

A stick-breaking construction for the beta process

- · We can construct the beta process using the following stickbreaking construction:
- Begin with a stick of unit length.
- For k=1,2,...
 - Sample a beta(α ,1) random variable μ_k .
 - Break off a fraction μ_k of the stick. This is the k^{th} atom size.
 - Throw away what's left of the stick.
 - Recurse on the part of the stick that you broke off

$$\pi_k = \prod_{j=1}^k \mu_j \qquad \mu_j \sim \text{Beta}(\alpha, 1)$$

 Note that, unlike the DP stick breaking construction, the atoms will not sum to one. Teh et al, 2007

© A. Dubey, S. Williamson, E. Xing @ CMU, 2014-15

