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Recap of last lecture

 Dirichlet process: a distribution over discrete probability 
distributions with infinitely many atoms.

 Can be used to create a nonparametric version of a finite 
mixture model.
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Recap of last lecture

 We can think of the Dirichlet process in a number of ways:

 The infinite limit of a Dirichlet distribution.

 A rich-gets-richer predictive distribution over the next data point 
(Chinese restaurant process, Polya urn scheme).

 An iterative procedure for generating samples from the Dirichlet
process – the stick breaking representation.
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Limitations of a simple mixture model

 The Dirichlet distribution and the Dirichlet process are great if 
we want to cluster data into non-overlapping clusters.

 However, DP/Dirichlet mixture models cannot share features 
between clusters.

 In many applications, data points exhibit properties of multiple 
latent features

 Images contain multiple objects.

 Actors in social networks belong to multiple social groups.

 Movies contain aspects of multiple genres.
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Latent variable models

 Latent variable models allow each data point to exhibit 
multiple features, to varying degrees.

 Example: Factor analysis

X = WAT + ε
 Rows of A = latent features

 Rows of W = datapoint-specific weights for these features

 ε = Gaussian noise.

 Example: LDA
 Each document represented by a mixture of features.
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Infinite latent feature models

 Problem: How to choose the number of features?

 Example: Factor analysis

X = WAT + ε

 Each column of W (and row of A) corresponds to a feature.

 Question: Can we make the number of features unbounded a 
posteriori, as we did with the DP?

 Solution: allow infinitely many features a priori – ie let W (or 
A) have infinitely many columns (rows).

 Problem: We can’t represent infinitely many features!

 Solution: make our infinitely large matrix sparse.

Griffiths and Ghaharamani, 2006
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The CRP: A distribution over 
binary matrices

 Recall that the CRP gives us a distribution over partitions of 
our data.

 We can represent this as a distribution over binary matrices, 
where each row corresponds to a data point, and each 
column to a cluster.
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A sparse, finite latent variable model

 We want a sparse model – so let 

for some sparse matrix Z.

 Place a beta-Bernoulli prior on Z:
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A sparse, finite latent variable 
model

 If we integrate out the πk, the marginal probability of a matrix 
Z is:

where 

 This is exchangeable (doesn’t depend on the order of the 
rows or columns
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A sparse, finite latent variable 
model

 If we integrate out the πk, the marginal probability of a matrix 
Z is:

where 

 How is this sparse?
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An equivalence class of matrices

 We can naively take the infinite limit by taking K to infinity

 Because all the columns are equal in expectation, as K grows 
we are going to have more and more empty columns.

 We do not want to have to represent infinitely many empty 
columns!

 Define an equivalence class [Z] of matrices where the non-
zero columns are all to the left of the empty columns.

 Let lof(.) be a function that maps binary matrices to left-
ordered binary matrices – matrices ordered by the binary 
number made by their rows.
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Left-ordered matrices

Image from Griffiths and Ghahramani, 2011
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How big is the equivalence set?

 All matrices in the equivalence set [Z] are equiprobable (by 
exchangeability of the columns), so if we know the size of the 
equivalence set, we know its probability.

 Call the vector (z1k,z2,k,…,z(n-1)k) the history of feature k at data 
point n (a number represented in binary form).

 Let Kh be the number of features possessing history h, and let 
K+ be the total number of features with non-zero history.

 The total number of lof-equivalent matrices in [Z] is
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Probability of an equivalence 
class of finite binary matrices.

 If we know the size of the equivalence class [Z], we can 
evaluate its probability:
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Taking the infinite limit

 We are now ready to take the limit of this finite model as K
tends to infinity:
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Predictive distribution: The 
Indian buffet process

 We can describe this model in terms of the following 
restaurant analogy.
 A customer enters a restaurant with an infinitely large buffet

 He helps himself to Poisson(α) dishes.
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Predictive distribution: The 
Indian buffet process

 We can describe this model in terms of the following 
restaurant analogy.
 A customer enters a restaurant with an infinitely large buffet

 He helps himself to Poisson(α) dishes.

 The nth customer enters the restaurant

 He helps himself to each dish with probability mk/n

 He then tries Poisson(α/n) new dishes
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Example
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Proof that the IBP is lof-equivalent to 
the infinite beta-Bernoulli model

 What is the probability of a matrix Z?

 Let K1
(n) be the number of new features in the nth row.

 If we include the cardinality of [Z], this is the same as before
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Properties of the IBP

 “Rich get richer” property – “popular” dishes become more 
popular.

 The number of nonzero entries for each row is distributed 
according to Poisson(α) – due to exchangeability.

 Recall that if x1~Poisson(α1) and x2~Poisson(α2), then 
(x1+x2)~Poisson(α1+α2)
 The number of nonzero entries for the whole matrix is distributed according to 

Poisson(Nα).

 The number of non-empty columns is distributed according to Poisson(αHN)
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Building latent feature models 
using the IBP

 We can use the IBP to build latent feature models with an 
unbounded number of features.

 Let each column of the IBP correspond to one of an infinite
number of features.

 Each row of the IBP selects a finite subset of these features.

 The rich-get-richer property of the IBP ensures features are 
shared between data points.

 We must pick a likelihood model that determines what the 
features look like and how they are combined.
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A linear Gaussian model

 General form of latent factor model: X = WAT + ε

 Simplest way to make an infinite factor model:
 Sample W ~ IBP(α)

 Sample ak ~ N (0, σa
2 I)

 Sample εnk ~ N (0, σε
2)

Griffiths and Ghahramani, 2006
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Infinite factor analysis

 Problem with linear Gaussian model: Features are “all or 
nothing”

 Factor analysis: X = WAT + ε
 Rows of A = latent features (Gaussian)

 Rows of W = datapoint-specific weights for these features (Gaussian)

 ε = Gaussian noise.

 Write
 Z ~ IBP(α)

 V ~ N (0,σv
2)

 A ~ N (0,σA
2)

Knowles and Ghahramani, 2007
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A binary model for latent 
networks

 Motivation: Discovering latent causes for observed binary 
data

 Example: 
 Data points = patients

 Observed features = presence/absence of symptoms

 Goal: Identify biologically plausible “latent causes” – eg illnesses.

 Idea:
 Each latent feature is associated with a set of symptoms

 The more features a patient has that are associated with a given symptom, the 
more likely that patient is to exhibit the symptom.

Wood et al, 2006
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A binary model for latent 
networks

 We can represent this in terms of a Noisy-OR model:

 Intuition:
 Each patient has a set of latent causes.

 For each sympton, we toss a coin with probability λ for each latent cause that is 
“on” for that patient and associated with that feature, plus an extra coin with 
probability ε.

 If any of the coins land heads, we exhibit that feature.
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Inference in the IBP

 Recall inference methods for the DP:
 Gibbs sampler based on the exchangeable model.

 Gibbs sampler based on the underlying Dirichlet distribution

 Variational inference

 Particle filter.

 We can construct analogous samplers for the IBP
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Inference in the restaurant 
scheme

 Recall the exchangeability of the IBP means we can treat any 
data point as if it’s our last.

 Let K+ be the total number of used features, excluding the 
current data point.

 Let Θ be the set of parameters associated with the likelihood 
– eg the Gaussian matrix A in the linear Gaussian model

 The prior probability of choosing one of these features is mk/N

 The posterior probability is proportional to

 In some cases we can integrate out Θ, otherwise we must 
sample this.

Griffiths and Gharamani, 2006© A. Dubey, S. Williamson, E. Xing @ CMU, 2014-15 28
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Inference in the restaurant 
scheme

 In addition, we must propose adding new features.

 Metropolis Hastings method:
 Let K*old be the number of features appearing only in the current data point.

 Propose K*new ~ Poisson(α/N), and let Z* be the matrix with K*new features 
appearing only in the current data point.

 With probability 

accept the proposed matrix.
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Beta processes and the IBP

 Recall the relationship between the Dirichlet process and the 
Chinese restaurant process:
 The Dirichlet process is a prior on probability measures (distributions)

 We can use this probability measure as cluster weights in a clustering model –
cluster allocations are i.i.d. given this distribution.

 If we integrate out the weights, we get an exchangeable distribution over 
partitions of the data – the Chinese restaurant process.

 De Finetti’s theorem tells us that, if a distribution X1, X2,… is 
exchangeable, there must exist a measure conditioned on 
which X1, X2,… are i.i.d.
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Beta processes and the IBP

 Recall the finite beta-Bernoulli model:

 The znk are i.i.d. given the πk, but are exchangeable if we 
integrate out the πk.

 The corresponding distribution for the IBP is the infinite limit of 
the beta random variables, as K tends to infinity.

 This distribution over discrete measures is called the beta 
process.

 Samples from the beta process have infinitely many atoms 
with masses between 0 and 1.

Thibaux and Jordan, 2007
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Posterior distribution of the beta 
process

 Question: Can we obtain the posterior distribution of the 
column probabilities in closed form?

 Answer: Yes!
 Recall that each atom of the beta process is the infinitesimal limit of a Beta(α/K,1)

random variable.

 Our observations for that atom are a Binomial(πk,N) random variable.

 We know the beta distribution is conjugate to the Binomial, so the posterior is the 
infinitesimal limit of a Beta(α/K+mk,N+1-mk) random variable.
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A stick-breaking construction for 
the beta process

 We can construct the beta process using the following stick-
breaking construction:

 Begin with a stick of unit length.

 For k=1,2,…

 Sample a beta(α,1) random variable μk.

 Break off a fraction μk of the stick. This is the kth atom size.

 Throw away what’s left of the stick.

 Recurse on the part of the stick that you broke off

 Note that, unlike the DP stick breaking construction, the 
atoms will not sum to one.

Teh et al, 2007
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Inference in the stick-breaking 
construction

 We can also perform inference using the stick-breaking 
representation
 Sample Z|π,Θ

 Sample π|Z

 The posterior for atoms for which mk>0 is beta distributed.

 The atoms for which mk=0 can be sampled using the stick-
breaking proceedure.

 We can use a slice sampler to avoid representing all of the 
atoms, or using a fixed truncation level.

Teh et al, 2007
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A two-parameter extension

 In the IBP, the parameter α governs both the number of 
nonempty columns and the number of features per data point.

 We might want to decouple these properties of our model.

 Reminder: We constructed the IBP as the limit of a finite beta-
Bernoulli model where

 We can modify this to incorporate an extra parameter:

Sollich, 2005
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A two-parameter extension

 Our restaurant scheme is now as follows:
 A customer enters a restaurant with an infinitely large buffet

 He helps himself to Poisson(α) dishes.

 The nth customer enters the restaurant

 He helps himself to each dish with probability mk/(β+n-1)

 He then tries Poisson(αβ/(β+n-1) new dishes

 Note 
 The number of features per data point is still marginally Poisson(α).

 The number of non-empty columns is now 

 We recover the IBP when β = 1.
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Two parameter IBP: examples

Image from Griffiths and Ghahramani, 2011
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Other distributions over infinite, 
exchangeable matrices

 Recall the beta-Bernoulli process construction of the IBP.

 We start with a beta process – an infinite sequence of values 
between 0 and 1 that are distributed as the infinitesimal limit 
of the beta distribution.

 We combine this with a Bernoulli process, to get a binary 
matrix.

 If we integrate out the beta process, we get an exchangeable 
distribution over binary matrices.

 Integration is straightforward due to the beta-Bernoulli 
conjugacy.

 Question: Can we construct other infinite matrices in this 
way?
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The infinite gamma-Poisson 
process

 The gamma process can be thought of as the infinitesimal 
limit of a sequence of gamma random variables.

 Alternatively, 

 The gamma distribution is conjugate to the Poisson 
distribution.
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The infinite gamma-Poisson 
process

 We can associate each atom νk of the gamma process with a 
column of a matrix (just like we did with the atoms of a beta 
process)

 We can generate entries for the matrix as znk~Poisson(νk)

IBP infinite gamma-Poisson
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The infinite gamma-Poisson 
process

 Predictive distribution for the nth row:
 For each existing feature, sample a count znk~NegBinom(mk, n/(n+1))
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process

 Predictive distribution for the nth row:
 For each existing feature, sample a count znk~NegBinom(mk, n/(n+1))
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 Predictive distribution for the nth row:
 For each existing feature, sample a count znk~NegBinom(mk, n/(n+1))

© A. Dubey, S. Williamson, E. Xing @ CMU, 2014-15 43

4 4 0 0

5

3

7

2

0

2

1

2

1

3

7

9

6

6

4

2

3

0 0

1

1

0

0 0

0 0

0

0

0

0 0 0

5 0 4 5 2 0

The infinite gamma-Poisson 
process

 Predictive distribution for the nth row:
 For each existing feature, sample a count znk~NegBinom(mk, n/(n+1))
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 Predictive distribution for the nth row:
 For each existing feature, sample a count znk~NegBinom(mk, n/(n+1))

 Sample K*n~NegBinom(α, n/(n+1))
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The infinite gamma-Poisson 
process

 Predictive distribution for the nth row:
 For each existing feature, sample a count znk~NegBinom(mk, n/(n+1)).

 Sample K*n~NegBinom(α, n/(n+1)).

 Partition K*n according to the CRP, and assign the resulting counts to new 
columns.
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