

Parametric vs nonparametric

Parametric model:

- Assumes all data can be represented using a fixed, finite number of parameters.
- Mixture of K Gaussians, polynomial regression.

Nonparametric model:

- Number of parameters can grow with sample size.
- Number of parameters may be random.
- Kernel density estimation.

Bayesian nonparametrics:

- Allow an infinite number of parameters a priori.
- A finite data set will only use a finite number of parameters.
- Other parameters are integrated out.

Clustered data

- How to model this data?
- Mixture of Gaussians:
$p\left(x_{1}, \ldots, x_{N} \mid \pi,\left\{\mu_{k}\right\},\left\{\Sigma_{k}\right\}\right)$
$=\prod_{n=1}^{\infty} \sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(x_{k} \mid \mu_{k}, \Sigma_{k}\right)$

$$
x^{x^{x}} \quad x
$$

- Parametric model: Fixed finite number of parameters.

\times

Bayesian finite mixture model

- How to choose the mixing weights and mixture parameters?
- Bayesian choice: Put a prior on them and integrate out:

$$
\begin{aligned}
& p\left(x_{1}, \ldots, x_{N}\right) \\
= & \iiint\left(\prod_{n=1}^{\infty} \sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(x_{k} \mid \mu_{k}, \Sigma_{k}\right)\right) \\
& p(\pi) p\left(\mu_{1: K}\right) p\left(\Sigma_{1: K}\right) d \pi d \mu_{1: K} d \Sigma_{1: K}
\end{aligned}
$$

- Where possible, use conjugate priors
- Gaussian/inverse Wishart for mixture parameters
- What to choose for mixture weights?

The Dirichlet distribution

$\because \because \because$

- 00
0.0

000

- The Dirichlet distribution is a distribution over the ($K-1$)dimensional simplex.
- It is parametrized by a K-dimensional vector $\left(\alpha_{1}, \ldots, \alpha_{K}\right)$ such that $\alpha_{k} \geq 0, k=1, \ldots, K$ and $\sum_{k} \alpha_{k}>0$
- Its distribution is given by

$$
\frac{\prod_{k=1}^{K} \Gamma\left(\alpha_{k}\right)}{\Gamma\left(\sum_{k=1}^{K} \alpha_{k}\right)} \prod_{k=1}^{K} \pi_{k}^{\alpha_{k}-1}
$$

Samples from the Dirichlet distribution

- If $\pi \sim \operatorname{Dirichlet}\left(\alpha_{1}, \ldots, \alpha_{K}\right)$ then $\pi_{k} \geq 0$ for all k, and $\sum_{k=1}^{K} \pi_{k}=1$.
- Expectation: $\mathbb{E}\left[\left(\pi_{1}, \ldots, \pi_{K}\right)\right]=\frac{\left(\alpha_{1}, \ldots, \alpha_{K}\right)}{\sum_{k} \alpha_{k}}$

Conjugacy to the multinomial

- If $\theta \sim \operatorname{Dirichlet}\left(\alpha_{1}, \ldots, \alpha_{K}\right)$ and $x_{n} \stackrel{i i d}{\sim} \theta$

$$
\begin{aligned}
p\left(\pi \mid x_{1}, \ldots, x_{n}\right) & \propto p\left(x_{1}, \ldots, x_{n} \mid \pi\right) p(\pi) \\
& =\left(\frac{\prod_{k=1}^{K} \Gamma\left(\alpha_{k}\right)}{\Gamma\left(\sum_{k=1}^{K} \alpha_{k}\right)} \prod_{k=1}^{K} \pi_{k}^{\alpha_{k}-1}\right)\left(\frac{n!}{m_{1}!\ldots m_{K}!} \pi_{1}^{m_{1}} \ldots \pi_{K}^{m_{K}}\right) \\
& \propto \frac{\prod_{k=1}^{K} \Gamma\left(\alpha_{k}+m_{k}\right)}{\Gamma\left(\sum_{k=1}^{K} \alpha_{k}+m_{k}\right)} \prod_{k=1}^{K} \pi_{k}^{\alpha_{k}+m_{k}-1} \\
& =\operatorname{Dirichlet}\left(\pi \mid \alpha_{1}+m_{1}, \ldots, \alpha_{K}+m_{K}\right)
\end{aligned}
$$

Distributions over distributions

- The Dirichlet distribution is a distribution over positive vectors that sum to one.
- We can associate each entry with a set of parameters
- e.g. finite mixture model: each entry associated with a mean and covariance.
- In a Bayesian setting, we want these parameters to be random.
- We can combine the distribution over probability vectors with a distribution over parameters to get a distribution over distributions over parameters.

Example: finite mixture model

- Gaussian distribution:
distribution over means.
- Sample from a Gaussian is a real-valued number.

Example: finite mixture model

- Gaussian distribution: distribution over means.
- Sample from a Gaussian is a real-valued number.
- Dirichlet distribution:
- Sample from a Dirichlet
 distribution is a probability vector.

Example: finite mixture model

- Dirichlet prior
- Each element of a Dirichletdistributed vector is associated with a parameter value drawn from some distribution.
- Sample from a Dirichlet prior is a probability distribution over parameters.

Properties of the Dirichlet distribution

- Relationship to gamma distribution: If $\eta_{k} \sim \operatorname{Gamma}\left(\alpha_{k}, 1\right)$,

$$
\frac{\left(\eta_{1}, \ldots, \eta_{K}\right)}{\sum_{k} \eta_{k}} \sim \operatorname{Dirichlet}\left(\alpha_{1}, \ldots, \alpha_{K}\right)
$$

- If $\eta_{1} \sim \operatorname{Gamma}\left(\alpha_{1}, 1\right)$ and $\eta_{2} \sim \operatorname{Gamma}\left(\alpha_{2}, 1\right)$ then

$$
\eta_{1}+\eta_{2} \sim \operatorname{Gamma}\left(\alpha_{1}+\alpha_{2}, 1\right)
$$

- Therefore, if $\left(\pi_{1} \ldots, \pi_{K}\right) \sim \operatorname{Dirichlet}\left(\alpha_{1}, \ldots, \alpha_{K}\right)$ then $\left(\pi_{1}+\pi_{2}, \pi_{3}, \ldots, \pi_{K}\right) \sim \operatorname{Dirichlet}\left(\alpha_{1}+\alpha_{2}, \alpha_{3}, \ldots, \alpha_{K}\right)$

Properties of the Dirichlet distribution

- The beta distribution is a Dirichlet distribution on the 1 simplex.
- Let $\left(\pi_{1} \ldots, \pi_{K}\right) \sim \operatorname{Dirichlet}\left(\alpha_{1}, \ldots, \alpha_{K}\right)$ and
$\theta \sim \operatorname{Beta}\left(\alpha_{1} b, \alpha_{1}(1-b)\right), 0<b<1$.
- Then
$\left(\pi_{1} \theta, \pi_{1}(1-\theta), \pi_{2}, \ldots, \pi_{K}\right) \sim \operatorname{Dirichlet}\left(\alpha_{1} b_{1}, \alpha_{1}\left(1-b_{1}\right), \alpha_{2}, \ldots, \alpha_{K}\right)$
- More generally, if $\theta \sim \operatorname{Dirichlet}\left(\alpha_{1} b_{1}, \alpha_{1} b_{2}, \ldots, \alpha_{1} b_{N}\right), \sum_{i} b_{i}=1$. then
$\left(\pi_{1} \theta_{1}, \ldots, \pi_{1} \theta_{N}, \pi_{2}, \ldots, \pi_{K}\right) \sim \operatorname{Dirichlet}\left(\alpha_{1} b_{1}, \ldots, \alpha_{1} b_{N}, \alpha_{2}, \ldots, \alpha_{K}\right)$

Properties of the Dirichlet distribution

- Renormalization:

If $\left(\pi_{1} \ldots, \pi_{K}\right) \sim \operatorname{Dirichlet}\left(\alpha_{1}, \ldots, \alpha_{K}\right)$
then $\frac{\left(\pi_{2}, \ldots, \pi_{K}\right)}{\sum_{k=1}^{K} \pi_{k}} \sim$?

$$
\frac{\left(\pi_{2}, \ldots, \pi_{K}\right)}{\sum_{k=1}^{K} \pi_{k}} \sim \operatorname{Dirichlet}\left(\alpha_{2}, \ldots, \alpha_{K}\right)
$$

Choosing the number of clusters

- Mixture of Gaussians - but how many components?
- What if we see more data - may find new components?

Bayesian nonparametric mixture models

- Make sure we always have more clusters than we need.
- Solution - infinite clusters a priori!

$$
p\left(x_{n} \mid \pi,\left\{\mu_{k}\right\},\left\{\Sigma_{k}\right\}\right)=\sum_{k=1}^{\infty} \pi_{k} \mathcal{N}\left(x_{n} \mid \mu_{k}, \Sigma_{k}\right)
$$

- A finite data set will always use a finite - but random number of clusters.
- How to choose the prior?
- We want something like a Dirichlet prior - but with an infinite number of components.

Constructing an appropriate prior

- Start off with $\pi^{(2)}=\left(\pi_{1}^{(2)}, \pi_{2}^{(2)}\right) \sim \operatorname{Dirichlet}\left(\frac{\alpha}{2}, \frac{\alpha}{2}\right)$
- Split each component according to the splitting rule:

$$
\theta_{1}^{(2)}, \theta_{2}^{(2)} \stackrel{i i d}{\sim} \operatorname{Beta}\left(\frac{\alpha}{2} \cdot \frac{1}{2}, \frac{\alpha}{2} \cdot \frac{1}{2}\right)
$$

$$
\begin{aligned}
\pi^{(4)} & =\left(\theta_{1}^{(2)} \pi_{1}^{(2)},\left(1-\theta_{1}^{(2)}\right) \pi_{1}^{(2)}, \theta_{2}^{(2)} \pi_{2}^{(2)},\left(1-\theta_{2}^{(2)}\right) \pi_{2}^{(2)}\right) \\
& \sim \operatorname{Dirichlet}\left(\frac{\alpha}{4}, \frac{\alpha}{4}, \frac{\alpha}{4}, \frac{\alpha}{4}\right)
\end{aligned}
$$

- Repeat to get $\pi^{(K)} \sim \operatorname{Dirichlet}\left(\frac{\alpha}{K}, \ldots, \frac{\alpha}{K}\right)$
- As $K \rightarrow \infty$, we get a vector with infinitely many components

The Dirichlet process

- Let H be a distribution on some space $\Omega-$ e.g. a Gaussian distribution on the real line.
- Let $\pi \sim \lim _{K \rightarrow \infty} \operatorname{Dirichlet}\left(\frac{\alpha}{K} \ldots, \frac{\alpha}{K}\right)$
- For $k=1, \ldots, \infty \operatorname{let} \theta_{k} \sim H$.
- Then $G:=\sum_{k=1}^{\infty} \pi_{k} \delta_{\theta_{k}}$ is an infinite distribution over H.
- We write $G \sim \operatorname{DP}(\alpha, H)$

Samples from the Dirichlet process

- Samples from the Dirichlet process are discrete.
- We call the point masses in the resulting distribution, atoms.

- The base measure H determines the locations of the atoms.

Samples from the Dirichlet process

- The concentration parameter α determines the distribution over atom sizes.
- Small values of a give sparse distributions.

Properties of the Dirichlet process

- For any partition A_{1}, \ldots, A_{K} of Ω, the total mass assigned to each partition is distributed according to
$\operatorname{Dir}\left(\alpha H\left(A_{1}\right), \ldots, \alpha H\left(A_{K}\right)\right)$

Definition: Finite marginals

- A Dirichlet process is the unique distribution over probability distributions on some space Ω, such that for any finite partition A_{1}, \ldots, A_{K} of Ω,

$$
\left(P\left(A_{1}\right), \ldots, P\left(A_{K}\right)\right) \sim \operatorname{Dirichlet}\left(\alpha H\left(A_{1}\right), \ldots, \alpha H\left(A_{K}\right)\right) .
$$

[Ferguson, 1973]

Conjugacy of the Dirichlet process

- Let A_{1}, \ldots, A_{K} be a partition of Ω, and let H be a measure on Ω. Let $P\left(A_{k}\right)$ be the mass assigned by $G \sim \mathrm{DP}(\alpha, H)$ to partition A_{k}. Then $\left(P\left(A_{1}\right), \ldots, P\left(A_{K}\right)\right) \sim \operatorname{Dirichlet}\left(\alpha H\left(A_{1}\right), \ldots, \alpha H\left(A_{K}\right)\right)$.
- If we see an observation in the $J^{\text {th }}$ segment, then
$\left(P\left(A_{1}\right), \ldots, P\left(A_{j}\right), \ldots, P\left(A_{K}\right) \mid X_{1} \in A_{j}\right)$
$\sim \operatorname{Dirichlet}\left(\alpha H\left(A_{1}\right), \ldots, \alpha H\left(A_{j}\right)+1, \ldots, \alpha H\left(A_{K}\right)\right)$.
- This must be true for all possible partitions of Ω.
- This is only possible if the posterior of G , given an observation x , is given by

$$
G \left\lvert\, X_{1}=x \sim \operatorname{DP}\left(\alpha+1, \frac{\alpha H+\delta_{x}}{\alpha+1}\right)\right.
$$

Predictive distribution

- The Dirichlet process clusters observations.
- A new data point can either join an existing cluster, or start a new cluster.
- Question: What is the predictive distribution for a new data point?
- Assume H is a continuous distribution on Ω. This means for every point θ in $\Omega, H(\theta)=0$.
- First data point:
- Start a new cluster.
- Sample a parameter θ_{1} for that cluster.

Predictive distribution

 $\because \because \because \cdot$ $\because \because \because$.:8:
-日。

- We have now split our parameter space in two: the singleton θ_{1}, and everything else.
- Let π_{1} be the atom at θ_{1}.
- The combined mass of all the other atoms is $\pi_{*}=1-\pi_{1}$.
- A priori, $\left(\pi_{1}, \pi_{*}\right) \sim \operatorname{Dirichlet}(0, \alpha)$
- A posteriori, $\left(\pi_{1}, \pi_{*}\right) \mid X_{1}=\theta_{1} \sim \operatorname{Dirichlet}(1, \alpha)$

Predictive distribution

- If we integrate out π_{1} we get

$$
\begin{aligned}
P\left(X_{2}=\theta_{k} \mid X_{1}=\theta_{1}\right) & =\int P\left(X_{2}=\theta_{k} \mid\left(\pi_{1}, \pi_{*}\right)\right) P\left(\left(\pi_{1}, \pi_{*} \mid X_{1}=\theta_{1}\right) d \pi_{1}\right. \\
& =\int \pi_{k} \operatorname{Dirichlet}\left(\left(\pi_{1}, 1-\pi_{1}\right) \mid 1, \alpha\right) d \pi_{1} \\
& =\mathbb{E}_{\operatorname{Dirichlet}(1, \alpha)}\left[\pi_{k}\right] \\
& = \begin{cases}\frac{1}{1+\alpha} & \text { if } k=1 \\
\frac{\alpha}{1+\alpha} & \text { for new } k .\end{cases}
\end{aligned}
$$

Predictive distribution

- Lets say we choose to start a new cluster, and sample a new parameter $\theta_{2} \sim H$. Let π_{2} be the size of the atom at θ_{2}.
- A posteriori, $\left(\pi_{1}, \pi_{2}, \pi_{*}\right) \mid X_{1}=\theta_{1}, X_{2}=\theta_{2} \sim \operatorname{Dirichlet}(1, \alpha)$.
- If we integrate out $\pi=\left(\pi_{1}, \pi_{2}, \pi_{*}\right)$ we get

$$
\begin{aligned}
P\left(X_{3}=\theta_{k} \mid\right. & \left.X_{1}=\theta_{1}, X_{2}=\theta_{2}\right) \\
& =\int P\left(X_{3}=\theta_{k} \mid \pi\right) P\left(\pi \mid X_{1}=\theta_{1}, X_{2}=\theta_{2}\right) d \pi \\
& =\mathbb{E}_{\text {Dirichlet }(1,1, \alpha)}\left[\pi_{k}\right] \\
& = \begin{cases}\frac{1}{2+\alpha} & \text { if } k=1 \\
\frac{1}{2+\alpha} & \text { if } k=2 \\
\frac{\alpha}{2+\alpha} & \text { for new } k .\end{cases}
\end{aligned}
$$

Predictive distribution

- In general, if m_{k} is the number of times we have seen $X_{i}=k$, and K is the total number of observed values,

$$
\begin{aligned}
P\left(X_{n+1}=\theta_{k} \mid X_{1}, \ldots, X_{n}\right) & =\int P\left(X_{n+1}=\theta_{k} \mid \pi\right) P\left(\pi \mid X_{1}, \ldots, X_{n}\right) d \pi \\
& =\mathbb{E}_{\operatorname{Dirichlet}\left(m_{1}, \ldots, m_{K}, \alpha\right)}\left[\pi_{k}\right] \\
& =\left\{\begin{array}{cl}
\frac{m_{k}}{n+\alpha} & \text { if } k \leq K \\
\frac{\alpha}{n+\alpha} & \text { for new cluster. }
\end{array}\right.
\end{aligned}
$$

- We tend to see observations that we have seen before - rich-get-richer property.
- We can always add new features - nonparametric.

- The resulting distribution over data points can be thought of using the following urn scheme.
- An urn initially contains a black ball of mass α.
- For $n=1,2, \ldots$ sample a ball from the urn with probability proportional to its mass.
- If the ball is black, choose a previously unseen color, record that color, and return the black ball plus a unitmass ball of the new color to the urn.
- If the ball is not black, record it's color and return it, plus another unit-mass ball of the same color, to the urn
[Blackwell and MacQueen, 1973]

Chinese restaurant process

- The distribution over partitions can be described in terms of the following restaurant metaphor:
- The first customer enters a restaurant, and picks a table.

Chinese restaurant process

- The distribution over partitions can be described in terms of the following restaurant metaphor:
- The first customer enters a restaurant, and picks a table.
- The $n^{\text {th }}$ customer enters the restaurant. He sits at an existing table with probability $m_{k} /(n-1+\alpha)$, where m_{k} is the number of people sat at table k. He starts a new table with probability $\alpha /(n-1+\alpha)$.

Chinese restaurant process

- The distribution over partitions can be described in terms of the following restaurant metaphor:
- The first customer enters a restaurant, and picks a table.
- The $n^{\text {th }}$ customer enters the restaurant. He sits at an existing table with probability $m_{k} /(n-1+\alpha)$, where m_{k} is the number of people sat at table k. He starts a new table

Chinese restaurant process

- The distribution over partitions can be described in terms of the following restaurant metaphor:
- The first customer enters a restaurant, and picks a table.
- The $n^{\text {th }}$ customer enters the restaurant. He sits at an existing table with probability $m_{k} /(n-1+\alpha)$, where m_{k} is the number of people sat at table k. He starts a new table with probability $\alpha /\left(\sim \mathcal{R}^{1 \sim 1}\right.$

Chinese restaurant process

- The distribution over partitions can be described in terms of the following restaurant metaphor:
- The first customer enters a restaurant, and picks a table.
- The $n^{\text {th }}$ customer enters the restaurant. He sits at an existing table with probability $m_{k} /(n-1+\alpha)$, where m_{k} is the number of people sat at table k. He starts a new table

Exchangeability

- An interesting fact: the distribution over the clustering of the first N customers does not depend on the order in which they arrived.
- Homework: Prove to yourself that this is true.
- However, the customers are not independent - they tend to sit at popular tables.
- We say that distributions like this are exchangeable.
- De Finetti's theorem: If a sequence of observations is exchangeable, there must exist a distribution given which they are iid.
- The customers in the CRP are iid given the underlying Dirichlet process - by integrating out the DP, they become dependent.

Stick breaking construction

- We can represent samples from the Dirichlet process exactly.
- Imagine a stick of length 1, representing total probability.
- For $\mathrm{k}=1,2, \ldots$
- Sample a beta($1, \mathrm{a})$ random variable b_{k}.
- Break off a fraction b_{k} of the stick. This is the $k^{\text {th }}$ atom size
- Sample a random location for this atom.
- Recurse on the remaining stick.

$$
\begin{aligned}
G & :=\sum_{k=1}^{\infty} \pi_{k} \delta_{\theta_{k}} \\
\pi_{k} & :=b_{k} \prod_{j=1}^{k-1}\left(1-b_{k}\right) \\
b_{k} & \sim \operatorname{Beta}(1, \alpha)
\end{aligned}
$$

Inference in the DP mixture model

$$
\begin{aligned}
G:=\sum_{k=1}^{\infty} \pi_{k} \delta_{\theta_{k}} & \sim \operatorname{DP}(\alpha, H) \\
\phi_{n} & \sim G \\
x_{n} & \sim f\left(\phi_{n}\right)
\end{aligned}
$$

Inference: Collapsed sampler

- We can integrate out G to get the CRP.
- Reminder: Observations in the CRP are exchangeable.
- Corollary: When sampling any data point, we can always rearrange the ordering so that it is the last data point.
- Let z_{n} be the cluster allocation of the nth data point.
- Let K be the total number of instantiated clusters.
- Then
$p\left(z_{n}=k \mid x_{n}, z_{-n}, \phi_{1: K}\right) \propto \begin{cases}m_{k} f\left(x_{n} \mid \phi_{k}\right) & k \leq K \\ \alpha \int_{\Omega} f\left(x_{n} \mid \phi\right) H(d \phi) & k=K+1\end{cases}$
- If we use a conjugate prior for the likelihood, we can often integrate out the cluster parameters

Problems with the collapsed sampler

- We are only updating one data point at a time.
- Imagine two "true" clusters are merged into a single cluster - a single data point is unlikely to "break away".
- Getting to the true distribution involves going through low probability states \rightarrow mixing can be slow.
- If the likelihood is not conjugate, integrating out parameter values for new features can be difficult.
- Neal [2000] offers a variety of algorithms.
- Alternative: Instantiate the latent measure.

Inference: Blocked Gibbs sampler

- Rather than integrate out G, we can instantiate it.
- Problem: G is infinite-dimensional.
- Solution: Approximate it with a truncated stick-breaking process:

$$
\begin{aligned}
G^{K} & :=\sum_{k=1}^{K} \pi_{k} \delta_{\theta_{k}} \\
\pi_{k} & =b_{k} \prod_{j=1}^{k-1}\left(1-b_{j}\right) \\
b_{k} & \sim \operatorname{Beta}(1, \alpha), k=1, \ldots, K-1 \\
b_{K} & =1
\end{aligned}
$$

Inference: Blocked Gibbs sampler

- Sampling the cluster indicators:

$$
p\left(z_{n}=k \mid \text { rest }\right) \propto \pi_{k} f\left(x_{n} \mid \theta_{k}\right)
$$

- Sampling the stick breaking variables:
- We can think of the stick breaking process as a sequence of binary decisions.
- Choose $z_{n}=1$ with probability b_{1}.
- If $z_{n} \neq 1$, choose $z_{n}=2$ with probability b_{2}.
- etc..

$$
b_{k} \mid \text { rest } \sim \operatorname{Beta}\left(1+m_{k}, \alpha+\sum_{j=k+1}^{K} m_{j}\right)
$$

Inference: Slice sampler

- Problem with batch sampler: Fixed truncation introduces error.
- Idea:
- Introduce random truncation.
- If we marginalize over the random truncation, we recover the full model.
- Introduce a uniform random variable u_{n} for each data point.
- Sample indicator z_{n} according to

$$
p\left(z_{n}=k \mid \text { rest }\right)=I\left(\pi_{k}>u_{n}\right) f\left(x_{n} \mid \theta_{k}\right)
$$

- Only a finite number of possible values.

Inference: Slice sampler

$\because \because \cdot$
06
000

- 0
- The conditional distribution for u_{n} is just:

$$
u_{n} \mid \text { rest } \sim \text { Uniform }\left[0, \pi_{z_{n}}\right]
$$

- Conditioned on the u_{n} and the z_{n}, the π_{k} can be sampled according to the block Gibbs sampler.
- Only need to represent a finite number K of components such that

$$
1-\sum_{k=1}^{K} \pi_{k}<\min \left(u_{n}\right)
$$

Topic models

- Topic models describe documents using a distribution over features.
- Each feature is a distribution over words
- Each document is represented as a collection of words (usually unordered - "bag of words" assumption).
- The words within a document are distributed according to a document-specific mixture model
- Each word in a document is associated with a feature.
- The features are shared between documents.
- The features learned tend to give high probability to semantically related words - "topics"

- For each topic $k=1, \ldots, K$
- Sample a distribution over words, $\beta \sim \operatorname{Dir}\left(\eta_{1}, \ldots, \eta_{V}\right)$
- For each document $m=1, \ldots, M$
- Sample a distribution over topics, $\theta_{m} \sim \operatorname{Dir}\left(\alpha_{1}, \ldots, \alpha_{k}\right)$
- For each word $n=1, \ldots, N_{m}$
- Sample a topic $z_{m n} \sim$ Discrete $\left(\theta_{m}\right)$
- Sample a word $\mathrm{w}_{\mathrm{mk}} \sim \operatorname{Discrete}\left(\beta_{z}\right)$

"Topics" found			(e)
		2amex	-20e
©A. Dubey,S. Williamson, E. Xing @CMu,2014-15 Image from Blei et al, 2002			

Constructing a topic model with infinitely many topics

- LDA: Each distribution is associated with a distribution over K topics.
- Problem: How to choose the number of topics?
- Solution:
- Infinitely many topics!
- Replace the Dirichlet distribution over topics with a Dirichlet process!
- Problem: We want to make sure the topics are shared between documents

Sharing topics

- In LDA, we have M independent samples from a Dirichlet distribution.
- The weights are different, but the topics are fixed to be the same.
- If we replace the Dirichlet distributions with Dirichlet processes, each atom of each Dirichlet process will pick a topic independently of the other topics.

Sharing topics

- Because the base measure is continuous, we have zero probability of picking the same topic twice.
- If we want to pick the same topic twice, we need to use a discrete base measure.
- For example, if we chose the base measure to be
$H=\sum_{k=1}^{K} \alpha_{k} \delta_{\beta_{k}}$ then we would have LDA again.
- We want there to be an infinite number of topics, so we want an infinite, discrete base measure.
- We want the location of the topics to be random, so we want an infinite, discrete, random base measure.

Hierarchical Dirichlet Process
 (Teh et al, 2006)

- Solution: Sample the base measure from a Dirichlet process!

Chinese restaurant franchise

- Imagine a franchise of restaurants, serving an infinitely large, global menu.
- Each table in each restaurant orders a single dish.
- Let $n_{r t}$ be the number of customers in restaurant r sitting at table t.
- Let $m_{r d}$ be the number of tables in restaurant r serving dish d.
- Let $m_{. d}$ be the number of tables, across all restaurants, serving dish d.

Chinese restaurant franchise

- Customers enter the restaurants, and sit at tables according to the Chinese restaurant process
- The first customer enters a restaurant, and picks a table.

Chinese restaurant franchise

- Customers enter the restaurants, and sit at tables according to the Chinese restaurant process
- The first customer enters a restaurant, and picks a table.
- The $n^{\text {th }}$ customer enters the restaurant. He sits at an existing table with probability $m_{k} /(n-1+\alpha)$, where m_{k} is the number of people sat at table k. He starts a new table with probability $\alpha /(n-1+\alpha)$.

Chinese restaurant franchise

- Customers enter the restaurants, and sit at tables according to the Chinese restaurant process
- The first customer enters a restaurant, and picks a table.
- The $n^{\text {th }}$ customer enters the restaurant. He sits at an existing table with probability $m_{k} /(n-1+\alpha)$, where m_{k} is the number of people sat at table k. He starts a new table with probability $\alpha /(n-1+\alpha)$.

Chinese restaurant franchise

- Customers enter the restaurants, and sit at tables according to the Chinese restaurant process
- The first customer enters a restaurant, and picks a table.
- The $n^{\text {th }}$ customer enters the restaurant. He sits at an existing table with probability $m_{k} /(n-1+\alpha)$, where m_{k} is the number of people sat at table k. He starts a new table with probability $\alpha /(n-1+\alpha)$.

Chinese restaurant franchise

- Customers enter the restaurants, and sit at tables according to the Chinese restaurant process
- The first customer enters a restaurant, and picks a table.
- The $n^{\text {th }}$ customer enters the restaurant. He sits at an existing table with probability $m_{k} /(n-1+\alpha)$, where m_{k} is the number of people sat at table k. He starts a new table with probability $\alpha /(n-1+\alpha)$.

Chinese restaurant franchise

- Each table in each restaurant picks a dish, with probability proportional to the number of times it has been served across all restaurants.
$p($ table t chooses dish $d \mid$ previous tables $)= \begin{cases}\frac{m_{d}}{T+\gamma} & \text { for an existing table } \\ \frac{\gamma}{T+\gamma} & \text { for a new table }\end{cases}$

Chinese restaurant franchise

- Each table in each restaurant picks a dish, with probability proportional to the number of times it has been served across all restaurants.
$p($ table t chooses dish $d \mid$ previous tables $)= \begin{cases}\frac{m_{d}}{T+\gamma} & \text { for an existing table } \\ \frac{\gamma}{T+\gamma} & \text { for a new table }\end{cases}$

Chinese restaurant franchise

- Each table in each restaurant picks a dish, with probability proportional to the number of times it has been served across all restaurants.
$p($ table t chooses dish $d \mid$ previous tables $)= \begin{cases}\frac{m_{d}}{T+\gamma} & \text { for an existing table } \\ \frac{\gamma}{T+\gamma} & \text { for a new table }\end{cases}$

Chinese restaurant franchise

- Each table in each restaurant picks a dish, with probability proportional to the number of times it has been served across all restaurants.
$p($ table t chooses dish $d \mid$ previous tables $)= \begin{cases}\frac{m_{d}}{T+\gamma} & \text { for an existing table } \\ \frac{\gamma}{T+\gamma} & \text { for a new table }\end{cases}$

An infinite topic model

- Restaurants = documents; dishes = topics.
- Let H be a V-dimensional Dirichlet distribution, so a sample from H is a distribution over a vocabulary of V words.
- Sample a global distribution over topics,

$$
G_{0}:=\sum_{k=1}^{\infty} \pi_{k} \delta_{\beta_{k}} \sim \operatorname{DP}(\alpha, H)
$$

- For each document $m=1, \ldots, M$
- Sample a distribution over topics, $G_{m} \sim D P\left(\gamma, G_{0}\right)$.
- For each word $n=1, \ldots, N_{m}$
- Sample a topic $\phi_{m n} \sim \operatorname{Discrete}\left(\mathrm{G}_{0}\right)$.
- Sample a word $\mathrm{w}_{\mathrm{mk}} \sim \operatorname{Discrete}\left(\phi_{m n}\right)$.

The "right" number of topics

