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Approximate Inference:
Monte Carlo methods

kg(x) X4

. Reading: See class website
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Approaches to inference

e EXxact inference algorithms

e The elimination algorithm
e Message-passing algorithm (sum-product, belief propagation)
e The junction tree algorithms

e Approximate inference techniques
e Variational algorithms
Loopy belief propagation
Mean field approximation
e Stochastic simulation / sampling methods
e Markov chain Monte Carlo methods

© Eric Xing @ CMU, 2005-2015




How to represent a joint, or a T
marginal distribution? -

e Closed-form representation

1 1 _
e Eg, (x1,... ,-’I?p)T ~ CSEEEE exp ( — 5T W) Is - ,u))
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Monte Carlo methods ot

e Draw random samples from the desired distribution

e Yield a stochastic representation of a complex distribution

e marginals and other expections can be approximated using sample-based

averages
/ 1 Nﬂﬁ ,
E[f ()] = 2. f (x)
—— N t=1 _
e Asymptotically exact and easy to apply to arbitrary models
e Challenges: X f"/?“)
e how to draw samples from a given dist. (not all distributions can be trivially
sampled)?
e how to make_better use of the samples (not all sample are ulNQr egally
useful, see an example later)?
e how to know we've sampled enough? s % ~ v
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Example: naive sampling

e Construct samples according to probabilities gi
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Alarm example: (Choose the right sampling sequence)
1) Sampling:P(B)=<0.001, 0.999> suppose it is false,
BO. Same for EO. P(A|BO, E0)=<0.001, 0.999> suppose

it is false...

2) Frequency counting: In the samples right,
PV O):P(J,AO)/P‘(M,);<1¢/Q, 8//9>.

('L‘U )
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Example: nalve sampling

e Construct samples according to probabilities given in a BN.

Alarm example: (Choose the right sampling
seqguence)

3) what if we want to compute P(JJAL) ?

£

P
4) what if we want to compute P(J|B1) ?

P(J|A1)=P(J,B1)/P(B1) can not be defined.
For a model with hundreds or more variables,

rare events will be very hard to garner evough
samples even after a long time or sampling ...
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Monte Carlo methods (cond.) o°

e Direct Sampling

e We have seendit.
e Verydifficult to populate a high-dimensional state space

# Rejection Sampling

e Create samples like direct sampling, only count samples which is consistent with
given evidences.

e Likelihood weighting, ...

e Sample variables and calculate evidence weight. Only create the samples which
support the evidences.

e Markov chain Monte Carlo (MCMC)

e Metropolis-Hasting
e Gibbs
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Rejection sampling )| 8

o Suppose we wish to sample from dlst\H( =IT(X)/Z.

[1(X) is difficult to sample, but IT'(X) is easy to evaluate
e Sample from a simpler dist Q(X)

e Rejection sampling (<
o0 st wplie vl D € 0

- v
e Correctness: KNTV)
i ”(’Mﬂjn (X)/kQ(X%. =AY

[kQ (x
T
Nl Y .
jH(x)dx
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Rejection sampling 1',’ o T 8

—L._J#P

e Pitfall:
¢ Using Q=W(u,c,2 to sample P=A(u,c,2)

e If 5, exceeds o, by 1%, and dimensional=1000,
e The optimal acceptance rate @M/zo,ooo
e Big waste of samples!

0.25¢

e Adaptive rejection sampling

e Using envelope functions to define Q
A

Inp(x)

xl xz x3 X
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Unnormalized importance - S
wu{Vm=:

sampling wWh=PA

. . no»
e Suppose sampling from P(-) is hard. { X", w {.-,,
e Suppose we can sample from a "simpler" proposal distribution

Q(+) instead.

o If Qdominates P (i.e., Q(x) > 0 whenever P(x) > 0), we can
sample from Q and reweight:

- [ f(x) P(x 3{@)0&
/

wherex™ ~Q (X)

e What is the problem here?
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Normalized importance sampling | s:

e Suppose we can only evaluate P'(x) = aP(x) (e.g. for an

MRF).
e \We can get around the nasty normalization constant o as
follows:
-N Letf;(,x):gg; = <’"(X)>9_ J&X;Q(x)dx jP (x)dx =a = f)‘ﬂvl/w,&
e Now X ~(sZ(X)
P'(x) )
(£00), = [ 1P (x)dx 5 (x )i QQ<)dx ATy
. wz
i j f(x)r(x)Q(x)dx r ' &

Ir(x)Q (x)dx
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Normalized vs unnormalized
iImportance sampling

e Unormalized importance sampling is unbiased:

E,[f OX)w(X)]=

e Normalized importance sampling is biased, e.g., for M = 1.

- [ 1o ]
L)

e However, the variance of the normalized importance sampler is
usually lower in practice.

e Also, it is common that we can evaluate P'(x) but not P(x), e.g.
P(x|e) = P'(x, e)/P(e) for Bayes net, or P(x) = P'(x)/Z for MRF.
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Likelihood weighting -

e We now apply normalized importance sampling to a Bayes net.

e The proposaf\Q Is gotten from the mutilated BN where we clamp
evidence nodes, and cut their incoming arcs. Call this P,.

d° | d | i i1 do | d! [ © it -
06 (04 07 | 03 06|04 0 1
Difficulty ) (Intelligence Intelligence
T /X Grade SAT s SAT
0d| 005|025 07
itdo| 09 008|002 i cal I
ol o5 03 o2 Letter ] 0.95] 0.05 ?]095] 005
, _ 3] o ~ Tl ozl o8 it| 02| o8
0 i
g'] 01| 0.9
o?[ 04] o6
g?[0.99] oot
e The unnormalized posterior is P'(x) = P(Xx, e).
2 Vvmé‘(xim = X|)
e So for f(X)) = 8(X; = x;), we get P(X, = x |e) === ”
mom

where w_ =P'(x",e)/ PR, (x").
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Likelihood weighting algorithm

[21.,. w| = function LW(CPDs, G, F)
let X1......X,, be a topological ordering of G
w =1

1

x=(0,...,0)
fori=1:n
let u; = x(Pa;)
if X; € F
then sample z; from P(X;|u;)
else

T; = (E’(\‘X,')

W =W * P(ll‘,-|u,-)
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Efficiency of likelihood weighting | 3¢

e The efficiency of importance sampling depends on how close
the proposal Q is to the target P.

e Suppose all the evidence is at the roots. Then Q = P(X|e), and
all samples have weight 1.

e Suppose all the evidence is at the leaves. Then Q is the prior,
so many samples might get small weight if the evidence is
unlikely.

e \We can use arc reversal to make some of the evidence nodes
be roots instead of leaves, but the resulting network can be
much more densely connected.
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Weighted resampling w -
e Problem of importance sampling: depends on how well Q
matches P
e If P(X)f(x) is strongly varying and has a significant proportion of its mass
concentrated in a small region, r., will be dominated by a few samples
- PLY
— B
N
v
(¥ o X
Z

e Note that if the high-prob mass region of Q falls into the low-prob mass
region of P, the variance of r" =P(x™)/Q(x™) can be small even if the
samples come from low-prob region of P and potentially erroneous .

e Solution
e Use heavy tail Q. W = P(x™)/Q((Xx") _ r"
e Weighted resampling Z/’D(XI)/Q(XI) Zmr'm
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Weighted resampling o°

e Sampling importance resampling (SIR):

1. Draw N samples from Q: X; ... Xy
m_ PXMIQx™) _ r"

2. Constructing weights: w, ... wy, w T PH)IQK) S e
3. Sub-sample x from X;S L Xy Wep. (wy .. WE}) '
]
_ S (A
e Particular Filtering ARS Y|

e Yield samples from posterior p(X|Y;.)

e A special weighted resampler I I ;
H ® @

e Also known as sequential Monte Carlo
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Sketch of Particle Filters ot

e The starting point X o
p(Xt‘Yu):P(XﬂX\,YIFI): (p(thY@)ﬁ(ytpa ( y W ‘

RN ETATAT N e T Y
R ———

e Thus p(X|]Y.J Is represented by

Y, |IX.m
Xtm - p(Xt |Y1.'tfl)’ th znf(t#

1p41X:")
e A sequentiallweighted resampler
e _Time update
—p\(Xt +1 | Yl.'t) - J X (Xt | Yl.'t )dXt 't P(x;b’a))
{Z W p(X,. | Xt(m sample from a mixture model) /T 1\ \f \
— — DX 1Y) O 50—
easurement update )’ = o0 VP

== =
( > X = \a/ \?‘
) (‘p(XttllY p(yt+~1r| Xt+1)/ P(yt+1| &1) >

X, Yas) = I "
) VP |xt}1>dxﬁ1 1 pbe) SO O,

m m _  p%alXh) .
= {Xt +1 P(Xt +1 | Yl,-t )’ Wi = W (rewelght)
c~— . Pl t+11M+1
\_,_____/
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PF for switching SSM 4+

e Recall that the belief state has O(2!) Gaussian modes
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PF for switching SSM 4+

e Key idea: if you knew the discrete states, you can apply the right
Kalman filter at each time step.

e So for each old particle m, sample
S ~P(S18%) from the prior, apply
the KF (using parameters for S,™)
to the old belief state (X 1, R": 1)
to get an approximation to P(X, |y, st)

e Useful for online tracking,
fault diagnosis, etc.
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Rao-Blackwellised sampling -

e Sampling in high dimensional spaces causes high variance in the
estimate.

e RB idea: sample some variables Xp, and conditional on that,
compute expected value of rest X, analytically:

Epom [ OO]= [ P0G X, 1€) F (X, %, X, dx,

= [ p(x, 1) [ POxs 1%,.8) f (X, %, )dx, fdX,

Xp

B J- p(X, |e)E|o<xd|xp,e)[f (Xp, Xd)]dxp

:ﬁzm“ Ep(xdwe)[f(xg,xd)], Xp ~ p(X, )

e This has lower variance, because of the identity:
var|r(X ,, X)|= var|E|c(X,, X ) | X, ||+ Elvar|c (X ,, X ) | X, |

© Eric Xing @ CMU, 2005-2015

21



© Eric Xing @ CMU, 2005-2015

22



Rao-Blackwellised sampling o°

e Sampling in high dimensional spaces causes high variance in the
estimate.

e RB idea: sample some variables Xp, and conditional on that,
compute expected value of rest X, analytically:

E oo LT OX)]= [ POXG, X [€) F (X%, )X, X,

= [ p(x, )] [ p(xq 1%,,8) F (X, )dlx, [dx,

Xp Xg

= [ D%y 1€)E i, T (%5 X ) i,

:ﬁZEp(Xﬂxg‘,e)[f (Xr;’xd):l’ Xg] - p(Xp |e)
e This has lower variance, because of the identity:
var|r(X ,, X)|= var|[E|c(X ,, X ) | X, ||+ Elvar|c (X ,, X ) | X, |

e Hence varlE|r(X,, X )| X, |[<var|le(X,. X,)], s0 7(X,, X4) =E[f(X,, X ) X,]
IS a lower variance estimator.
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Summary: Monte Carlo Methods :

e Direct Sampling

e Very difficult to populate a high-dimensional state space

e Rejection Sampling

e Create samples like direct sampling, only count samples which is consistent with
given evidences.

e Likelihood weighting, ...

e Sample variables and calculate evidence weight. Only create the samples which
support the evidences.

e Markov chain Monte Carlo (MCMC)

e Metropolis-Hasting
e Gibbs
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