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Recap of last lecture

 Dirichlet process: a distribution over discrete probability 
distributions with infinitely many atoms.

 Can be used to create a nonparametric version of a finite 
mixture model.
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Recap of last lecture

 We can think of the Dirichlet process in a number of ways:

 The infinite limit of a Dirichlet distribution.

 A rich-gets-richer predictive distribution over the next data point 
(Chinese restaurant process, Polya urn scheme).

 An iterative procedure for generating samples from the Dirichlet
process – the stick breaking representation.
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Limitations of a simple mixture model

 The Dirichlet distribution and the Dirichlet process are great if 
we want to cluster data into non-overlapping clusters.

 However, DP/Dirichlet mixture models cannot share features 
between clusters.

 In many applications, data points exhibit properties of multiple 
latent features

 Images contain multiple objects.

 Actors in social networks belong to multiple social groups.

 Movies contain aspects of multiple genres.
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Latent variable models

 Latent variable models allow each data point to exhibit 
multiple features, to varying degrees.

 Example: Factor analysis

X = WAT + ε
 Rows of A = latent features

 Rows of W = datapoint-specific weights for these features

 ε = Gaussian noise.

 Example: LDA
 Each document represented by a mixture of features.
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Infinite latent feature models

 Problem: How to choose the number of features?

 Example: Factor analysis

X = WAT + ε

 Each column of W (and row of A) corresponds to a feature.

 Question: Can we make the number of features unbounded a 
posteriori, as we did with the DP?

 Solution: allow infinitely many features a priori – ie let W (or 
A) have infinitely many columns (rows).

 Problem: We can’t represent infinitely many features!

 Solution: make our infinitely large matrix sparse.

Griffiths and Ghaharamani, 2006
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The CRP: A distribution over 
binary matrices

 Recall that the CRP gives us a distribution over partitions of 
our data.

 We can represent this as a distribution over binary matrices, 
where each row corresponds to a data point, and each 
column to a cluster.
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A sparse, finite latent variable model

 We want a sparse model – so let 

for some sparse matrix Z.

 Place a beta-Bernoulli prior on Z:
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A sparse, finite latent variable 
model

 If we integrate out the πk, the marginal probability of a matrix 
Z is:

where 

 This is exchangeable (doesn’t depend on the order of the 
rows or columns
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A sparse, finite latent variable 
model

 If we integrate out the πk, the marginal probability of a matrix 
Z is:

where 

 How is this sparse?
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An equivalence class of matrices

 We can naively take the infinite limit by taking K to infinity

 Because all the columns are equal in expectation, as K grows 
we are going to have more and more empty columns.

 We do not want to have to represent infinitely many empty 
columns!

 Define an equivalence class [Z] of matrices where the non-
zero columns are all to the left of the empty columns.

 Let lof(.) be a function that maps binary matrices to left-
ordered binary matrices – matrices ordered by the binary 
number made by their rows.
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Left-ordered matrices

Image from Griffiths and Ghahramani, 2011
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How big is the equivalence set?

 All matrices in the equivalence set [Z] are equiprobable (by 
exchangeability of the columns), so if we know the size of the 
equivalence set, we know its probability.

 Call the vector (z1k,z2,k,…,z(n-1)k) the history of feature k at data 
point n (a number represented in binary form).

 Let Kh be the number of features possessing history h, and let 
K+ be the total number of features with non-zero history.

 The total number of lof-equivalent matrices in [Z] is
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Probability of an equivalence 
class of finite binary matrices.

 If we know the size of the equivalence class [Z], we can 
evaluate its probability:
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Taking the infinite limit

 We are now ready to take the limit of this finite model as K
tends to infinity:
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Predictive distribution: The 
Indian buffet process

 We can describe this model in terms of the following 
restaurant analogy.
 A customer enters a restaurant with an infinitely large buffet

 He helps himself to Poisson(α) dishes.
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Predictive distribution: The 
Indian buffet process

 We can describe this model in terms of the following 
restaurant analogy.
 A customer enters a restaurant with an infinitely large buffet

 He helps himself to Poisson(α) dishes.

 The nth customer enters the restaurant

 He helps himself to each dish with probability mk/n

 He then tries Poisson(α/n) new dishes
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Example
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Proof that the IBP is lof-equivalent to 
the infinite beta-Bernoulli model

 What is the probability of a matrix Z?

 Let K1
(n) be the number of new features in the nth row.

 If we include the cardinality of [Z], this is the same as before
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Properties of the IBP

 “Rich get richer” property – “popular” dishes become more 
popular.

 The number of nonzero entries for each row is distributed 
according to Poisson(α) – due to exchangeability.

 Recall that if x1~Poisson(α1) and x2~Poisson(α2), then 
(x1+x2)~Poisson(α1+α2)
 The number of nonzero entries for the whole matrix is distributed according to 

Poisson(Nα).

 The number of non-empty columns is distributed according to Poisson(αHN)
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Building latent feature models 
using the IBP

 We can use the IBP to build latent feature models with an 
unbounded number of features.

 Let each column of the IBP correspond to one of an infinite
number of features.

 Each row of the IBP selects a finite subset of these features.

 The rich-get-richer property of the IBP ensures features are 
shared between data points.

 We must pick a likelihood model that determines what the 
features look like and how they are combined.
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A linear Gaussian model

 General form of latent factor model: X = WAT + ε

 Simplest way to make an infinite factor model:
 Sample W ~ IBP(α)

 Sample ak ~ N (0, σa
2 I)

 Sample εnk ~ N (0, σε
2)

Griffiths and Ghahramani, 2006
© A. Dubey, S. Williamson, E. Xing @ CMU, 2014-15 23

Infinite factor analysis

 Problem with linear Gaussian model: Features are “all or 
nothing”

 Factor analysis: X = WAT + ε
 Rows of A = latent features (Gaussian)

 Rows of W = datapoint-specific weights for these features (Gaussian)

 ε = Gaussian noise.

 Write
 Z ~ IBP(α)

 V ~ N (0,σv
2)

 A ~ N (0,σA
2)

Knowles and Ghahramani, 2007
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A binary model for latent 
networks

 Motivation: Discovering latent causes for observed binary 
data

 Example: 
 Data points = patients

 Observed features = presence/absence of symptoms

 Goal: Identify biologically plausible “latent causes” – eg illnesses.

 Idea:
 Each latent feature is associated with a set of symptoms

 The more features a patient has that are associated with a given symptom, the 
more likely that patient is to exhibit the symptom.

Wood et al, 2006
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A binary model for latent 
networks

 We can represent this in terms of a Noisy-OR model:

 Intuition:
 Each patient has a set of latent causes.

 For each sympton, we toss a coin with probability λ for each latent cause that is 
“on” for that patient and associated with that feature, plus an extra coin with 
probability ε.

 If any of the coins land heads, we exhibit that feature.
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Inference in the IBP

 Recall inference methods for the DP:
 Gibbs sampler based on the exchangeable model.

 Gibbs sampler based on the underlying Dirichlet distribution

 Variational inference

 Particle filter.

 We can construct analogous samplers for the IBP
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Inference in the restaurant 
scheme

 Recall the exchangeability of the IBP means we can treat any 
data point as if it’s our last.

 Let K+ be the total number of used features, excluding the 
current data point.

 Let Θ be the set of parameters associated with the likelihood 
– eg the Gaussian matrix A in the linear Gaussian model

 The prior probability of choosing one of these features is mk/N

 The posterior probability is proportional to

 In some cases we can integrate out Θ, otherwise we must 
sample this.

Griffiths and Gharamani, 2006© A. Dubey, S. Williamson, E. Xing @ CMU, 2014-15 28
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Inference in the restaurant 
scheme

 In addition, we must propose adding new features.

 Metropolis Hastings method:
 Let K*old be the number of features appearing only in the current data point.

 Propose K*new ~ Poisson(α/N), and let Z* be the matrix with K*new features 
appearing only in the current data point.

 With probability 

accept the proposed matrix.
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Beta processes and the IBP

 Recall the relationship between the Dirichlet process and the 
Chinese restaurant process:
 The Dirichlet process is a prior on probability measures (distributions)

 We can use this probability measure as cluster weights in a clustering model –
cluster allocations are i.i.d. given this distribution.

 If we integrate out the weights, we get an exchangeable distribution over 
partitions of the data – the Chinese restaurant process.

 De Finetti’s theorem tells us that, if a distribution X1, X2,… is 
exchangeable, there must exist a measure conditioned on 
which X1, X2,… are i.i.d.
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Beta processes and the IBP

 Recall the finite beta-Bernoulli model:

 The znk are i.i.d. given the πk, but are exchangeable if we 
integrate out the πk.

 The corresponding distribution for the IBP is the infinite limit of 
the beta random variables, as K tends to infinity.

 This distribution over discrete measures is called the beta 
process.

 Samples from the beta process have infinitely many atoms 
with masses between 0 and 1.

Thibaux and Jordan, 2007
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Posterior distribution of the beta 
process

 Question: Can we obtain the posterior distribution of the 
column probabilities in closed form?

 Answer: Yes!
 Recall that each atom of the beta process is the infinitesimal limit of a Beta(α/K,1)

random variable.

 Our observations for that atom are a Binomial(πk,N) random variable.

 We know the beta distribution is conjugate to the Binomial, so the posterior is the 
infinitesimal limit of a Beta(α/K+mk,N+1-mk) random variable.
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A stick-breaking construction for 
the beta process

 We can construct the beta process using the following stick-
breaking construction:

 Begin with a stick of unit length.

 For k=1,2,…

 Sample a beta(α,1) random variable μk.

 Break off a fraction μk of the stick. This is the kth atom size.

 Throw away what’s left of the stick.

 Recurse on the part of the stick that you broke off

 Note that, unlike the DP stick breaking construction, the 
atoms will not sum to one.

Teh et al, 2007
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Inference in the stick-breaking 
construction

 We can also perform inference using the stick-breaking 
representation
 Sample Z|π,Θ

 Sample π|Z

 The posterior for atoms for which mk>0 is beta distributed.

 The atoms for which mk=0 can be sampled using the stick-
breaking proceedure.

 We can use a slice sampler to avoid representing all of the 
atoms, or using a fixed truncation level.

Teh et al, 2007
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A two-parameter extension

 In the IBP, the parameter α governs both the number of 
nonempty columns and the number of features per data point.

 We might want to decouple these properties of our model.

 Reminder: We constructed the IBP as the limit of a finite beta-
Bernoulli model where

 We can modify this to incorporate an extra parameter:

Sollich, 2005
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A two-parameter extension

 Our restaurant scheme is now as follows:
 A customer enters a restaurant with an infinitely large buffet

 He helps himself to Poisson(α) dishes.

 The nth customer enters the restaurant

 He helps himself to each dish with probability mk/(β+n-1)

 He then tries Poisson(αβ/(β+n-1) new dishes

 Note 
 The number of features per data point is still marginally Poisson(α).

 The number of non-empty columns is now 

 We recover the IBP when β = 1.
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Two parameter IBP: examples

Image from Griffiths and Ghahramani, 2011
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Other distributions over infinite, 
exchangeable matrices

 Recall the beta-Bernoulli process construction of the IBP.

 We start with a beta process – an infinite sequence of values 
between 0 and 1 that are distributed as the infinitesimal limit 
of the beta distribution.

 We combine this with a Bernoulli process, to get a binary 
matrix.

 If we integrate out the beta process, we get an exchangeable 
distribution over binary matrices.

 Integration is straightforward due to the beta-Bernoulli 
conjugacy.

 Question: Can we construct other infinite matrices in this 
way?
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The infinite gamma-Poisson 
process

 The gamma process can be thought of as the infinitesimal 
limit of a sequence of gamma random variables.

 Alternatively, 

 The gamma distribution is conjugate to the Poisson 
distribution.
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The infinite gamma-Poisson 
process

 We can associate each atom νk of the gamma process with a 
column of a matrix (just like we did with the atoms of a beta 
process)

 We can generate entries for the matrix as znk~Poisson(νk)

IBP infinite gamma-Poisson
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The infinite gamma-Poisson 
process

 Predictive distribution for the nth row:
 For each existing feature, sample a count znk~NegBinom(mk, n/(n+1))
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The infinite gamma-Poisson 
process

 Predictive distribution for the nth row:
 For each existing feature, sample a count znk~NegBinom(mk, n/(n+1))
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 Sample K*n~NegBinom(α, n/(n+1))
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The infinite gamma-Poisson 
process

 Predictive distribution for the nth row:
 For each existing feature, sample a count znk~NegBinom(mk, n/(n+1)).

 Sample K*n~NegBinom(α, n/(n+1)).

 Partition K*n according to the CRP, and assign the resulting counts to new 
columns.
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