probability of all variables

K D N
p(B.6.z.w) =[] p(Belm [ | p0ale) [ | p(zanl6a) P(wanlzan. B)
d=1 n=1

k=1

oD@

<

N

D

(B,

_.’)7

We are interested in computing the posterior,

and the data likelihood!

© Eric Xing @ CMU, 2005-2015
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Inference and Learning are both cece

( XX
intractable e
e A possible query:

p(6,|D)="?

P(Z,n D) =7

e Close form solution? p(é,| D) _ P(6..D)
p(D)
2 1{TT 830100t s

p(D)

p(D)= > [-] [H[H P(Xom | B, ) P(Z Iﬁn)jp(é’n Ia)jp(ﬂln)dﬁl---d%dﬂ
{z,m} n m

e Sum in the denominator over T" terms, and integrate over n k-dimensional topic
vectors

e Learning: What to learn? What is the objective function?
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Approximate Inference

e Variational Inference

e Mean field approximation (Blei et al)
e EXxpectation propagation (Minka et al)
e Variational 2"d-order Taylor approximation (Ahmed and Xing)

e Markov Chain Monte Carlo

e Gibbs sampling (Griffiths et al)

© Eric Xing @ CMU, 2005-2015
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Mean-field assumption

True posterior p

o)

@_,

LN

&,

Variational distribution g

H—(®)

O—(),

e The fully factorized variational distribution

g(B.z1:0) = ¢(BIV) | [ 9(zil¢)

e Closed-form updates for the mean-field approach with

i=1

conditional conjugate assumptions.

© Eric Xing @ CMU, 2005-2015
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Mean-field assumption o
e True posterior
p(/87 97 Z7w)
0, zlw) =
p(B.; 0, z|w) ()

e Break the dependency using the fully factorized distribution
g(B.0.2) =[[aB [ [20a) | |9(zan)
k d n

e Mean-field family usually does NOT include the true posterior.
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Minimizing the KL-divergence
e We intend to optimize...
q =argmin KL(q]|p)
o Alternatively, let latent variables be i = {8,4, z}

p(w, h)

log p(w) = log/ p(w, h)dh = logE,x)

2 K, [log p(w. h)] + H(q(h))

= L:(q (h)) S Lower bound

q(h)

e We can verify log p(w) = L(g) + KL(q||p)

© Eric Xing @ CMU, 2005-2015
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Maximize the lower bound

e The lower bound

L(q(h)) = Eqllog p(w, h)] + H(q (1))

e The factorized distribution

h={B.0,z}
gB.0.2) =TTaBo [[a@) [T azan)
k d n

e To be a little more general,

h={hyha... hy
a(h) = [Tahi)

© Eric Xing @ CMU, 2005-2015 29



A coordinate ascent algorithm

e Letus findthe best ¢q(;) given q(h;), j # i fixed.

e The objective function is

Llg(h)) = f 4 (h)Eq_ [log p(w. )] + H(g(h) + C

e The optimal solution is (Bishop, 2006)

q(h;) o< exp {E,., [log p(w, h)]}

e \We iterate over all hidden variables until convergence.

© Eric Xing @ CMU, 2005-2015
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Update each marginals

e Update

q(0a) o< exp (ET7, g(zgn) [log p(Bale) + ) log p(zanGd)}}

K
Z(ozk — 1) log 0,4 ¢ — —Dirichlet

k=1

p(Og|a) o exp

] =

p(zanl0a) = exp

|
|

1[zg, = k]log Qdk} — —Multinomial
k

Il
p—

e \We obtain

K [N
q(0gq) o< exp %Z (Z q(zan = k) + g — 1) log Bk

k=1 n=1

This is also a Dirichlet---the same as its prior!

© Eric Xing @ CMU, 2005-2015
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Coordinate ascent algorithm for LDA

1: Initialize variational topics g(fy), k=1,..., K.

2: repeat

3: for each documentde{1,2,...,D} do

4 Initialize variational topic assigments q(z;,), n=1,...,N
5 repeat

6 Update variational topic proportions g(0 ;)

7: Update variational topic assigments ¢(z4,), n=1,...,N
8 until Change of g(0,) is small enough

9: end for

0: Update variational topics q(fx), k=1,...,K.

1: until Lower bound L(g) converges
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Drawback of coordinate ascent

e Letsuse g(B|A) = g(B) toindicate the variational topics.
e The previous algorithm can be summarized in a high level,

1: Initialize global parameters A

2: repeat

3: foreachdocumentde{l,2,..., D} do

4 Update document-specific variational distributions
5.  end for

6: Update global parameters A.

7. until Convergence

e What if we have millions of documents? This could be very slow.
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The lower bound in a different
form ot

e Some algebra shows the lower bound is (verify yourself)

L(X, ¢1.n) = Eyllog p(B) —log q(B|A)]

\ . 4
Ve

global contribution

+ Z:{Eq[log p(ei, 2i|f) —log q(zi|ds)]}

7

~
per-data point contribution

e This can be simplified as

LA prn) = FA) + ) gi(A, di).
1=1
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The one-parameter lower bound .

e Let us maximize the objective w.r.t. to parameter Q1. first

LO) = [Q) + ) maxgi (4. ).
i=1 '

o Let ¢i* = maxy,; g&i(A, ¢;)

e The gradient of £(A) has the following form,

0LA) _ ) | ¢ 9gi(d.¢)
oA A +; oA

e This allows us to stochastic gradient algorithms to estimate A.

e Once A is estimated, each ¢i can be estimated online if
needed.
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Natural gradient

e But remember our parameter describes a distribution.

— P

0 q

—%— gradient

—— Riemannian gradient

(from Honkela et al., 2010)

L)

e Gradient IS usually not the steepest direction.

oA
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Natural gradient

e For distributions, natural gradient is the steepest direction.

e Since our model is conditional conjugate, variational
distribution is also in exponential family,

g(BIN) = h(B) exp { N't(B) = aW))

e The Riemannian metric describes the local curvature,

dl A) 01 A
0y =, [ BB VBB _ g2y

e The natural gradient is as follows (please verify)

BL(\) =N 1+ g (x)
=1

g =GN "

e Setting g( )\) = () gives the traditional mean-field update.

© Eric Xing @ CMU, 2005-2015
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Stochastic variational inference
using natural inference

7:

- fort=1,...,0o0do

end for

. Initialize global parameters Ag, t = 0.
. Set step-size schedule p;.

Sample a data point i ~ Unif(1,..., n).
Compute the optimal local parameter ¢ (A,).
Perform natural gradient ascent on global parameters A,

Arv1 =Ar+p:8(Af)
=1-pJAs+p;¢ (77 + nigy: (Xi))

© Eric Xing @ CMU, 2005-2015
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Choice of () does matter

M 2

Y

| Q2
o w

P(7{z}D)

2* is full matrix

Multivariate
Quadratic Approx.

M*RQ*C)
Y

z Oe
g g

W

CI(J/, Zl:n): Q(7‘ﬂ*12*)1_[ q(zn‘¢n)

Log Partition Function

2* is assumed to be diagonal

Closed Form
Solution for p*, *

Ahmed&Xing

log [1+ Kzle“j

i=1

© Eric Xing @ CMU, 2005-2015

A\ 4

Tangent Approx.

Numerical
Optimization to
fit u*, Diag(Z*)

Blei&Lafferty
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Tangent Approximation .

Gamma Gamma
4 - : ! T =
Exact | B Expanded Exact Expanded
sl|——-Bound|. ... .. . . 2.2 5o gn vl e ) Arround o ——Quadratic| ~ Around
: : : o N (F20-18) = (0512
5 é
g ? :
g -
By : |
0 1 2 3 4 5
Tireap{ 7}
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000
0000
0000
st
How to evaluate? -
e Empirical Visualization: e.g., topic discovery on New
York Times
The 5 most frequent topics from the HDP on the New York Times.
game life film book wine
season know movie life street
team school show books hotel
coach street life novel house
play man television story room
points family films man night
games says director author place
giants house man house restaurant
second children story war park
players night says children garden

© Eric Xing @ CMU, 2005-2015
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How to evaluate? p%?
- 0

 Test on Synthetic Text where ground truth is kgowﬂ B0
- — | \\\\\ifiii
4

Ground Truth ’

g'.ﬂlju il

100 200 300 400
At the End of EM (AX

100 200 300 400
At the End of EM (BL)

O L
0 100 200 300 400
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Comparison: accuracy and speed | :°

Vocabulary Size=1000 , WordsPerDocument=200

Vocabulary Size=1000 , WordsPerDocument=200

L2 error in topic vector est. | s 1 |
and # of iterations b
e Varying Num. of Topics 5 |

#Topics #Topics

#Topics=50 , WardsPerDocument=200 #Topics=50 , WordsPerDocument=200
35 T T T T T T T 900 T T T T T T T T

ng&Ahmed
eidLafferty Jd

30

700+ B

Tt
500 4

400+

25

20

Number of Iter

e Varying Voc. Size

L2 error in Theta %

. n n . . . " 1 " . . . s . L n
0 500 1000 1500 2000 2500 3000 3500 4000 4500 UUIJ S00 1000 1500 2000 2500 3000 3500 4000 4500

Voc. Size Voc. Size

#Topics=50 , Voc Size=1000 #Topice=50 , Yoc Size=1000
90 T T T T T T T

KingéAhmed

80 Bleid.Lafferty 4

70 4
60 4

50 <!

e Varying Num. Words Per i |
Document o T N 1

L2 error in Theta %
Number of Iter

0 L s n n ' s . . n 100 n L s s . i s . .
0 100 200 300 400 500 600 700 BOD SO0 1000 o 00 200 300 400 500 600 700 8OO 900 1000
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Comparison: perplexity

Held-out perplexity

[ [

190Q|0

15

20 25
Number of topics
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Classification Result on PNAS

collection

e PNAS abstracts from 1997-2002

e 2500 documents

e Average of 170 words per document

e Fitted 40-topics model using both approaches
e Use low dimensional representation to predict the abstract category

e Use SVM classifier

e 85% for training and 15% for testing

Classification Accuracy

-

-Notable Difference

-Examine the low dimensional
representations below

Category Doc | BL | AX
Genetics 21 | 61.9 | 61.9
Biochemistry | 86 || 65.1 | 77.9
Immunology | 24 | 70.8 | 66.6
Biophysics 15 | 53.3 | 66.6
Total 146 | 64.3 | 72.6
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What makes topic models useful -
-- The Zoo of Topic Models! oo

e Itis a building block of many models.

Williamson et al. 2010 Chang & Blei, 2009 Titov & McDonald, 2008
A0 A e N
- i % 8
O O ST Ty | e en

25
©

& .

v

5

¥

‘\®«

VO G

RS z z z

®_.<Q,A @\% cloorents 8 w w w
e (B 7 T n_ak
T Ny \\? ? Bt—1 Bt Be+1

D O// ° © I\/ 011 OSt Ost+1

McCallum et al. 2007 Boyd-Graber & Blei, 2008 Wang & Blei, 2008
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Conclusion
e GM-based topic models are cool
e Flexible
e Modular

e Interactive

e There are many ways of implementing topic models
e unsupervised
e supervised

e Efficient Inference/learning algorithms
e GMF, with Laplace approx. for non-conjugate dist.
e MCMC

e Many applications
[ J
e Word-sense disambiguation
e Image understanding

e Network inference
© Eric Xing @ CMU, 2005-2015




Summary on VI -

e Variational methods in general turn inference into an optimization
problem via exponential families and convex duality

e The exact variational principle is intractable to solve; there are two
distinct components for approximations:

e Either inner or outer bound to the marginal polytope
e Various approximation to the entropy function

e Mean field: non-convex inner bound and exact form of entropy

e BP: polyhedral outer bound and non-convex Bethe approximation

e Kikuchi and variants: tighter polyhedral outer bounds and better
entropy approximations (Yedidia et. al. 2002)

© Eric Xing @ CMU, 2005-2015
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