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Parametric vs nonparametric

Parametric model: 

 Assumes all data can be represented using a fixed, finite 
number of parameters.
 Mixture of K Gaussians, polynomial regression.

Nonparametric model:

 Number of parameters can grow with sample size.

 Number of parameters may be random.
 Kernel density estimation.

Bayesian nonparametrics:

 Allow an infinite number of parameters a priori.

 A finite data set will only use a finite number of parameters.

 Other parameters are integrated out.
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Clustered data

 How to model this data?

 Mixture of Gaussians:

 Parametric model: Fixed 
finite number of parameters.

3© A. Dubey,S. Williamson, E. Xing @CMU,2014-15

Bayesian finite mixture model

 How to choose the mixing weights and mixture 
parameters?

 Bayesian choice: Put a prior on them and integrate out:

 Where possible, use conjugate priors

 Gaussian/inverse Wishart for mixture parameters

 What to choose for mixture weights?
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The Dirichlet distribution

 The Dirichlet distribution is a distribution over the (K-1)-
dimensional simplex.

 It is parametrized by a K-dimensional vector 

such that                                   and

 Its distribution is given by
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Samples from the Dirichlet
distribution

 If                                           then             for all k, and

 Expectation: 

a = (0.01,0.01,0.01) a = (100,100,100) a = (5,50,100)
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Conjugacy to the multinomial

 If                                             and  
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Distributions over distributions

 The Dirichlet distribution is a distribution over positive 
vectors that sum to one.

 We can associate each entry with a set of parameters

 e.g. finite mixture model: each entry associated with a mean and 
covariance.

 In a Bayesian setting, we want these parameters to be 
random.

 We can combine the distribution over probability vectors 
with a distribution over parameters to get a distribution 
over distributions over parameters.
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Example: finite mixture model

 Gaussian distribution: 
distribution over means.

 Sample from a Gaussian is a 
real-valued number.
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Example: finite mixture model

 Gaussian distribution: 
distribution over means.

 Sample from a Gaussian is a 
real-valued number.

 Dirichlet distribution:

 Sample from a Dirichlet
distribution is a probability 
vector.

1 2 3
0

0.1

0.2

0.3

0.4

0.5

1 2 3
0

0.1

0.2

0.3

0.4

0.5

1 2 3
0

0.1

0.2

0.3

0.4

0.5

10© A. Dubey,S. Williamson, E. Xing @CMU,2014-15



3/21/2015

6

Example: finite mixture model

 Dirichlet prior

 Each element of a Dirichlet-
distributed vector is associated 
with a parameter value drawn 
from some distribution.

 Sample from a Dirichlet prior is 
a probability distribution over 
parameters.
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Properties of the Dirichlet distribution

 Relationship to gamma distribution: If                                 ,

 If and then

 Therefore, if                                                           then 
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Properties of the Dirichlet distribution

 The beta distribution is a Dirichlet distribution on the 1-
simplex. 

 Let and                                                  

 Then

 More generally, if
then 
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Properties of the Dirichlet distribution

 Renormalization:

If

then
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Choosing the number of clusters

 Mixture of Gaussians – but how many components?

 What if we see more data – may find new components?
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Bayesian nonparametric mixture 
models

 Make sure we always have more clusters than we need.

 Solution – infinite clusters a priori!

 A finite data set will always use a finite – but random –
number of clusters.

 How to choose the prior?

 We want something like a Dirichlet prior – but with an infinite 
number of components.

16© A. Dubey,S. Williamson, E. Xing @CMU,2014-15



3/21/2015

9

Constructing an appropriate prior

 Start off with

 Split each component according to the splitting rule: 

 Repeat to get 

 As               , we get a vector with infinitely many components

17© A. Dubey,S. Williamson, E. Xing @CMU,2014-15

The Dirichlet process

 Let H be a distribution on some space Ω – e.g. a Gaussian 
distribution on the real line.

 Let

 For

 Then                             is an infinite distribution over H.

 We write  
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Samples from the Dirichlet process

 Samples from the Dirichlet process are discrete.

 We call the point masses in the resulting distribution, atoms.

 The base measure H determines the locations of the atoms.
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Samples from the Dirichlet
process

 The concentration parameter α determines the 
distribution over atom sizes.

 Small values of α give sparse distributions.
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Properties of the Dirichlet process

 For any partition A1,…,AK of Ω, the total mass assigned to 
each partition is distributed according to                
Dir(αH(A1)),…,αH(AK))
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Definition: Finite marginals

 A Dirichlet process is the unique distribution over 
probability distributions on some space Ω, such that for 
any finite partition A1,…,AK of Ω,

[Ferguson, 1973]
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Conjugacy of the Dirichlet
process

 Let A1,…,AK be a partition of Ω, and let H be a measure on Ω. 
Let P(Ak) be the mass assigned by                        to partition 
Ak. Then

 If we see an observation in the Jth segment, then

 This must be true for all possible partitions of Ω.

 This is only possible if the posterior of G, given an observation 
x, is given by 
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Predictive distribution

 The Dirichlet process clusters observations.

 A new data point can either join an existing cluster, or 
start a new cluster.

 Question: What is the predictive distribution for a new 
data point?

 Assume H is a continuous distribution on Ω. This means 
for every point θ in Ω, H(θ) = 0.

 First data point: 

 Start a new cluster. 

 Sample a parameter θ1 for that cluster.
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Predictive distribution

 We have now split our parameter space in two: the singleton 
θ1, and everything else.

 Let π1 be the atom at θ1.

 The combined mass of all the other atoms is π* = 1-π1.

 A priori, 

 A posteriori, 
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Predictive distribution

 If we integrate out π1 we get
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Predictive distribution

 Lets say we choose to start a new cluster, and sample a new 
parameter θ2 ~ H. Let π2 be the size of the atom at θ2.

 A posteriori, 

 If we integrate out ,            we get
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Predictive distribution

 In general, if mk is the number of times we have seen Xi=k, 
and K is the total number of observed values,

 We tend to see observations that we have seen before            
– rich-get-richer property.

 We can always add new features – nonparametric. 
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Polya urn scheme

 The resulting distribution over data points can be thought 
of using the following urn scheme.

 An urn initially contains a black ball of mass α.

 For n=1,2,… sample a ball from the urn with probability 
proportional to its mass.

 If the ball is black, choose a previously unseen color, 
record that color, and return the black ball plus a unit-
mass ball of the new color to the urn.

 If the ball is not black, record it’s color and return it, plus 
another unit-mass ball of the same color, to the urn

[Blackwell and MacQueen,1973]
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Chinese restaurant process

 The distribution over partitions can be described in terms 
of the following restaurant metaphor:

 The first customer enters a restaurant, and picks a table.
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Chinese restaurant process

 The distribution over partitions can be described in terms 
of the following restaurant metaphor:

 The first customer enters a restaurant, and picks a table.

 The nth customer enters the restaurant. He sits at an 
existing table with probability mk/(n-1+α), where mk is the 
number of people sat at table k. He starts a new table 
with probability α/(n-1+α).
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Chinese restaurant process
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Exchangeability

 An interesting fact: the distribution over the clustering of the 
first N customers does not depend on the order in which they 
arrived.

 Homework: Prove to yourself that this is true.

 However, the customers are not independent – they tend to 
sit at popular tables.

 We say that distributions like this are exchangeable.

 De Finetti’s theorem: If a sequence of observations is 
exchangeable, there must exist a distribution given which they 
are iid.

 The customers in the CRP are iid given the underlying 
Dirichlet process – by integrating out the DP, they become 
dependent.
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Stick breaking construction

 We can represent samples from the Dirichlet process 
exactly.

 Imagine a stick of length 1, representing total probability.

 For k=1,2,…

 Sample a beta(1,α) random variable bk.

 Break off a fraction bk of the stick. This is the kth atom size

 Sample a random location for this atom.

 Recurse on the remaining stick.

[Sethuraman, 1994]
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Inference in the DP mixture 
model
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Inference: Collapsed sampler

 We can integrate out G to get the CRP.

 Reminder: Observations in the CRP are exchangeable.

 Corollary: When sampling any data point, we can always 
rearrange the ordering so that it is the last data point.

 Let zn be the cluster allocation of the nth data point. 

 Let K be the total number of instantiated clusters. 

 Then

 If we use a conjugate prior for the likelihood, we can often 
integrate out the cluster parameters
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Problems with the collapsed 
sampler

 We are only updating one data point at a time.

 Imagine two “true” clusters are merged into a single 
cluster – a single data point is unlikely to “break away”.

 Getting to the true distribution involves going through low 
probability states  mixing can be slow.

 If the likelihood is not conjugate, integrating out 
parameter values for new features can be difficult.

 Neal [2000] offers a variety of algorithms.

 Alternative: Instantiate the latent measure.
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Inference: Blocked Gibbs 
sampler

 Rather than integrate out G, we can instantiate it.

 Problem: G is infinite-dimensional.

 Solution: Approximate it with a truncated stick-breaking 
process:
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Inference: Blocked Gibbs 
sampler

 Sampling the cluster indicators:

 Sampling the stick breaking variables:
 We can think of the stick breaking process as a sequence of binary decisions.

 Choose zn = 1 with probability b1.

 If zn ≠ 1, choose zn = 2 with probability b2.

 etc..
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Inference: Slice sampler

 Problem with batch sampler: Fixed truncation introduces 
error.

 Idea: 
 Introduce random truncation.

 If we marginalize over the random truncation, we recover the full model.

 Introduce a uniform random variable un for each data point.

 Sample indicator zn according to

 Only a finite number of possible values.
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Inference: Slice sampler

 The conditional distribution for un is just:

 Conditioned on the un and the zn, the πk can be sampled 
according to the block Gibbs sampler.

 Only need to represent a finite number K of components such 
that
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Topic models

 Topic models describe documents using a distribution over 
features.

 Each feature is a distribution over words

 Each document is represented as a collection of words 
(usually unordered – “bag of words” assumption).

 The words within a document are distributed according to a 
document-specific mixture model
 Each word in a document is associated with a feature.

 The features are shared between documents.

 The features learned tend to give high probability to 
semantically related words – “topics”
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Latent Dirichlet allocation

 For each topic k=1,…,K
 Sample a distribution over words, β~Dir(η1,…, ηV)

 For each document m=1,…,M
 Sample a distribution over topics, θm~Dir(α1,…,αK)

 For each word n=1,…,Nm

 Sample a topic zmn~Discrete(θm)

 Sample a word wmk~Discrete(βz)
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“Topics” found by LDA
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Constructing a topic model with 
infinitely many topics

 LDA: Each distribution is associated with a distribution over K
topics.

 Problem: How to choose the number of topics?

 Solution: 
 Infinitely many topics!

 Replace the Dirichlet distribution over topics with a Dirichlet process!

 Problem: We want to make sure the topics are shared
between documents

47© A. Dubey,S. Williamson, E. Xing @CMU,2014-15

Sharing topics

 In LDA, we have M independent samples from a Dirichlet
distribution.

 The weights are different, but the topics are fixed to be the 
same.

 If we replace the Dirichlet distributions with Dirichlet
processes, each atom of each Dirichlet process will pick a 
topic independently of the other topics.
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Sharing topics

 Because the base measure is continuous, we have zero 
probability of picking the same topic twice.

 If we want to pick the same topic twice, we need to use a 
discrete base measure.

 For example, if we chose the base measure to be

then we would have LDA again.

 We want there to be an infinite number of topics, so we want 
an infinite, discrete base measure.

 We want the location of the topics to be random, so we want 
an infinite, discrete, random base measure.
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Hierarchical Dirichlet Process 
(Teh et al, 2006)

 Solution: Sample the base measure from a Dirichlet process!
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Chinese restaurant franchise

 Imagine a franchise of restaurants, serving an infinitely 
large, global menu.

 Each table in each restaurant orders a single dish.

 Let nrt be the number of customers in restaurant r sitting 
at table t.

 Let mrd be the number of tables in restaurant r serving 
dish d.

 Let m.d be the number of tables, across all restaurants, 
serving dish d.
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Chinese restaurant franchise

 Customers enter the restaurants, and sit at tables 
according to the Chinese restaurant process

 The first customer enters a restaurant, and picks a table.
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Chinese restaurant franchise

 Customers enter the restaurants, and sit at tables 
according to the Chinese restaurant process

 The first customer enters a restaurant, and picks a table.

 The nth customer enters the restaurant. He sits at an existing table 
with probability mk/(n-1+α), where mk is the number of people sat 
at table k. He starts a new table with probability α/(n-1+α).
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Chinese restaurant franchise

 Each table in each restaurant picks a dish, with probability 
proportional to the number of times it has been served 
across all restaurants.

57© A. Dubey,S. Williamson, E. Xing @CMU,2014-15

Chinese restaurant franchise

 Each table in each restaurant picks a dish, with probability 
proportional to the number of times it has been served 
across all restaurants.

58© A. Dubey,S. Williamson, E. Xing @CMU,2014-15



3/21/2015

30

Chinese restaurant franchise

 Each table in each restaurant picks a dish, with probability 
proportional to the number of times it has been served 
across all restaurants.

59© A. Dubey,S. Williamson, E. Xing @CMU,2014-15

Chinese restaurant franchise

 Each table in each restaurant picks a dish, with probability 
proportional to the number of times it has been served 
across all restaurants.
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An infinite topic model

 Restaurants = documents; dishes = topics.

 Let H be a V-dimensional Dirichlet distribution, so a sample 
from H is a distribution over a vocabulary of V words.

 Sample a global distribution over topics, 

 For each document m=1,…,M
 Sample a distribution over topics, Gm~DP(γ,G0).

 For each word n=1,…,Nm

 Sample a topic ϕmn~Discrete(G0).

 Sample a word wmk~Discrete(ϕmn).
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The “right” number of topics
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