Probabilistic Graphical Models

Directed GMs: Bayesian Networks

Eric Xing

Lecture 2, January 14, 2015
Reading: see class homepage

Two types of GMs

- Directed edges give causality relationships (Bayesian Network or Directed Graphical Model):

$$
\begin{aligned}
& P\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}, X_{8}\right) \\
= & P\left(X_{1}\right) P\left(X_{2}\right) P\left(X_{3} \mid X_{1}\right) P\left(X_{4} \mid X_{2}\right) P\left(X_{5} \mid X_{2}\right) \\
& P\left(X_{6} \mid X_{3}, X_{4}\right) P\left(X_{7} \mid X_{6}\right) P\left(X_{8} \mid X_{5}, X_{6}\right)
\end{aligned}
$$

- Undirected edges simply give correlations between variables (Markov Random Field or Undirected Graphical model):

$$
\begin{aligned}
& P\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}, X_{8}\right) \\
= & 1 / Z \exp \left\{E\left(X_{1}\right)+E\left(X_{2}\right)+E\left(X_{3}, X_{1}\right)+E\left(X_{4}, X_{2}\right)+E\left(X_{5}, X_{2}\right)\right. \\
& \left.+E\left(X_{6}, X_{3}, X_{4}\right)+E\left(X_{7}, X_{6}\right)+E\left(X_{8}, X_{5}, X_{6}\right)\right\}
\end{aligned}
$$

- Representation of directed GM

Notation

- Variable, value and index
- Random variable
- Random vector
- Random matrix
- Parameters

Example: The Dishonest Casino

A casino has two dice:

- Fair die

$$
P(1)=P(2)=P(3)=P(5)=P(6)=1 / 6
$$

- Loaded die

$$
\begin{aligned}
& P(1)=P(2)=P(3)=P(5)=1 / 10 \\
& P(6)=1 / 2
\end{aligned}
$$

Casino player switches back-\&-forth between fair and loaded die once every 20 turns

Game:

1. You bet $\$ 1$
2. You roll (always with a fair die)
3. Casino player rolls (maybe with fair die, maybe with loaded die)
4. Highest number wins $\$ 2$

Puzzles regarding the dishonest casino

GIVEN: A sequence of rolls by the casino player
1245526462146146136136661664661636616366163616515615115146123562344

QUESTION

- How likely is this sequence, given our model of how the casino works?
- This is the EVALUATION problem
- What portion of the sequence was generated with the fair die, and what portion with the loaded die?
- This is the DECODING question
- How "loaded" is the loaded die? How "fair" is the fair die? How often does the casino player change from fair to loaded, and back?
- This is the LEARNING question

Knowledge Engineering

- Picking variables
- Observed
- Hidden
- Picking structure
- CAUSAL
- Generative
- Coupling
- Picking Probabilities
- Zero probabilities
- Orders of magnitudes
- Relative values

Hidden Markov Model

The underlying source:
Speech signal genome function dice

The sequence:
Phonemes
DNA sequence
sequence of rolls

Probability of a parse

- Given a sequence $\mathbf{x}=x_{1} \ldots \ldots x_{T}$ and a parse $y=y_{1}, \ldots \ldots, y_{T}$,
- To find how likely is the parse: (given our HMM and the sequence)

$$
\begin{aligned}
p(\mathbf{x}, \mathbf{y}) & =p\left(x_{1} \ldots \ldots x_{\mathrm{T}}, y_{1}, \ldots \ldots, y_{\mathrm{T}}\right) \quad \text { (Joint probability) } \\
& =p\left(y_{1}\right) p\left(x_{1} \mid y_{1}\right) p\left(y_{2} \mid y_{1}\right) p\left(x_{2} \mid y_{2}\right) \ldots p\left(y_{\mathrm{T}} \mid y_{\mathrm{T}-1}\right) p\left(x_{\mathrm{T}} \mid y_{\mathrm{T}}\right) \\
& =p\left(y_{1}\right) \mathrm{P}\left(y_{2} \mid y_{1}\right) \ldots p\left(y_{\mathrm{T}} \mid y_{\mathrm{T}-1}\right) \times p\left(x_{1} \mid y_{1}\right) p\left(x_{2} \mid y_{2}\right) \ldots p\left(x_{\mathrm{T}} \mid y_{\mathrm{T}}\right) \\
& =p\left(y_{1}, \ldots \ldots, y_{\mathrm{T}}\right) p\left(x_{1} \ldots \ldots x_{\mathrm{T}} \mid y_{1}, \ldots \ldots, y_{\mathrm{T}}\right)
\end{aligned}
$$

- Marginal probability: $\quad p(\mathbf{x})=\sum_{\mathbf{y}} p(\mathbf{x}, \mathbf{y})=\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{N}} \pi_{y_{1}} \prod_{t=2}^{T} a_{y_{t-1}, y_{t}} \prod_{t=1}^{T} p\left(x_{t} \mid y_{t}\right)$
- Posterior probability: $p(\mathbf{y} \mid \mathbf{x})=p(\mathbf{x}, \mathbf{y}) / p(\mathbf{x})$
- We will learn how to do this explicitly (polynomial time)

Bayesian Network:

- A BN is a directed graph whose nodes represent the random variables and whose edges represent direct influence of one variable on another.
- It is a data structure that provides the skeleton for representing a joint distribution compactly in a factorized way;
- It offers a compact representation for a set of conditional independence assumptions about a distribution;
- We can view the graph as encoding a generative sampling process executed by nature, where the value for each variable is selected by nature using a distribution that depends only on its parents. In other words, each variable is a stochastic function of its parents.

Bayesian Network: Factorization Theorem

- Theorem:

Given a DAG, The most general form of the probability distribution that is consistent with the graph factors according to "node given its parents":

$$
P(\mathbf{X})=\prod_{i=1: d} P\left(X_{i} \mid \mathbf{X}_{\pi_{i}}\right)
$$

where $\mathbf{X}_{\pi_{i}}$ is the set of parents of X_{i}, d is the number of nodes (variables) in the graph.

$$
\square \quad \begin{aligned}
& P\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}, X_{8}\right) \\
= & P\left(X_{1}\right) P\left(X_{2}\right) P\left(X_{3} \mid X_{1}\right) P\left(X_{4} \mid X_{2}\right) P\left(X_{5} \mid X_{2}\right) \\
& P\left(X_{6} \mid X_{3}, X_{4}\right) P\left(X_{7} \mid X_{6}\right) P\left(X_{8} \mid X_{5}, X_{6}\right)
\end{aligned}
$$

Specification of a directed GM

- There are two components to any GM:
- the qualitative specification
- the quantitative specification

Qualitative Specification

- Where does the qualitative specification come from?
- Prior knowledge of causal relationships
- Prior knowledge of modular relationships
- Assessment from experts
- Learning from data
- We simply link a certain architecture (e.g. a layered graph)

Local Structures \& Independencies

- Common parent
- Fixing B decouples A and C
- Cascade
- Knowing B decouples A and C

"given the level of gene B, the level gene A provides no
extra prediction value for the level of gene $C "$
- V-structure
- Knowing C couples A and B
because A can "explain away" B w.r.t. C

"If A correlates to C, then chance for B to also correlate to B will decrease"
- The language is compact, the concepts are rich!

A simple justification

I-maps

- Defn : Let P be a distribution over \boldsymbol{X}. We define $\mathrm{I}(\mathrm{P})$ to be the set of independence assertions of the form $(X \perp Y \mid Z)$ that hold in P (however how we set the parameter-values).
- Defn : Let K be any graph object associated with a set of independencies $I(K)$. We say that K is an I-map for a set of independencies $\mathrm{I}, \mathrm{I}(\mathrm{K}) \subseteq \mathrm{I}$.
- We now say that G is an $I-m a p$ for P if G is an I-map for $I(P)$, where we use $I(G)$ as the set of independencies associated.

Facts about I-map

- For G to be an I-map of P, it is necessary that G does not mislead us regarding independencies in P :

[^0]- Example:

\[

\]

What is in I(G) --local Markov assumptions of BN

A Bayesian network structure G is a directed acyclic graph whose nodes represent random variables X_{1}, \ldots, X_{n}.

local Markov assumptions

- Defn :

Let $P a_{x i}$ denote the parents of X_{i} in G, and NonDescendants $x_{x_{i}}$ denote the variables in the graph that are not descendants of X_{i}. Then G encodes the following set of local conditional independence assumptions $l_{\ell}(G)$:

$$
I_{\ell}(G):\left\{X_{i} \perp \text { NonDescendants }_{x i} \mid \mathrm{Pa}_{x i}: \forall i\right),
$$

In other words, each node X_{i} is independent of its nondescendants given its parents.

Graph separation criterion

- D-separation criterion for Bayesian networks (D for Directed edges):

Defn: variables x and y are D-separated (conditionally independent) given z if they are separated in the moralized ancestral graph

- Example:

original graph

ancestral

moral ancestral

Active trail

- Causal trail $X \rightarrow Z \rightarrow Y$: active if and only if Z is not observed.
- Evidential trail $X \leftarrow Z \leftarrow Y$: active if and only if Z is not observed.
- Common cause $X \leftarrow Z \rightarrow Y$: active if and only if Z is not observed.
- Common effect $X \rightarrow Z \leftarrow Y$: active if and only if either Z or one of Z 's descendants is observed

Definition : Let X, Y, Z be three sets of nodes in G. We say that X and Y are d-separated given Z, denoted d-sep $(X ; Y \mid Z)$, if there is no active trail between any node $X \in X$ and $Y \in Y$ given Z.

What is in I(G) ---
 Global Markov properties of BN

- X is d-separated (directed-separated) from Z given Y if we can't send a ball from any node in X to any node in Z using the "Bayesball" algorithm illustrated bellow (and plus some boundary conditions):

(a)

(a)

(b)

Defn: $I(G)=a l l$ independence properties that correspond to dseparation:

$$
\mathrm{I}(G)=\left\{X \perp Z \mid Y: \operatorname{dsep}_{G}(X ; Z \mid Y)\right\}
$$

- D-separation is sound and complete (more details later)

Example:

Toward quantitative specification of probability distribution

- Separation properties in the graph imply independence properties about the associated variables
- The Equivalence Theorem

For a graph G,
Let \mathscr{D}_{1} denote the family of all distributions that satisfy $I(G)$,
Let \mathscr{D}_{2} denote the family of all distributions that factor according to G,

$$
P(\mathbf{X})=\prod_{i=1: d} P\left(X_{i} \mid \mathbf{X}_{\pi_{i}}\right)
$$

Then $\mathscr{D}_{1}=\mathscr{D}_{2}$.

- For the graph to be useful, any conditional independence properties we can derive from the graph should hold for the probability distribution that the graph represents

Conditional probability tables (CPTs)

a^{0}	0.75
a^{1}	0.25

b^{0}	0.33
b^{1}	0.67

$$
\begin{gathered}
P(a, b, c . d)= \\
P(a) P(b) P(c \mid a, b) P(d \mid c)
\end{gathered}
$$

Conditional probability density func. (CPDs)

$$
\mathrm{A} \sim \mathrm{~N}\left(\mu_{\mathrm{a}}, \Sigma_{\mathrm{a}}\right) \quad \mathrm{B} \sim \mathrm{~N}\left(\mu_{\mathrm{b}}, \Sigma_{\mathrm{b}}\right)
$$

$$
\begin{gathered}
P(a, b, c . d)= \\
P(a) P(b) P(c \mid a, b) P(d \mid c)
\end{gathered}
$$

Summary of BN semantics

- Defn: A Bayesian network is a pair (G, P) where P factorizes over G, and where P is specified as set of CPDs associated with G's nodes.
- Conditional independencies imply factorization
- Factorization according to G implies the associated conditional independencies.
- Are there other independences that hold for every distribution P that factorizes over G ?

Soundness and completeness

D-separation is sound and "complete" w.r.t. BN factorization law
Soundness:
Theorem: If a distribution P factorizes according to G, then $I(G) \subseteq I(P)$.
"Completeness":
"Claim": For any distribution P that factorizes over G, if $(X \perp Y \mid Z) \in I(P)$ then d-sep ${ }_{\mathrm{G}}(\mathrm{X} ; \mathrm{Y} \mid \mathrm{Z})$.

Contrapositive of the completeness statement

- "If X and Y are not d-separated given Z in G, then X and Y are dependent in all distributions P that factorize over G."
- Is this true?

Distributional equivalence and Iequivalence

- All independence in $\mathrm{I}_{\mathrm{d}}(\mathrm{G})$ will be captured in $\mathrm{I}_{\mathrm{f}}(\mathrm{G})$, is the reverse true?
- Are "not-independence" from G all honored in P_{f} ?

Distributional equivalence and Iequivalence

$X \perp Y \mid Z \in I d$

$X \perp Y \mid Z \in I f$.

- All independence in $I_{d}(G)$ will be captured in $I_{f}(G)$, is the reverse true?
- Are "not-independence" from G all honored in P_{f} ?

Soundness and completeness

- Contrapositive of the completeness statement
- "If X and Y are not d-separated given Z in G , then X and Y are dependent in all distributions P that factorize over G."
- Is this true?
- No. Even if a distribution factorizes over G, it can still contain additional independencies that are not reflected in the structure
- Example: graph $A->B$, for actually independent A and B (the independence can be captured by some subtle way

A	b^{0}	b^{1}
a^{0}	0.4	0.6
a^{1}	0.4	0.6

- Thm: Let G be a BN graph. If X and Y are not d-separated given Z in G, then X and Y are dependent in some distribution P that factorizes over G.
- Theorem : For almost all distributions P that factorize over G, i.e., for all distributions except for a set of "measure zero" in the space of CPD parameterizations, we have that $I(P)=$ I(G)

Uniqueness of BN

- Very different BN graphs can actually be equivalent, in that they encode precisely the same set of conditional independence assertions.

I-equivalence

- Defn : Two BN graphs G1 and G2 over \boldsymbol{X} are I-equivalent if I(G1) = I(G2).
- The set of all graphs over X is partitioned into a set of mutually exclusive and exhaustive I-equivalence classes, which are the set of equivalence classes induced by the l-equivalence relation.

- Any distribution P that can be factorized over one of these graphs can be factorized over the other.
- Furthermore, there is no intrinsic property of P that would allow us associate it with one graph rather than an equivalent one.
- This observation has important implications with respect to our ability to determine the directionality of influence.

Detecting I-equivalence

- Defn : The skeleton of a Bayesian network graph G over V is an undirected graph over V that contains an edge $\{X, Y\}$ for every edge (X, Y) in G .

(a)

(b)

(c)
- Thm : Let G_{1} and G_{2} be two graphs over V. If G_{1} and G_{2} have the same skeleton and the same set of v-structures then they are Iequivalent.
- graph equivalence
- Same trail
- But not necessarily active

Minimum I-MAP

- Complete graph is a (trivial) I-map for any distribution, yet it does not reveal any of the independence structure in the distribution.
- Meaning that the graph dependence is arbitrary, thus by careful parameterization an dependencies can be captured
- We want a graph that has the maximum possible $\mathrm{I}(\mathrm{G})$, yet still $\subseteq \mathrm{I}(\mathrm{P})$
- Defn : A graph object G is a minimal I-map for a set of independencies I if it is an I-map for I, and if the removal of even a single edge from G renders it not an I-map.

Minimum I-MAP is not unique

(a)

(b)

(c)

Simple BNs:
 Conditionally Independent Observations

The "Plate" Micro

Model parameters

$$
\text { Data }=\left\{y_{1}, \ldots y_{n}\right\}
$$

Plate $=$ rectangle in graphical model
variables within a plate are replicated in a conditionally independent manner

Hidden Markov Model:

from static to dynamic mixture models

Static mixture

Dynamic mixture

Definition (of HMM)

- Observation space

$$
\begin{aligned}
& \text { Alphabetic set: } \quad \mathrm{C}=\left\{c_{1}, c_{2}, \cdots, c_{k}\right\} \\
& \text { Euclidean space: } \quad \mathrm{R}^{d}
\end{aligned}
$$

- Index set of hidden states

$$
\mathbb{I}=\{1,2, \cdots, M\}
$$

- Transition probabilities between any two states

$$
\begin{aligned}
& p\left(y_{t}^{j}=1 \mid y_{t-1}^{i}=1\right)=a_{i, j}, \\
\text { or } & p\left(y_{t} \mid y_{t-1}^{i}=1\right) \sim \operatorname{Multinomial}\left(a_{i, 1}, a_{i, 1}, \ldots, a_{i, M}\right), \forall i \in I .
\end{aligned}
$$

- Start probabilities

$$
p\left(y_{1}\right) \sim \operatorname{Multinomial}\left(\pi_{1}, \pi_{2}, \ldots, \pi_{M}\right) .
$$

- Emission probabilities associated with each state

$$
p\left(x_{t} \mid y_{t}^{i}=1\right) \sim \operatorname{Multinomial}\left(b_{i, 1}, b_{i, 1}, \ldots, b_{i, k}\right), \forall i \in I .
$$

or in general:

$$
p\left(x_{t} \mid y_{t}^{i}=1\right) \sim \mathrm{f}\left(\cdot \mid \theta_{i}\right), \forall i \in \mathbb{I}
$$

Probability of a parse

- Given a sequence $\mathbf{x}=x_{1} \ldots \ldots x_{T}$ and a parse $y=y_{1}, \ldots \ldots, y_{T}$,
- To find how likely is the parse: (given our HMM and the sequence)

$$
\begin{aligned}
p(\mathbf{x}, \mathbf{y}) & =p\left(x_{1} \ldots \ldots x_{\mathrm{T}}, y_{1}, \ldots \ldots, y_{\mathrm{T}}\right) \quad \text { (Joint probability) } \\
& =p\left(y_{1}\right) p\left(x_{1} \mid y_{1}\right) p\left(y_{2} \mid y_{1}\right) p\left(x_{2} \mid y_{2}\right) \ldots p\left(y_{\mathrm{T}} \mid y_{\mathrm{T}-1}\right) p\left(x_{\mathrm{T}} \mid y_{\mathrm{T}}\right) \\
& =p\left(y_{1}\right) \mathrm{P}\left(y_{2} \mid y_{1}\right) \ldots p\left(y_{\mathrm{T}} \mid y_{\mathrm{T}-1}\right) \times p\left(x_{1} \mid y_{1}\right) p\left(x_{2} \mid y_{2}\right) \ldots p\left(x_{\mathrm{T}} \mid y_{\mathrm{T}}\right) \\
& =p\left(y_{1}, \ldots \ldots, y_{\mathrm{T}}\right) p\left(x_{1} \ldots \ldots x_{\mathrm{T}} \mid y_{1}, \ldots \ldots, y_{\mathrm{T}}\right)
\end{aligned}
$$

Summary:
 Representing Multivariate Distribution

- Representation: what is the joint probability dist. on multiple variables?

$$
P\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}, X_{8},\right)
$$

- How many state configurations in total? --- $\mathbf{2}^{\mathbf{8}}$
- Are they all needed to be represented?
- Do we get any scientific/medical insight?
- Factored representation: the chain-rule

$$
\begin{aligned}
& P\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}, X_{8}\right) \\
= & P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) P\left(X_{4} \mid X_{1}, X_{2}, X_{3}\right) P\left(X_{5} \mid X_{1}, X_{2}, X_{3}, X_{4}\right) P\left(X_{6} \mid X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right) \\
& P\left(X_{7} \mid X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}\right) P\left(X_{8} \mid X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}\right)
\end{aligned}
$$

- This factorization is true for any distribution and any variable ordering
- Do we save any parameterization cost?
- If X_{i} 's are independent: $\left(P\left(\left.X_{i}\right|^{\cdot}\right)=P\left(X_{i}\right)\right)$

$$
\begin{aligned}
& P\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}, X_{8}\right) \\
= & P\left(X_{1}\right) P\left(X_{2}\right) P\left(X_{3}\right) P\left(X_{4}\right) P\left(X_{5}\right) P\left(X_{6}\right) P\left(X_{7}\right) P\left(X_{8}\right)=\prod_{1} P\left(X_{i}\right)
\end{aligned} \quad \text {-What do we gain? }
$$

Summary: take home messages

- Defn (3.2.5): A Bayesian network is a pair (G, P) where P factorizes over G, and where P is specified as set of local conditional probability dist. CPDs associated with G's nodes.
- A BN capture "causality", "generative schemes", "asymmetric influences", etc., between entities
- Local and global independence properties identifiable via dseparation criteria (Bayes ball)
- Computing joint likelihood amounts multiplying CPDs
- But computing marginal can be difficult
- Thus inference is in general hard
- Important special cases:
- Hidden Markov models
- Tree models

A few myths about graphical models

- They require a localist semantics for the nodes
- They require a causal semantics for the edges \times
- They are necessarily Bayesian \times
- They are intractable ψ

[^0]: any independence that G asserts must also hold in P. Conversely, P may have additional independencies that are not reflected in G

