

Probabilistic Graphical Models

Directed GMs: Bayesian Networks

Eric Xing Lecture 2, January 14, 2015

Reading: see class homepage

Two types of GMs

 Directed edges give causality relationships (Bayesian Network or Directed Graphical Model):

$$P(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}, X_{8})$$

$$= P(X_{1}) P(X_{2}) P(X_{3} | X_{1}) P(X_{4} | X_{2}) P(X_{5} | X_{2})$$

$$P(X_{6} | X_{3}, X_{4}) P(X_{7} | X_{6}) P(X_{8} | X_{5}, X_{6})$$

 Undirected edges simply give correlations between variables (Markov Random Field or Undirected Graphical model):

$$P(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}, X_{8})$$

$$= \frac{1/Z}{E} \exp\{E(X_{1}) + E(X_{2}) + E(X_{3}, X_{1}) + E(X_{4}, X_{2}) + E(X_{5}, X_{2}) + E(X_{6}, X_{3}, X_{4}) + E(X_{7}, X_{6}) + E(X_{8}, X_{5}, X_{6})\}$$

Representation of directed GM

Notation

- Variable, value and index
- Random variable
- Random vector
- Random matrix
- Parameters

A casino has two dice:

Fair die

$$P(1) = P(2) = P(3) = P(5) = P(6) = 1/6$$

Loaded die

$$P(1) = P(2) = P(3) = P(5) = 1/10$$

 $P(6) = 1/2$

Casino player switches back-&-forth between fair and loaded die once every 20 turns

Game:

- 1. You bet \$1
- 2. You roll (always with a fair die)
- 3. Casino player rolls (maybe with fair die, maybe with loaded die)
- 4. Highest number wins \$2

Puzzles regarding the dishonest casino

GIVEN: A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION

- How likely is this sequence, given our model of how the casino works?
 - This is the EVALUATION problem
- What portion of the sequence was generated with the fair die, and what portion with the loaded die?
 - This is the **DECODING** question
- How "loaded" is the loaded die? How "fair" is the fair die? How often does the casino player change from fair to loaded, and back?
 - This is the **LEARNING** question

Knowledge Engineering

Picking variables

- Observed
- Hidden

Picking structure

- CAUSAL
- Generative
- Coupling

Picking Probabilities

- Zero probabilities
- Orders of magnitudes
- Relative values

The underlying source:

Speech signal genome function dice

The sequence:

Phonemes
DNA sequence
sequence of rolls

Probability of a parse

- Given a sequence $\mathbf{x} = \mathbf{x}_1, \dots, \mathbf{x}_T$ and a parse $\mathbf{y} = \mathbf{y}_1, \dots, \mathbf{y}_T$,
- To find how likely is the parse:
 (given our HMM and the sequence)

$$p(\mathbf{x}, \mathbf{y}) = p(x_1, \dots, x_T, y_1, \dots, y_T)$$
 (Joint probability)

$$= p(y_1) p(x_1 | y_1) p(y_2 | y_1) p(x_2 | y_2) \dots p(y_T | y_{T-1}) p(x_T | y_T)$$

$$= p(y_1) P(y_2 | y_1) \dots p(y_T | y_{T-1}) \times p(x_1 | y_1) p(x_2 | y_2) \dots p(x_T | y_T)$$

$$= p(y_1, \dots, y_T) p(x_1, \dots, x_T | y_1, \dots, y_T)$$

- Marginal probability: $p(\mathbf{x}) = \sum_{\mathbf{y}} p(\mathbf{x}, \mathbf{y}) = \sum_{y_1} \sum_{y_2} \cdots \sum_{y_N} \pi_{y_1} \prod_{t=2}^{T} a_{y_{t-1}, y_t} \prod_{t=1}^{T} p(x_t \mid y_t)$ Postorior probability:
- Posterior probability: $p(\mathbf{y} \mid \mathbf{x}) = p(\mathbf{x}, \mathbf{y}) / p(\mathbf{x})$
- We will learn how to do this explicitly (polynomial time)

Bayesian Network:

- A BN is a directed graph whose nodes represent the random variables and whose edges represent direct influence of one variable on another.
- It is a data structure that provides the skeleton for representing a
 joint distribution compactly in a factorized way;
- It offers a compact representation for a set of conditional independence assumptions about a distribution;
- We can view the graph as encoding a generative sampling process executed by nature, where the value for each variable is selected by nature using a distribution that depends only on its parents. In other words, each variable is a stochastic function of its parents.

Bayesian Network: Factorization Theorem

Theorem:

Given a DAG, The most general form of the probability distribution that is consistent with the graph factors according to "node given its parents":

$$P(\mathbf{X}) = \prod_{i=1:d} P(X_i \mid \mathbf{X}_{\pi_i})$$

where X_{π_i} is the set of parents of X_i , d is the number of nodes (variables) in the graph.

- There are two components to any GM:
 - the *qualitative* specification
 - the *quantitative* specification

- Where does the qualitative specification come from?
 - Prior knowledge of causal relationships
 - Prior knowledge of modular relationships
 - Assessment from experts
 - Learning from data
 - We simply link a certain architecture (e.g. a layered graph)
 - •

Local Structures & Independencies

- Common parent
 - Fixing B decouples A and C
 "given the level of gene B, the levels of A and C are independent"
- Cascade
 - Knowing B decouples A and C
 "given the level of gene B, the level gene A provides no extra prediction value for the level of gene C"
- V-structure
 - Knowing C couples A and B
 because A can "explain away" B w.r.t. C
 "If A correlates to C, then chance for B to also correlate to

The language is compact, the concepts are rich!

© Eric Xing @ CMU, 2005-2015

I-maps

- **Defn**: Let P be a distribution over X. We define I(P) to be the set of independence assertions of the form $(X \perp Y \mid Z)$ that hold in P (however how we set the parameter-values).
- Defn: Let K be any graph object associated with a set of independencies I(K). We say that K is an *I-map* for a set of independencies I, I(K) ⊆ I.

We now say that G is an I-map for P if G is an I-map for I(P),
 where we use I(G) as the set of independencies associated.

Facts about I-map

 For G to be an I-map of P, it is necessary that G does not mislead us regarding independencies in P:

any independence that G asserts must also hold in P. Conversely, P may have additional independencies that are not reflected in G

Example:

$$\begin{array}{c|cccc} X & Y & P(X,Y) \\ \hline x^0 & y^0 & 0.08 \\ x^0 & y^1 & 0.32 \\ x^1 & y^0 & 0.12 \\ x^1 & y^1 & 0.48 \\ \end{array}$$

$$\begin{array}{c|cccc} X & Y & P(X,Y) \\ \hline x^0 & y^0 & 0.4 \\ x^0 & y^1 & 0.3 \\ x^1 & y^0 & 0.2 \\ x^1 & y^1 & 0.1 \\ \end{array}$$

What is in I(G) --local Markov assumptions of BN

A Bayesian network structure G is a directed acyclic graph whose nodes represent random variables X_1, \ldots, X_n .

local Markov assumptions

Defn:

Let Pa_{X_i} denote the parents of X_i in G, and $NonDescendants_{X_i}$ denote the variables in the graph that are not descendants of X_i . Then G encodes the following set of *local conditional independence assumptions* $I_{\ell}(G)$:

$$I_{\ell}(G)$$
: $\{X_i \perp NonDescendants_{X_i} \mid Pa_{X_i} : \forall i\}$,

In other words, each node X_i is independent of its nondescendants given its parents.

Graph separation criterion

D-separation criterion for Bayesian networks (D for Directed edges):

Defn: variables x and y are *D-separated* (conditionally independent) given z if they are separated in the *moralized* ancestral graph

Example:

Active trail

- Causal trail X → Z → Y: active if and only if Z is not observed.
- Evidential trail X ← Z ← Y : active if and only if Z is not observed.
- Common cause X ← Z → Y : active if and only if Z is not observed.
- Common effect X → Z ← Y : active if and only if either Z or one of Z's descendants is observed

Definition: Let X, Y, Z be three sets of nodes in G. We say that X and Y are d-separated given Z, denoted d-sep $(X;Y \mid Z)$, if there is no active trail between any node $X \in X$ and $Y \in Y$ given Z.

What is in I(G) --Global Markov properties of BN

 X is d-separated (directed-separated) from Z given Y if we can't send a ball from any node in X to any node in Z using the "Bayesball" algorithm illustrated bellow (and plus some boundary conditions):

 Defn: *I(G)*=all independence properties that correspond to dseparation:

$$I(G) = \{X \perp Z | Y : dsep_G(X; Z | Y)\}$$

 D-separation is sound and complete (more details later)

Example:

Toward quantitative specification of probability distribution

- Separation properties in the graph imply independence properties about the associated variables
- The Equivalence Theorem

For a graph G,

Let \mathcal{D}_1 denote the family of **all distributions** that satisfy I(G),

Let \mathcal{D}_2 denote the family of **all distributions** that factor according to G,

$$P(\mathbf{X}) = \prod_{i=1:d} P(X_i \mid \mathbf{X}_{\pi_i})$$

Then $\mathfrak{D}_1 \equiv \mathfrak{D}_2$.

 For the graph to be useful, any conditional independence properties we can derive from the graph should hold for the probability distribution that the graph represents

Conditional probability tables (CPTs)

a^0	0.75
a ¹	0.25

b^0	0.33
b ¹	0.67

P(a,b,c.d) = P(a)P(b)P(c|a,b)P(d|c)

	a ⁰ b ⁰	a ⁰ b ¹	a¹b ⁰	a¹b¹
\mathbf{c}_0	0.45	1	0.9	0.7
c ¹	0.55	0	0.1	0.3

		C	Ċ
D	d^0	0.3	0.5
	d ¹	07	0.5

Conditional probability density func. (CPDs)

 $A \sim N(\mu_a, \Sigma_a)$ $B \sim N(\mu_b, \Sigma_b)$

P(a,b,c.d) = P(a)P(b)P(c|a,b)P(d|c)

- Defn: A Bayesian network is a pair (G, P) where P factorizes over G, and where P is specified as set of CPDs associated with G's nodes.
 - Conditional independencies imply factorization
 - Factorization according to G implies the associated conditional independencies.
 - Are there other independences that hold for every distribution P that factorizes over G?

Soundness and completeness

D-separation is sound and "complete" w.r.t. BN factorization law

Soundness:

Theorem: If a distribution P factorizes according to G, then $I(G) \subseteq I(P)$.

"Completeness":

"Claim": For any distribution P that factorizes over G, if $(X \perp Y \mid Z) \in I(P)$ then $d\text{-}sep_G(X; Y \mid Z)$.

Contrapositive of the completeness statement

- "If X and Y are not d-separated given Z in G, then X and Y are dependent in all distributions P that factorize over G."
- Is this true?

Distributional equivalence and I-equivalence

- All independence in I_d(G) will be captured in I_f(G), is the reverse true?
- Are "not-independence" from G all honored in P_f?

Distributional equivalence and I-equivalence

- All independence in I_d(G) will be captured in I_f(G), is the reverse true?
- Are "not-independence" from G all honored in P_f?

Soundness and completeness

- Contrapositive of the completeness statement
 - "If X and Y are not d-separated given Z in G, then X and Y are dependent in all distributions P that factorize over G."
 - Is this true?
- No. Even if a distribution factorizes over G, it can still contain additional independencies that are not reflected in the structure
 - Example: graph A->B, for actually independent A and B
 (the independence can be captured by some subtle way
 of parameterization)

$$\begin{array}{c|cccc} A & b^0 & b^1 \\ \hline a^0 & 0.4 & 0.6 \\ a^1 & 0.4 & 0.6 \\ \end{array}$$

• Thm: Let G be a BN graph. If X and Y are not d-separated given Z in G, then X and Y are dependent in **some** distribution P that factorizes over G.

 Theorem: For almost all distributions P that factorize over G, i.e., for all distributions except for a set of "measure zero" in the space of CPD parameterizations, we have that I(P) = I(G)

Uniqueness of BN

 Very different BN graphs can actually be equivalent, in that they encode precisely the same set of conditional independence assertions.

$$(X \perp Y \mid Z)$$
.

I-equivalence

- Defn: Two BN graphs G1 and G2 over X are I-equivalent if I(G1) = I(G2).
 - The set of all graphs over *X* is partitioned into a set of mutually exclusive and exhaustive *I-equivalence classes*, which are the set of equivalence classes induced by the I-equivalence relation.

- Any distribution P that can be factorized over one of these graphs can be factorized over the other.
- Furthermore, there is no intrinsic property of P that would allow us associate it with one graph rather than an equivalent one.
- This observation has important implications with respect to our ability to determine the directionality of influence.

Detecting I-equivalence

Defn: The skeleton of a Bayesian network graph G over V is an undirected graph over V that contains an edge {X, Y} for every edge (X, Y) in G.

- Thm: Let G_1 and G_2 be two graphs over V. If G_1 and G_2 have the same skeleton and the same set of v-structures then they are I-equivalent.
 - graph equivalence
 - Same trail
 - But not necessarily active

Minimum I-MAP

- Complete graph is a (trivial) I-map for any distribution, yet it does not reveal any of the independence structure in the distribution.
 - Meaning that the graph dependence is arbitrary, thus by careful parameterization an dependencies can be captured
 - We want a graph that has the maximum possible I(G), yet still $\subseteq I(P)$
- **Defn**: A graph object G is a *minimal I-map* for a set of independencies I if it is an I-map for I, and if the removal of even a single edge from G renders it not an I-map.

Simple BNs: Conditionally Independent Observations

Model parameters

Data =
$$\{y_1, ..., y_n\}$$

Plate = rectangle in graphical model

variables within a plate are replicated in a conditionally independent manner

Hidden Markov Model: from static to dynamic mixture models

Static mixture

Dynamic mixture

Definition (of HMM)

Observation space

Alphabetic set: $\mathbb{C} = \{c_1, c_2, \dots, c_K\}$ Euclidean space: \mathbb{R}^d

Index set of hidden states

$$\mathbb{I} = \{1, 2, \cdots, M\}$$

Transition probabilities between any two states

$$p(y_t^j = 1 \mid y_{t-1}^i = 1) = a_{i,j},$$
or
$$p(y_t \mid y_{t-1}^i = 1) \sim \text{Multinomial}(a_{i,1}, a_{i,1}, \dots, a_{i,M}), \forall i \in \mathbb{I}.$$

Start probabilities

$$p(\mathbf{y}_1) \sim \text{Multinomial}(\pi_1, \pi_2, ..., \pi_M)$$

Emission probabilities associated with each state

$$p(x_t \mid y_t^i = 1) \sim \text{Multinomial}(b_{i,1}, b_{i,1}, \dots, b_{i,K}), \forall i \in \mathbb{I}.$$

or in general:

$$p(\mathbf{x}_t \mid \mathbf{y}_t^i = 1) \sim f(\cdot \mid \theta_i), \forall i \in \mathbb{I}.$$

Probability of a parse

- Given a sequence $\mathbf{x} = \mathbf{x}_1, \dots, \mathbf{x}_T$ and a parse $\mathbf{y} = \mathbf{y}_1, \dots, \mathbf{y}_T$,
- To find how likely is the parse:
 (given our HMM and the sequence)


```
p(\mathbf{x}, \mathbf{y}) = p(x_1, \dots, x_T, y_1, \dots, y_T)  (Joint probability)

= p(y_1) p(x_1 | y_1) p(y_2 | y_1) p(x_2 | y_2) \dots p(y_T | y_{T-1}) p(x_T | y_T)

= p(y_1) P(y_2 | y_1) \dots p(y_T | y_{T-1}) \times p(x_1 | y_1) p(x_2 | y_2) \dots p(x_T | y_T)

= p(y_1, \dots, y_T) p(x_1, \dots, x_T | y_1, \dots, y_T)
```

Summary: Representing Multivariate Distribution

 Representation: what is the joint probability dist. on multiple variables?

$$P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8,)$$

- How many state configurations in total? --- 28
- Are they all needed to be represented?
- Do we get any scientific/medical insight?

Factored representation: the chain-rule

$$\begin{split} &P(X_{1},X_{2},X_{3},X_{4},X_{5},X_{6},X_{7},X_{8})\\ &=P(X_{1})P(X_{2}\mid X_{1})P(X_{3}\mid X_{1},X_{2})P(X_{4}\mid X_{1},X_{2},X_{3})P(X_{5}\mid X_{1},X_{2},X_{3},X_{4})P(X_{6}\mid X_{1},X_{2},X_{3},X_{4},X_{5})\\ &P(X_{7}\mid X_{1},X_{2},X_{3},X_{4},X_{5},X_{6})P(X_{8}\mid X_{1},X_{2},X_{3},X_{4},X_{5},X_{6},X_{7}) \end{split}$$

- This factorization is true for any distribution and any variable ordering
- Do we save any parameterization cost?
- If X_i 's are independent: $(P(X_i|\cdot)=P(X_i))$

$$P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8)$$

$$= P(X_1)P(X_2)P(X_3)P(X_4)P(X_5)P(X_6)P(X_7)P(X_8) = \prod_{i} P(X_i)$$

•What do we gain?

•What do we lose?

Summary: take home messages

- Defn (3.2.5): A Bayesian network is a pair (G, P) where P factorizes over G, and where P is specified as set of local conditional probability dist. CPDs associated with G's nodes.
- A BN capture "causality", "generative schemes", "asymmetric influences", etc., between entities
- Local and global independence properties identifiable via dseparation criteria (Bayes ball)
- Computing joint likelihood amounts multiplying CPDs
 - But computing marginal can be difficult
 - Thus inference is in general hard
- Important special cases:
 - Hidden Markov models
 - Tree models

A few myths about graphical models

• They require a localist semantics for the nodes

They require a causal semantics for the edges

They are necessarily Bayesian

They are intractable

