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Recap of last lecture :
e Dirichlet process: a distribution over discrete probability
distributions with infinitely many atoms.
e Can be used to create a nonparametric version of a finite
mixture model.
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Recap of last lecture o

e We can think of the Dirichlet process in a number of ways:
e The infinite limit of a Dirichlet distribution.

e A rich-gets-richer predictive distribution over the next data point
(Chinese restaurant process, Polya urn scheme).

e An iterative procedure for generating samples from the Dirichlet
process — the stick breaking representation.
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Limitations of a simple mixture model | -

e The Dirichlet distribution and the Dirichlet process are great if
we want to cluster data into non-overlapping clusters.

e However, DP/Dirichlet mixture models cannot share features
between clusters.

¢ In many applications, data points exhibit properties of multiple
latent features

e Images contain multiple objects.
e Actors in social networks belong to multiple social groups.
e Movies contain aspects of multiple genres.
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Latent variable models °
e Latent variable models allow each data point to exhibit
multiple features, to varying degrees.
e Example: Factor analysis
X=WAT + ¢
e Rows of A = latent features
e Rows of W = datapoint-specific weights for these features
e ¢ = Gaussian noise.
e Example: LDA
e Each document represented by a mixture of features.
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Infinite latent feature models :

e Problem: How to choose the number of features?
e Example: Factor analysis
X=WAT+¢
e Each column of W (and row of A) corresponds to a feature.

e Question: Can we make the number of features unbounded a
posteriori, as we did with the DP?

e Solution: allow infinitely many features a priori — ie let W (or
A) have infinitely many columns (rows).

e Problem: We can'’t represent infinitely many features!
e Solution: make our infinitely large matrix sparse.

Griffiths and Ghaharamani, 2006
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The CRP: A distribution over
binary matrices o

e Recall that the CRP gives us a distribution over partitions of
our data.

e We can represent this as a distribution over binary matrices,
where each row corresponds to a data point, and each
column to a cluster.
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A sparse, finite latent variable model °

e We want a sparse model — so let
X =WA” +¢
W=Z6V
for some sparse matrix Z.
e Place a beta-Bernoulli prior on Z.

ﬂkNBeta<;,1),k:1,...,K

Znk ~ Bernoulli(mg),n =1,..., N.
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A sparse, finite latent variable HH
model -

e If we integrate out the 17,, the marginal probability of a matrix

Zis: _ ﬁ / (ﬁp(znkm))p(m)dm

B(mk -l—a/K,N—mk + 1)
B(a/K, 1)

I
o

k=1
5 I'(mg +a/K)I'(N —my +1)
H K (N +1+a/K)

N
where my, =" | Znk

e This is exchangeable (doesn’t depend on the order of the
rows or columns
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A sparse, finite latent variable §§:
model oo

o Ifwe integrate out the nk, the marginal probability of a matrix

2 H / < Hp ele) ) (72

B(my +a/K,N —my, + 1)
B(a/K,1)
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a I'(mg +a/K)I(N —my +1)
LK T(N +1+a/K)

I
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N
where m;, = anl Znk
e How is this sparse?
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An equivalence class of matrices |:°

e We can naively take the infinite limit by taking K to infinity

e Because all the columns are equal in expectation, as K grows
we are going to have more and more empty columns.

e We do not want to have to represent infinitely many empty
columns!

e Define an equivalence class [Z] of matrices where the non-
zero columns are all to the left of the empty columns.

e Let /of(.) be a function that maps binary matrices to /eft-
ordered binary matrices — matrices ordered by the binary
number made by their rows.
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Left-ordered matrices
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Figure 5: Binary matrices and the left-ordered form. The binary matrix on the left is transformed
into the left-ordered binary matrix on the right by the function lof(-). This lefi-ordered
matrix was generated from the exchangeable Indian buffet process with o0 = 10. Empty
columns are omitted from both matrices.

Image from Griffiths and Ghahramani, 2011
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How big is the equivalence set? o

e All matrices in the equivalence set [Z] are equiprobable (by
exchangeability of the columns), so if we know the size of the
equivalence set, we know its probability.

o Call the vector (24,2, , --.,Z/.1)) the history of feature k at data
point n (a number represented in binary form).

e Let K, be the number of features possessing history h, and let
K. be the total number of features with non-zero history.

e The total number of lof-equivalent matrices in [Z] is

( K )_ K!
Ko Kon I]izgllﬂﬂ
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Probability of an equivalence §§:
class of finite binary matrices. 4

e If we know the size of the equivalence class [Z], we can
evaluate its probability:

p(1Z) = Y p(Z)
Ze(Z]
K r a T(my, +a/K)T(N —my +1)
_Hiigl Kl K (N +1+a/K)

o K! ( N! )K
[0 K KolK5 \ [T+ a/K

n=1

K mp—1/ .
r (N =—m ) T[E (G + a/K)
11 : N!

k=1
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Taking the infinite limit o

e We are now ready to take the limit of this finite model as K
tends to infinity:

[0 K, KoK \ Y+ 2 N

k=1
JK—«x
af+ 1 exp{—aHy} (N mg)!(my — 1)!
2N—1 - N
[T K k=1 ’
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Predictive distribution: The selt
Indian buffet process et

e We can describe this model in terms of the following

restaurant analogy.
e A customer enters a restaurant with an infinitely large buffet
e He helps himself to Poisson(a) dishes.
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Predictive distribution: The cees
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Indian buffet process e
e We can describe this model in terms of the following
restaurant analogy.
e A customer enters a restaurant with an infinitely large buffet
e He helps himself to Poisson(a) dishes.
e The nt" customer enters the restaurant
e He helps himself to each dish with probability m,/n
e He then tries Poisson(a/n) new dishes
s ®PF
&
wh ¢ vV
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Indian buffet process o
e We can describe this model in terms of the following
restaurant analogy.
e A customer enters a restaurant with an infinitely large buffet
e He helps himself to Poisson(a) dishes.
e The n' customer enters the restaurant
e He helps himself to each dish with probability m,/n
e He then tries Poisson(a/n) new dishes
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Proof that the IBP is lof-equivalent to | ses¢
the infinite beta-Bernoulli model oo

e What is the probability of a matrix Z?
o Let K,(”) be the number of new features in the n' row.

H p Zn|zl (n 1)
N n—1 Znk n—1 11—z,
H Poisson K( ) H Dicy Zik M= zik g
n n n

n=1 k=1
N (n) K — ) n— —Znk
_ H <OZ>K1 1 e_a/n H+ (Z?:f Zik)znk (n - Zi:11 Zik > 11—z
n=1 n K(n)‘ k 1 " n
af+ N —my)(my — 1)!

— H
T, K N}H N

e If we include the cardinality of [Z], this is the same as before
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Properties of the IBP oe

e “Rich getricher” property — “popular”’ dishes become more
popular.

e The number of nonzero entries for each row is distributed
according to Poisson(a) — due to exchangeability.

e Recall that if x,~Poisson(a,) and x,~Poisson(a,), then
(x4+x,)~Poisson(a,+a,)

e The number of nonzero entries for the whole matrix is distributed according to
Poisson(Na).

e The number of non-empty columns is distributed according to Poisson(aH,)

. . o000
Building latent feature models sels
using the IBP oo

e We can use the IBP to build latent feature models with an
unbounded number of features.

e Let each column of the IBP correspond to one of an infinite
number of features.

e Each row of the IBP selects a finite subset of these features.

e The rich-get-richer property of the IBP ensures features are
shared between data points.

e We must pick a likelihood model that determines what the
features look like and how they are combined.

©A. Dubey, S. Williamson, E. Xing @ CMU, 2014-15 22

3/25/2015

11



A linear Gaussian model °e

e General form of latent factor model: X = WAT + ¢

e Simplest way to make an infinite factor model:
e Sample W ~ IBP(a)
e Sample a, ~ N (0, 0,2l)

o Sample e, ~ N(0, 0,2 I ORIV E | /I

l

Griffiths and Ghahramani, 2006
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Infinite factor analysis -

e Problem with linear Gaussian model: Features are “all or
nothing”

e Factor analysis: X = WAT + ¢
e Rows of A = latent features (Gaussian)
e Rows of W = datapoint-specific weights for these features (Gaussian)
e ¢ = Gaussian noise.

[ ] Write W — Z @V
e Z~IBP(a)

e V-~ N(O,O'VZ)
o« A~N(0,0.2)

Knowles and Ghahramani, 2007
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A binary model for latent HH
networks -

e Motivation: Discovering latent causes for observed binary
data

e Example:
e Data points = patients
e Observed features = presence/absence of symptoms
e Goal: Identify biologically plausible “latent causes” — eg illnesses.

e ldea:
e Each latent feature is associated with a set of symptoms

e The more features a patient has that are associated with a given symptom, the
more likely that patient is to exhibit the symptom.

Wood et al, 2006
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A binary model for latent sece
oo
o0
networks :
e We can represent this in terms of a Noisy-OR model:
Z ~ IBP(«)
Yax ~ Bernoulli(p)
T
P(Epa =1|Z,Y) =1— (1 - A\)™Ya(1—¢)
e Intuition:
e Each patient has a set of latent causes.
e For each sympton, we toss a coin with probability A for each latent cause that is
“on” for that patient and associated with that feature, plus an extra coin with
probability €.
e If any of the coins land heads, we exhibit that feature.
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Inference in the IBP .
e Recall inference methods for the DP:
e Gibbs sampler based on the exchangeable model.
e Gibbs sampler based on the underlying Dirichlet distribution
e Variational inference
e Particle filter.
e We can construct analogous samplers for the IBP
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Inference in the restaurant sels
scheme o

¢ Recall the exchangeability of the IBP means we can treat any
data point as if it's our last.

e Let K, be the total number of used features, excluding the
current data point.

e Let O be the set of parameters associated with the likelihood
— eg the Gaussian matrix A in the linear Gaussian model

e The prior probability of choosing one of these features is m/N
e The posterior probability is proportional to
P(znk = 1xXn, Z_nk, ©) occ mp f(Xnl2nk = 1,Z i, ©)
P(znk = 0|xpn, Z_pk, ©) x (N — mg) f(xp|2nk = 0,Z_pk, ©)
e In some cases we can integrate out O, otherwise we must
sample this.
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Inference in the restaurant sele
eo0o
(X}
scheme :
e In addition, we must propose adding new features.
e Metropolis Hastings method:
o Let K*,, be the number of features appearing only in the current data point.
e Propose K*,,, ~ Poisson(a/N), and let Z* be the matrix with K*,,, features
appearing only in the current data point.
e With probability
. f(xn|Z", @)>
min | 1, ————-
( " f(x0]Z,0)
accept the proposed matrix.
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Beta processes and the IBP :

e Recall the relationship between the Dirichlet process and the
Chinese restaurant process:
e The Dirichlet process is a prior on probability measures (distributions)

e We can use this probability measure as cluster weights in a clustering model —
cluster allocations are i.i.d. given this distribution.

e If we integrate out the weights, we get an exchangeable distribution over
partitions of the data — the Chinese restaurant process.

e De Finetti’s theorem tells us that, if a distribution X, X,... is
exchangeable, there must exist a measure conditioned on
which X, X,,... are i.i.d.
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Beta processes and the IBP °

e Recall the finite beta-Bernoulli model:

Mg ~ Beta(;, 1>

Znk ~ Bernoulli(my)

e The z, arei.i.d. given the m,, but are exchangeable if we
integrate out the 1m,.

e The corresponding distribution for the IBP is the infinite limit of
the beta random variables, as K tends to infinity.

e This distribution over discrete measures is called the beta
process.

e Samples from the beta process have infinitely many atoms

with masses between 0 and 1.
Thibaux and Jordan, 2007

- - » » [ X X J
Posterior distribution of the beta ggg:
process .

e Question: Can we obtain the posterior distribution of the
column probabilities in closed form?

e Answer: Yes!

e Recall that each atom of the beta process is the infinitesimal limit of a Beta(a/K, 1)
random variable.

e Our observations for that atom are a Binomial(rr,,N) random variable.

e We know the beta distribution is conjugate to the Binomial, so the posterior is the
infinitesimal limit of a Beta(a/K+m,,N+1-m,) random variable.
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A stick-breaking construction for
the beta process

e We can construct the beta process using the following stick-

breaking construction:
e Begin with a stick of unit length.
e Fork=1,2,...
e Sample a beta(a,1) random variable y,.
e Break off a fraction p, of the stick. This is the ki atom size.
e Throw away what's left of the stick.
e Recurse on the part of the stick that you broke off

k
T = 1_.[‘7':1 g My~ Beta(a, 1)

¢ Note that, unlike the DP stick breaking construction, the

toms will not sum to one.
atoms ot sum to one Teh et al, 2007
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Inference in the stick-breaking
construction

e We can also perform inference using the stick-breaking
representation
e Sample Z|m,©
e Sample m|Z

e The posterior for atoms for which m,>0 is beta distributed.

e The atoms for which m,=0 can be sampled using the stick-
breaking proceedure.

e We can use a slice sampler to avoid representing all of the
atoms, or using a fixed truncation level.

Teh et al, 2007
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A two-parameter extension 34

|
e In the IBP, the parameter a governs both the number of
nonempty columns and the number of features per data point.

¢ We might want to decouple these properties of our model.

e Reminder: We constructed the IBP as the limit of a finite beta-
Bernoulli model where

T ~ Beta(foé_, 1)

Znk ~ Bernoulli(7y)

o We can modify this to incorporate an extra parameter:

T ~ Beta(aﬁ,ﬁ>

K
Znk ~ Bernoulli(7g) Sollich, 2005
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A two-parameter extension :
e Our restaurant scheme is now as follows:

e A customer enters a restaurant with an infinitely large buffet

e He helps himself to Poisson(a) dishes.

e The nt" customer enters the restaurant

e He helps himself to each dish with probability m,/(8+n-1)

e He then tries Poisson(aB/(B+n-1) new dishes

e Note
e The number of features per data point is still marginally Poisson(a).
e The number of non-empty columns is now
. N B
Poisson (a Y, m)
e We recover the IBP when 3= 1.
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Image from Griffiths and Ghahramani, 2011
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Other distributions over infinite,
exchangeable matrices

e Recall the beta-Bernoulli process construction of the IBP.

e We start with a beta process — an infinite sequence of values
between 0 and 1 that are distributed as the infinitesimal limit
of the beta distribution.

e We combine this with a Bernoulli process, to get a binary
matrix.

e If we integrate out the beta process, we get an exchangeable
distribution over binary matrices.

e Integration is straightforward due to the beta-Bernoulli
conjugacy.

e Question: Can we construct other infinite matrices in this
way?
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The infinite gamma-Poisson selt
process oo
e The gamma process can be thought of as the infinitesimal
limit of a sequence of gamma random variables.
e Alternatively,
if D~ DP(a, H)
and v ~ Gamma(a, 1)
then G =D ~ GaP(aH)
e The gamma distribution is conjugate to the Poisson
distribution.
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The infinite gamma-Poisson sels
process oo

e We can associate each atom v, of the gamma process with a
column of a matrix (just like we did with the atoms of a beta
process)

e We can generate entries for the matrix as z,,~Poisson(v,)

‘|||1111.

+

IBP infinite gamma-Poisson
©A. Dubey, S. Wiliamson, E. Xing @ CMU, 2014-15 Titsias, 2008 40
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The infinite gamma-Poisson sess
3
process s
e Predictive distribution for the nt" row:

e For each existing feature, sample a count z,,~NegBinom(m,, n/(n+1))
4(2|(4|7(0|]0]0]|0]0O
5(0f(2(9(4(|1|0f0O]|O
3(2(1|é6f2|1|0f0O]|O
7(1[3|é6|3|0|0Of0O]|O
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e Predictive distribution for the nt row:

e For each existing feature, sample a count z,,~NegBinom(m,, n/(n+1))
4(2|4|7(0]0]0]|0]0O
5({o0f(2(9(4|1|0|0O]|O
3(2(1|é6f2|1|0f0O]|O
7(1 (3|63 |0|0Of0O]|O
5
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The infinite gamma-Poisson sece
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e Predictive distribution for the n row:

e For each existing feature, sample a count z,,~NegBinom(m,, n/(n+1))
4(12|4(7]0|]0f(0]|0]|0O
5(0f(2(9(4(|1|0f0O]|O
3(2(1|é6f2|1|0f0O]|O
7(1[3|é6|3|0|0Of0O]|O
510
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e Predictive distribution for the n row:

e For each existing feature, sample a count z,,~NegBinom(m,, n/(n+1))
4(2|4|7(0]0]0]|0]0O
5{0|2(9]|4]|1(0]0]|0
32|11 |(6]2]1(0]0]|0
701 6|3 0|0|0
5/0|4(5]|2
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The infinite gamma-Poisson sece
00
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process s
e Predictive distribution for the n row:
e For each existing feature, sample a count z,,~NegBinom(m,, n/(n+1))
e Sample K*,~NegBinom(a, n/(n+1))
4(12|4(7]0|]0f(0]|0]|0O
510 914 (1 |0f0]O
3(2(1|é6f2|1|0f0O]|O 4
701 6|3 0(0]|0
5(0(4(|5]2
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The infinite gamma-Poisson 3
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e Predictive distribution for the n row:
e For each existing feature, sample a count z,,~NegBinom(m,, n/(n+1)).
e Sample K*,~NegBinom(a, n/(n+1)).
e Partition K*, according to the CRP, and assign the resulting counts to new
columns.
4(2|(4|7(0]0]0]0]0O
5|0 914|1(0]0|0
3121 |(6]2|1[0]0]|0
701 613|0(0]|0]|0O0
5{0|4(5]2|0(3]|1]|0
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