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Max-margin learning 

Prior knowledge,  
bypass model selection, 

Data integration, 
scalable inference 

… 

generalization 
dual sparsity 
efficient solvers 
… 

nonlinear transformation 
rich forms of data 
… 

Regularized Bayesian Inference	


Learning GMs 
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Bayesian Inference	

l  A coherent framework of dealing with uncertainties 

l  Bayes’ rule offers a mathematically rigorous computational 
mechanism for combining prior knowledge with incoming 
evidence 

Thomas Bayes (1702 – 1761) 	


•  M: a model from some hypothesis space 
•  x: observed data	


3 © Eric Xing @ CMU, 2005-2014 



Parametric Bayesian Inference 

A parametric likelihood:  
Prior on θ : 
Posterior distribution 

       is represented as a finite set of parameters     	


Examples:  
•  Gaussian distribution prior + 2D Gaussian likelihood    → Gaussian posterior distribution  
•  Dirichilet distribution prior + 2D Multinomial likelihood →	
  Dirichlet posterior distribution  
•  Sparsity-inducing priors + some likelihood models     →	
  Sparse Bayesian inference	
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Nonparametric Bayesian 
Inference 

A nonparametric likelihood:  
Prior on     : 
Posterior distribution 

Examples:  
	
  	
  	
  	
  	
  	
  → see next slide	


       is a richer model, e.g., with an infinite set of parameters	
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probability measure	
 binary matrix	


function	


Dirichlet Process Prior [Antoniak, 1974] 
+ Multinomial/Gaussian/Softmax likelihood	


Indian Buffet Process Prior [Griffiths & Gharamani, 2005] 
+ Gaussian/Sigmoid/Softmax likelihood	


Gaussian Process Prior [Doob, 1944; Rasmussen & Williams, 2006] 
+ Gaussian/Sigmoid/Softmax likelihood	


Nonparametric Bayesian 
Inference 
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Why Bayesian Nonparametrics? 
l  Let the data speak for themselves 
l  Bypass the model selection problem 

l  let data determine model complexity (e.g., the number of components in mixture 
models) 

l  allow model complexity to grow as more data observed 
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It is desirable to further regularize the posterior distribution 
 

l  An extra freedom to perform Bayesian inference 
l  Arguably more direct to control the behavior of models 
l  Can be easier and more natural in some examples 

likelihood model prior posterior 

Can we further control the 
posterior distributions? 
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Can we further control the 
posterior distributions? 

l  Directly control the posterior distributions? 
l  Not obvious how … 

likelihood model prior posterior 

hard constraints 
(A single feasible space)	


soft constraints 
(many feasible subspaces with different  

complexities/penalties)	
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l  Bayes’ rule is equivalent to: 

A direct but trivial constraint on the posterior distribution	


[Zellner, Am. Stat. 1988]	


E.T. Jaynes (1988): “this fresh interpretation of Bayes’ theorem could 
make the use of Bayesian methods more attractive and widespread, and 
stimulate new developments in the general theory of inference”	


likelihood model prior posterior 

A reformulation of Bayesian 
inference 
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Regularized Bayesian Inference 
(Ganchev et al.’10) 

 
where, e.x., 
 
 
and 

 
Solving such constrained optimization problem needs convex 
duality theory 
 

So, where do the constraints come from?  
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Recall our evolution of the Max-
Margin Learning Paradigms 

 ?                        
 
 
 

SVM                       
 
 
 

SVM                       
 
 
 

b r a c e
M3N                       

 
 
 

MED                       
 
 
 

MED                       
 
 
 

M3N                       
 
 
 

MED-MN 
= SMED + “Bayesian” M3N 
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l  Structured MaxEnt Discrimination (SMED): 

l  Feasible subspace of weight distribution: 

l  Average from distribution of M3Ns 

Maximum Entropy Discrimination 
Markov Networks 

p
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Can we use this scheme to learn 
models other than MN? 

14 © Eric Xing @ CMU, 2005-2014 



Recall the 3 advantages of MEDN 
l  An averaging Model: PAC-Bayesian prediction error guarantee 

(Theorem 3) 

l  Entropy regularization: Introducing useful biases 
n  Standard Normal prior => reduction to standard M3N (we’ve seen it) 

n  Laplace prior => Posterior  
 shrinkage effects (sparse M3N) 

 
 

 
l  Integrating Generative and Discriminative principles (next 

class) 
n  Incorporate latent variables and structures (PoMEN) 
n  Semisupervised learning (with partially labeled data) 
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Latent Hierarchical MaxEnDNet 

l  Web data extraction 
l  Goal: Name, Image, Price,  

 Description, etc. 

Web Page

Data Record

Image

Name Desc Price Note

Desc

Note

Data Record

Image

Desc Desc Name Desc Price Note Note

�  Hierarchical 
labeling 

�  Advantages: 
o  Computational efficiency 
o  Long-range dependency 
o  Joint extraction	
 {image} {name, price} 

{name} {price} {name} {price} 

{image} {name, price} 

{desc} 

{Head} {Tail} {Info Block} 

{Repeat block} {Note} {Note} 
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Partially Observed MaxEnDNet 
(PoMEN) 

l   Now we are given partially labeled data: 

§  PoMEN: learning 

§  Prediction: 

Web Page

Data Record

Image

Name Desc Price Note

Desc

Note

Data Record

Image

Desc Desc Name Desc Price Note Note

(Zhu et al, NIPS 2008)	
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Alternating Minimization Alg. 
l  Factorization assumption: 

l  Alternating minimization: 
§  Step 1: keep        fixed, optimize over   

§  Step 2: keep         fixed, optimize over  

o  Normal prior 
•  M3N problem (QP) 

o  Laplace prior 
•  Laplace M3N problem (VB) 

Equivalently reduced to an LP with  
a polynomial number of constraints 
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Experimental Results 
l  Web data extraction: 

§  Name, Image, Price, Description 

§  Methods: 
§  Hierarchical CRFs, Hierarchical 

M^3N 
§  PoMEN, Partially observed HCRFs 

§  Pages from 37 templates 
o  Training: 185 (5/per template) 

pages, or 1585 data records 
o  Testing: 370 (10/per template) 

pages, or 3391 data records 

§  Record-level Evaluation 
o  Leaf nodes are labeled 

§  Page-level Evaluation 
o  Supervision Level 1: 

§  Leaf nodes and data record nodes 
are labeled 

o  Supervision Level 2: 
§  Level 1 + the nodes above data 

record nodes 

Web Page

Data Record

Image

Name Desc Price Note

Desc

Note

Data Record

Image

Desc Desc Name Desc Price Note Note
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Record-Level Evaluations 
l  Overall performance: 

§  Avg F1:  
o  avg F1 over all attributes 

§  Block instance accuracy: 
o  % of records whose Name, 

Image, and Price are correct 

l  Attribute performance: 
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Page-Level Evaluations 
l  Supervision Level 1: 

§  Leaf nodes and data record 
nodes are labeled 

l  Supervision Level 2: 
§  Level 1 + the nodes above 

data record nodes 

4/13/15	
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l  Structured MaxEnt Discrimination (SMED): 

l  Feasible subspace of weight distribution: 

l  Average from distribution of PoMENs 

l  We can use this for any p and p0 ! 

Key message from PoMEN  

p
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Max-margin learning 

An all inclusive paradigm for 
learning general GM --- RegBayes 
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Predictive Latent Subspace Learning 
via a large-margin approach 

 
 

 … where M is any subspace model and p is a 
parametric Bayesian prior 	
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l  Finding latent subspace representations (an old topic) 
l  Mapping a high-dimensional representation into a latent low-dimensional representation, 

where each dimension can have some interpretable meaning, e.g., a semantic topic 

l  Examples: 
l  Topic models (aka LDA) [Blei et al 2003] 

l  Total scene latent space models [Li et al 2009] 

l  Multi-view latent Markov models [Xing et al 2005] 

l  PCA, CCA, … 

⇒

⇒

⇒

Ath
lete 
Hor
se 
Gra
ss 
Tre
es 
Sky 
Sad
dle 

 

Unsupervised Latent Subspace 
Discovery 
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l  Unsupervised latent subspace representations are generic but can be sub-
optimal for predictions 

l  Many datasets are available with supervised side information 

l  Can be noisy, but not random noise (Ames & Naaman, 2007) 
l  labels & rating scores are usually assigned based on some intrinsic property of the data 
l  helpful to suppress noise and capture the most useful aspects of the data 

l  Goals: 
l  Discover latent subspace representations that are both predictive and interpretable by 

exploring weak supervision information 
 

�  Tripadvisor Hotel Review 
(http://www.tripadvisor.com) 

 

�  LabelMe 
http://labelme.csail.mit.edu/ 

�  Many others 

Flickr (http://www.flickr.com/) 

Predictive Subspace Learning 
with Supervision 
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I. LDA: Latent Dirichlet Allocation	


l  Joint Distribution: 

l  Variational Inference with             : 

l  Minimize the variational bound to estimate parameters and infer the posterior distribution	


�  Generative Procedure: 
�  For each document d: 

�  Sample a topic proportion 
�  For each word: 
–  Sample a topic 
–  Sample a word 

(Blei et al., 2003)	


exact inference intractable!	
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l  Bayesian sLDA: 

l  MED Estimation: 
l  MedLDA Regression Model 

 
l  MedLDA Classification Model 

predictive accuracy	

model fitting	


(Zhu et al, ICML 2009)	


 

Maximum Entropy Discrimination 
LDA (MedLDA) 
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Document Modeling	

l  Data Set: 20 Newsgroups 
l  110 topics + 2D embedding with t-SNE (var der Maaten & Hinton, 2008)	


MedLDA	
 LDA	
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Classification	

l  Data Set: 20Newsgroups 

–  Binary classification:  “alt.atheism”  and “talk.religion.misc” (Simon et al., 2008) 
–  Multiclass Classification: all the 20 categories 

l  Models:  DiscLDA, sLDA (Binary ONLY! Classification sLDA (Wang et al., 2009)), 
LDA+SVM (baseline), MedLDA, MedLDA+SVM 

l  Measure: Relative Improvement Ratio	
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Regression	

l  Data Set: Movie Review (Blei & McAuliffe, 2007) 
l  Models: MedLDA(partial), MedLDA(full), sLDA, LDA+SVR 
l  Measure: predictive R2  and per-word log-likelihood 
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Time Efficiency	

l  Binary Classification 

 
l  Multiclass: 

—  MedLDA is comparable with LDA+SVM 
l  Regression: 

—  MedLDA is comparable with sLDA 
32 © Eric Xing @ CMU, 2005-2014 



l  The “Total Scene Understanding” Model (Li et al, CVPR 2009) 

l  Using MLE to estimate model parameters 

Athlete	
  
Horse	
  
Grass	
  
Trees	
  
Sky	
  
Saddle	
  
	
  

class: Polo 

II. Upstream Scene 
Understanding Models 
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Scene Classification 
l  8-category sports data set (Li & Fei-Fei, 2007): 

 

l  Fei-Fei’s theme model: 0.65  
 (different image representation) 

l  SVM: 0.673 

• 1574 images (50/50 split) 
• Pre-segment each image into 
regions 
• Region features: 

• color, texture, and location 
• patches with SIFT features  

• Global features:  
• Gist (Oliva & Torralba, 2001) 
• Sparse SIFT codes (Yang et al, 2009) 
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l  Classification results:	


$ROI+Gist(annota;on)	
  used	
  human	
  annotated	
  interest	
  regions.	


•  67-category MIT indoor scene (Quattoni & Torralba, 
2009): 
•  ~80 per-category for training; ~20 per-category for testing 
•  Same feature representation as above 
•  Gist global features 

MIT Indoor Scene 
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III. Supervised Multi-view RBMs 
l  A probabilistic method with an additional view of response variables 

Y 

 

 

l  Parameters can be learned with maximum likelihood estimation, 
e.g., special supervised Harmonium (Yang et al., 2007) 
l  contrastive divergence is the commonly used approximation method in 

learning undirected latent variable models (Welling et al., 2004; 
Salakhutdinov & Murray, 2008). 

Y1 YL

normalization factor 
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l  t-SNE (van der Maaten & Hinton, 2008) 2D embedding of the discovered 
latent space representation on the TRECVID 2003 data 

 
l  Avg-KL: average pair-wise divergence	


MMH TWH 

Predictive Latent Representation 
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Predictive Latent Representation 
l  Example latent topics discovered by a 60-topic MMH on Flickr Animal Data	
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l  Data Sets: 
–  (Left) TRECVID 2003: (text + image features) 
–  (Right) Flickr 13 Animal: (sift + image features) 

l  Models:   
l  baseline(SVM),DWH+SVM, GM-Mixture+SVM, GM-LDA+SVM, TWH, 

MedLDA(sift only), MMH 

TRECVID Flickr 

Classification Results 
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l  Data Set:  TRECVID 2003 
–  Each test sample is treated as a query, training samples are ranked based on the 

cosine similarity between a training sample and the given query 
–  Similarity is computed based on the discovered latent topic representations 

l  Models:  DWH, GM-Mixture, GM-LDA, TWH,  MMH 
l  Measure: (Left) average precision on different topics and (Right) precision-

recall curve	


Retrieval Results 
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Infinite SVM and infinite latent SVM:  
 

-- where SVMs meet NB for classification and feature 
selection 

 
 
 

 … where M is any combinations of classifiers and p is 
a nonparametric Bayesian prior 	
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Mixture of SVMs 
l  Dirichlet process mixture of large-margin kernel machines 
l  Learn flexible non-linear local classifiers; potentially lead to a better 

control on model complexity, e.g., few unnecessary components 

l  The first attempt to integrate Bayesian nonparametrics, large-margin 
learning, and kernel methods 

 

SVM using RBF kernel Mixture of 2 linear SVM Mixture of 2 RBF-SVM 

42 © Eric Xing @ CMU, 2005-2014 



Infinite SVM	

l  RegBayes framework: 

l  Model – latent class model 
l  Prior – Dirichlet process 
l  Likelihood – Gaussian likelihood 
l  Posterior constraints – max-margin constraints 

direct and rich constraints on posterior distribution	


convex function	
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Infinite SVM 
l  DP mixture of large-margin classifiers 

 
l  Given a component classifier:  
 
l  Overall discriminant function: 

l  Prediction rule: 

l  Learning problem: 
 

Graphical model with stick-breaking 
construction of DP 

process of determining which classifier to use: 
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Infinite SVM 
l  Assumption and relaxation 

l  Truncated variational distribution 

l  Upper bound the KL-regularizer 

l  Opt. with coordinate descent 
l  For         , we solve an SVM learning problem  
l  For        , we get the closed update rule 

l  The last term regularizes the mixing proportions to favor prediction 
l  For                 , the same update rules as in (Blei & Jordan, 2006) 

Graphical model with stick-breaking 
construction of DP 
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Experiments on high-dim real 
data 

l  Classification results and test time: 

l  Clusters: 
l  simiar backgroud images group 
l  a cluster has fewer categories 

For training, linear-iSVM is very efficient (~200s);  
RBF-iSVM is much slower, but can be significantly  
improved using efficient kernel methods (Rahimi  
& Recht, 2007; Fine & Scheinberg, 2001) 
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Learning Latent Features	

l  Infinite SVM is a Bayesian nonparametric latent class model 

l  discover clustering structures 
l  each data point is assigned to a single cluster/class 

l  Infinite Latent SVM is a Bayesian nonparametric latent 
feature/factor model 
l  discover latent factors 
l  each data point is mapped to a set (can be infinite) of latent factors 

l  Latent factor analysis is a key technique in many fields; Popular models are FA, 
PCA, ICA, NMF, LSI, etc. 
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Infinite Latent SVM	

l  RegBayes framework: 

l  Model – latent feature model 
l  Prior – Indian Buffet process 
l  Likelihood – Gaussian likelihood 
l  Posterior constraints – max-margin constraints 

direct and rich constraints on posterior distribution	


convex function	
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Beta-Bernoulli Latent Feature 
Model	


l  A random finite binary latent feature models 

l      is the relative probability of each feature being on, e.g., 

l       are binary vectors, giving the latent structure that’s used to generate 
the data, e.g.,  
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Indian Buffet Process	

l  A stochastic process on infinite binary feature matrices 
l  Generative procedure: 

l  Customer 1 chooses the first        dishes:  
l  Customer i chooses: 

l  Each of the existing dishes with probability  

l         additional dishes, where  

50 © Eric Xing @ CMU, 2005-2014 



Posterior Constraints – 
classification 	


l  Suppose latent features z are given, we define latent 
discriminant function: 

l  Define effective discriminant function (reduce 
uncertainty): 

l   Posterior constraints with max-margin principle 
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Experimental Results	

l  Classification 

l  Accuracy and F1 scores on TRECVID2003 and Flickr image datasets 
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Large-margin learning 

Linear Expectation Operator 
(resolve uncertainty)	


Summary 

53 © Eric Xing @ CMU, 2005-2014 



 

Summary	

•  A general framework of MaxEnDNet for learning structured input/output models 

–  Subsumes the standard M3Ns  
–  Model averaging: PAC-Bayes theoretical error bound 
–  Entropic regularization: sparse M3Ns  
–  Generative + discriminative: latent variables, semi-supervised learning on partially 

labeled data, fast inference 

•  PoMEN 
–  Provides an elegant approach to incorporate latent variables and structures under max-

margin framework 
–  Enable Learning arbitrary graphical models discriminatively 

•  Predictive Latent Subspace Learning 
–  MedLDA for text topic learning 
–  Med total scene model for image understanding 
–  Med latent MNs for multi-view inference    

•  Bayesian nonparametrics meets max-margin learning 

•  Experimental results show the advantages of max-margin learning over 
likelihood methods in EVERY case.  
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Remember: Elements of Learning 
l  Here are some important elements to consider before you start: 

l  Task: 
l  Embedding? Classification? Clustering? Topic extraction? … 

l  Data and other info: 
l  Input and output (e.g., continuous, binary, counts, …)  
l  Supervised or unsupervised, of a blend of everything? 
l  Prior knowledge? Bias?  

l  Models and paradigms: 
l  BN? MRF? Regression? SVM? 
l  Bayesian/Frequents ?  Parametric/Nonparametric? 

l  Objective/Loss function: 
l  MLE? MCLE? Max margin? 
l  Log loss, hinge loss, square loss? … 

l  Tractability and exactness trade off: 
l  Exact inference? MCMC? Variational? Gradient? Greedy search?   
l  Online? Batch? Distributed?  

l  Evaluation: 
l  Visualization? Human interpretability? Perperlexity? Predictive accuracy?  
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