
Deep Learning and Graphical 
Models
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Reading:

Probabilistic Graphical Models 
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 From biological neuron to artificial neuron (perceptron)

 From biological neuron network to artificial neuron networks

Perceptron and Neural Nets
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A perceptron learning algorithm

 Recall the nice property of sigmoid function

 Consider regression problem f:XY , for scalar Y:

 We used to maximize the conditional data likelihood

 Here …
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Gradient Descent

xd = input

td = target output

od =observed unit

output

wi =weight i
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The perceptron learning rules

xd = input

td = target output

od =observed unit

output

wi =weight i

Batch mode:
Do until converge:

1. compute gradient ED[w]

2.  

Incremental mode:
Do until converge:

 For each training example d in D

1. compute gradient Ed[w]

2.

where 
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Neural Network Model
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“Combined logistic models”
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Not really, 
no target for hidden units...
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Backpropagation Algorithm
 Initialize all weights to small random numbers

Until convergence, Do

1. Input the training example to the network 
and compute the network outputs

1. For each output unit k

2. For each hidden unit h

3. Undate each network weight wi,j

where

xd = input

td = target output

od =observed unit

output

wi =weight i
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More on Backpropatation
 It is doing gradient descent over entire network weight vector
 Easily generalized to arbitrary directed graphs
 Will find a local, not necessarily global error minimum

 In practice, often works well (can run multiple times)

 Often include weight momentum 

 Minimizes error  over training examples
 Will it generalize well to subsequent testing examples?

 Training can take thousands of iterations,  very slow!
 Using network after training is very fast
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Learning Hidden Layer 
Representation  
 A network:

 A target function:

 Can this be learned?
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Learning Hidden Layer 
Representation  
 A network:

 Learned hidden layer representation:
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Training
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Training
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Modern ANN topics: 
“Deep” Learning
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X1 X2 X3

“X1” “X1X3” “X1X2X3”

Y

“X2”

X1 X2 X3 X1X2 X1X3 X2X3

Y

(23-1) possible combinations

X1X2X3

Y = a(X1) + b(X2) + c(X3) + d(X1X2) + ...

Non-linear LR vs. ANN
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Courtesy: Lee and Ng

Computer vision features

SIFT Spin image

HoG RIFT

Textons GLOH

Drawbacks of feature engineering
1. Needs expert knowledge
2. Time consuming hand-tuning
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Using ANN to capture 
hierarchical representation

Good Representations are hierarchical

• In Language: hierarchy in syntax and semantics
– Words->Parts of Speech->Sentences->Text
– Objects,Actions,Attributes...-> Phrases -> Statements -> Stories

• In Vision: part-whole hierarchy
– Pixels->Edges->Textons->Parts->Objects->Scenes

Trainable
Feature
Extractor

Trainable
Feature
Extractor

Trainable
Classifier
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“Deep” learning: learning hierarchical 
representations

• Deep Learning: learning a hierarchy of internal representations
• From low-level features to mid-level invariant representations, 

to object identities
• Representations are increasingly invariant as we go up the 

layers
• using multiple stages gets around the specificity/invariance 

dilemma

Trainable
Feature
Extractor

Trainable
Feature
Extractor

Trainable
Classifier

Learned Internal Representation
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“Deep” models
 Neural Networks: Feed-forward*

 You have seen it 

 “Deep” Restrictive Boltzmann Machines (RBM)
 Probabilistic – Undirected: MRFs and RBMs*

 Autoencoders (multilayer NN with output = input)
 Non-Probabilistic -Directed: PCA, Sparse Coding

 Recurrent Neural Networks*

 Convolutional Neural Nets

Different loss 
function 
designs

Different 
architecture  
designs
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Example I: The Restrictive Boltzmann 
Machines, aka., the “Harmonium”

hidden units

visible units

The Harmonium  (Smolensky –’86)

History:
Smolensky (’86), Proposed the architechture.
Freund & Haussler (’92), The “Combination Machine” (binary), learning with projection pursuit.
Hinton (’02), The “Restricted Boltzman Machine” (binary), learning with contrastive divergence. 
Marks & Movellan (’02), Diffusion Networks (Gaussian).
Welling, Hinton, Osindero (’02), “Product of Student-T Distributions” (super-Gaussian)
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A Two-layer MRFs

hidden units

visible units
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Boltzmann machines:
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how do we couple them?
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jh

They map to the harmonium random field:
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vector of  local 
sufficient statistics 
(features)

coupling in the log-
domain with
shifted parameters

ix

A Constructive Definition
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The Computational Trade-off

Undirected model: Learning is hard, inference is easy.

Directed Model: Learning is "easier", inference is hard.

Example: Document Retrieval.

topics

words
Retrieval is based on comparing (posterior) topic distributions of documents.
- directed models:  inference is slow. Learning is relatively “easy”.
- undirected model: inference is fast. Learning is slow but can be done offline.
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An RMB for text/image

words counts

topics
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xi,n = 1: word i has count n

hj = 3: topic j has strength 3

EFH or DWH (welling et al 2005, Xing et al 2005):
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In practice, only 1-0 counting is used!!!
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Recall
Properties of Directed Networks

hidden units

visible units

 Semantic naturalness:
 intuitive causal structural, easy to design, comprehend and manipulate

 Bayesian extensions:
 straightforward to set up, conjugate ..., but hyper-para fitting is non-trivial

 Computational properties:  
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Properties of Directed Networks
 Factors are marginally 

independent.

 Factors are conditionally 
dependent given observations 
on the visible nodes. 

 Easy ancestral sampling.

 Learning with (variational) EM
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)|(~ xhph

)|(~ hxpx

Properties of RBMs
 Factors are marginally dependent.

 Factors are conditionally 
independent given observations on 
the visible nodes. 

 Iterative Gibbs sampling.

 Learning with contrastive 
divergence 

)|(∏=)|( ww ii PP 
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Deep RBMs
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Convolutions,
Filtering

Pooling
Subsampling

Convolutions,
Filtering Pooling

Subsampling

Convolutions,
Filtering

Convolutions,
Classification

Example II: Convolutional Networks

Hierarchical Architecture
Representations are more global, more invariant, and more 
abstract as we go up the layers

Alternated Layers of Filtering and Spatial Pooling
Filtering detects conjunctions of features
Pooling computes local disjunctions of features

Fully Trainable
All the layers are trainable
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Filtering + NonLinearity + Pooling = 1 
stage of a Convolutional Net

• [Hubel & Wiesel 1962]: 
– simple cells detect local features
– complex cells “pool” the outputs of simple cells within a retinotopic 

neighborhood. 

pooling 
subsampling

“Simple cells”
“Complex cells”

Multiple 
convolutions

Retinotopic Feature Maps
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input
1@32x32

Layer 1
6@28x28

Layer 2
6@14x14

Layer 3
12@10x10 Layer 4

12@5x5

Layer 5
100@1x1

10

5x5
convolution

5x5
convolution

5x5
convolution2x2

pooling/
subsampling

2x2
pooling/
subsampling

Layer 6: 10

Convolutional Net Architecture 
for Hand-writing recognition

 Convolutional net for handwriting recognition  (400,000 synapses)
 Convolutional layers (simple cells): all units in a feature plane share the same weights
 Pooling/subsampling layers (complex cells): for invariance to small distortions.
 Supervised gradient-descent learning using back-propagation
 The entire network is trained end-to-end.  All the layers are trained simultaneously.
 [LeCun et al. Proc IEEE, 1998]
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How to train?

But this is very slow !!!
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input ...

Layer-wise Unsupervised Pre-
training
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input ...

features ...

Layer-wise Unsupervised Pre-
training
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input ...

features ...

Reconstruction
of input

... ... input
?
=

Layer-wise Unsupervised Pre-
training
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input ...

features ...

Layer-wise Unsupervised Pre-
training

© Eric Xing @ CMU, 2015 40



input ...

features ...

More abstract 
features

...

Layer-wise Unsupervised Pre-
training
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input ...

features ...

More abstract 
features

...

Reconstruction
of features

... ...=
?

Layer-wise Unsupervised Pre-
training
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input ...

features ...

More abstract 
features

...

Layer-wise Unsupervised Pre-
training
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input ...

features ...

More abstract 
features

...

Even more 
abstract features

...

Layer-wise Unsupervised Pre-
training
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input ...

features ...

More abstract 
features

...

Even more 
abstract features

...

Output
f(X) =

? Target
Y

Layer-wise Unsupervised Pre-
training
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Feature learning
 Successful learning of intermediate representations 

[Lee et al ICML 2009, Lee et al NIPS 2009]
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Deep Learning is Amazing!!!
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A Few Thoughts on How We May 
Want to Further Study DNN
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What makes it work? Why?
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An MLer’s View of the World 

Loss functions
(likelihood, reconstruction, margin, …)
Loss functions
(likelihood, reconstruction, margin, …)

Constraints
(normality, sparsity, label, prior, KL, sum,  …) 
Constraints
(normality, sparsity, label, prior, KL, sum,  …) 

Algorithms
MC (MCMC, Importance), Opt (gradient, IP), … 
Algorithms
MC (MCMC, Importance), Opt (gradient, IP), … 

Stopping criteria
Change in objective, change in 
update …

Stopping criteria
Change in objective, change in 
update …

Structures
(Graphical, group, chain, tree, iid, …)
Structures
(Graphical, group, chain, tree, iid, …)

Empirical 
Performances?
Empirical 
Performances?
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DL ML (e.g., GM)

Empirical goal: e.g., classification, feature 
learning

e.g., transfer learning, latent 
variable inference

Structure: Graphical Graphical

Objective: Something aggregated from 
local functions

Something aggregated from local 
functions 

Vocabulary: Neuron, activation/gate function 
… 

Variables, potential function

Algorithm: A single, unchallenged, 
inference algorithm -- BP

A major focus of open research,
many algorithms, and more to 
come

Evaluation: On a black-box score -- end 
performance

On almost every intermediate 
quantity

Implementation: Many untold-tricks More or less standardized 

Experiments: Massive, real data (GT
unknown)

Modest, often simulated data 
(GT known)


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A slippery slope to mythology?
 How to conclusively determine what an improve in 

performance could come from: 
 Better model (architecture, activation, loss, size)?
 Better algorithm (more accurate, faster convergence)?
 Better training data?

 Current research in DL seem to get everything 
above mixed by evaluating on a black-box 
“performance score” that is not directly reflecting 
 Correctness of inference
 Achievability/usefulness of model
 Variance due to stochasticity
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Although a single dimension (# of layers) is 
compared, many other dimensions may also change, 
to name a few:

• Per training-iteration time
• Tolerance to inaccurate inference
• Identifiability
• …

An Example
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Inference quality
 Training error is the old concept of a classifier with 

no hidden states, no inference is involved, and thus 
inference accuracy is not an issue

 But a DNN is not just a classifier, some DNNs are 
not even fully supervised, there are MANY hidden 
states, why their inference quality is not taken 
seriously?

 In DNN, inference accuracy = visualizing features
 Study of inference accuracy is badly discouraged
 Loss/accuracy is not monitored 
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Inference/Learning Algorithm, 
and their evaluation
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Learning a GM with Hidden 
Variables – the thought process
 In fully observed iid settings, the log likelihood decomposes into a 

sum of local terms (at least for directed models).

 With latent variables, all the parameters become coupled together 
via marginalization

),|(log)|(log)|,(log);( xzc zxpzpzxpD  l

 
z

xz
z

c zxpzpzxpD ),|()|(log)|,(log);( l
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Gradient Learning for mixture 
models
 We can learn mixture densities using gradient descent on the log 

likelihood. The gradients are quite interesting:

 In other words, the gradient is aggregated from many other 
intermediate states   
 Implication: costly iteration, heavy coupling between parameters

 Other issues: imposing constraints, identifiability …
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Then Alternative Approaches 
Were Proposed
 The EM algorithm

 M: a convex problem
 E: approximate constrained optimization

 Mean field
 BP/LBP
 Marginal polytope

 Spectrum algorithm: 
 redefine intermediate states, convexify the original problem
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Learning a DNN
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Learning a DNN
 In a nutshell, sequentially, and recursively apply:

 Things can getting hairy when locally defined losses are 
introduced, e.g., auto-encoder, which breaks a loss-driven 
global optimization formulation

 Depending on starting point, BP converge or diverge with 
probability 1
 A serious problem in Large-Scale DNN
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Some new ideas to speed up
 Stacking from smaller building blocks

 Layers
 Blocks

 Approximate Inference
 Undirected connections for all layers (Markov net) [Related work: Salakhutdinov

and Hinton, 2009]
 Block Gibbs sampling or mean-field
 Hierarchical probabilistic inference

 Layer-wise Unsupervised Learning

© Eric Xing @ CMU, 2015 61



© Eric Xing @ CMU, 2015 62



DL

Utility of the network
 A vehicle to conceptually synthesize 

complex decision hypothesis
 stage-wise projection and aggregation

 A vehicle for organizing computing 
operations
 stage-wise update of latent states

 A vehicle for designing processing 
steps/computing modules
 Layer-wise parallization

 No obvious utility in evaluating DL 
algorithms

Utility of the Loss Function
 Global loss? Well it is non-convex 

anyway, why bother ?

GM

 A vehicle for synthesizing a global loss 
function from local structure
 potential function, feature function

 A vehicle for designing sound and 
efficient inference algorithms
 Sum-product, mean-field  

 A vehicle to inspire approximation and 
penalization
 Structured MF, Tree-approx

 A vehicle for monitoring theoretical and 
empirical behavior and accuracy of 
inference

 A major measure of quality of algorithm 
and model
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GMFr

GMFb

BP

An Old Study of DL as GM 
Learning
A sigmoid belief network at a GM, and mean-field partitions

Study focused on only inference/learning accuracy, speed, and partition 

[Xing, Russell, Jordan, UAI 2003]

Now we can ask, with a correctly learned DN, is it doing will on the desired task?
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Why A Graphical Model 
formulation of DL might be fruitful?
 Modular design: easy to incorporate knowledge and 

interpret, easy to integrate feature learning with high level 
tasks, easy to built on existing (partial) solutions

 Defines an explicit and natural objective
 Guilds strategies for systematic study of inference, 

parallelization, evaluation, and theoretical analysis   
 A clear path to further upgrade: 

 structured prediction
 Integration of multiple data modality
 Modeling complex: time series,  missing data, online data …

 Big DL on distributed architectures, where things can get 
messy everywhere due to incorrect parallel computations 
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Easy to incorporate knowledge 
and interpret

1S 2S 3S
4S KS.......

1t 2t 3t Kt4t

1z 2z 3z
Kz4z

1o 2o 3o Ko4o

1y 2y 3y Ky
4y

1n
2n 3n Kn

4n

1N 2N 3N KN4N

h

articulation

targets

distortion-free acoustics

distorted acoustics

distortion factors & 
feedback to articulation Slides Courtesy:

Li Deng
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Easy to integrate feature learning with 
high level tasks

Hidden Markov Model
+

Gaussian Mixture Model

Hidden Markov Model
+

Deep Neural Network

Jointly trained, but shallow Deep, but separately trained

Hidden Markov Model
+

Deep Graphical Models

Jointly trained and deep
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Conclusion
 In GM: lots of efforts are directed to improving inference 

accuracy and convergence speed
 An advanced tutorial would survey dozen’s of inference 

algorithms/theories, but few use cases on empirical tasks

 In DL: most effort is directed to comparing different 
architectures and gate functions (based on empirical 
performance on a downstream task)
 An advanced tutorial typically consist of a list of all designs of nets, 

many use cases, but a single name of algorithm: back prop of SGD

 The two fields are similar at the beginning (energy, structure, 
etc.), and soon diverge to their own signature pipelines

 A convergence might be necessary and fruitful 
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