Probabilistic Graphical Models

Deep Learning and Graphical
Models

Eric Xing
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Perceptron and Neural Nets %

e From biological neuron to artificial neuron (perceptron)
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e From biological neuron network to artificial neuron networks
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A perceptron learning algorithm -

3 @
net =X w; x; L
=0 "

o0 = G(net) =

. . . . d
e Recall the nice property of sigmoid function d_: =o0(1 - o)

e Consider regression problem :X->Y , for scalar Y: ¥y = f(z) + ¢

e \We used to maximize the conditional data likelihood
W = arg mgxlnH P(y;|z;;0)
1

W = arg min E(yZ — f(:cz, u_f))2
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X4 = input
ty = target output

04 =Observed unit

Gradient Descent

w; =weight i
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Training rule:
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The perceptron learning rules

X4 = Iinput

ty = target output

04 =observed unit
output

w; =weight i

OEp|w]) 1
8wj - Z(td o Od)
d
8
= )
d
o 80d
= zdj ta — Od 8w@)
B dog Onety
- g(td %) onet; Ow;
= — Z(td — 0g4)oq(1 — od):cé
d
Batch mode:

Do until converge:

1. compute gradient VE[w]

2. W = W — WVED[TE]
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Incremental mode:

Do until converge:

= For each training example d in D
1. compute gradient VE,[w]
2. = W — UVEd[TE]
where

VEd[’LU] = —(td - Od)Od(l — od):?:'d




Neural Network Model ot
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Combined logistic models .
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Inputs
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Inputs

Age
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Stage
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Not really, i
no target for hidden units... 4+

0.6
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of beingAlive”

Dependent

Independent  Weights  Hidden Weights variable
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X4 = input

t, = target output

04 =Observed unit

Backpropagation Algorithm

w; =weight i

e Initialize all weights to small random numbers
Until convergence, Do '

1. Input the training example to the network
and compute the network outputs

1. For each output unit k
6 — 03 (1 —07)(t — 0})

2. For each hidden unit h

5h — 0,11(]. — O,ll) Z wh,kék

k€outputs

3. Undate each network weight w;;

Wy j < W; j + Aw?;,j where A’wi’j = 775j:133
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More on Backpropatation -

e Itis doing gradient descent over entire network weight vector
e Easily generalized to arbitrary directed graphs

e WiIll find a local, not necessarily global error minimum
e |n practice, often works well (can run multiple times)

e Often include weight momentum «
A’wf,;,j(t) = 7’]5]'213@‘,3' —+ aAw@-,j (t — 1)

e Minimizes error over training examples
e Will it generalize well to subsequent testing examples?

e Training can take thousands of iterations, - very slow!
e Using network after training is very fast

© Eric Xing @ CMU, 2015
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Learning Hidden Layer
Representation

e A network:

e A target function:

Input Output
10000000 — 10000000
01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001

e Can this be learned?

© Eric Xing @ CMU, 2015
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Learning Hidden Layer
Representation

e A network:

e Learned hidden layer representation:

Input

10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001

R = A

Hidden
Values
.89 .04 .08
Ol 11 .88
01 97 .27
99 97 .71
03 05 02
22 .99 .99
80 .01 .98
.60 .94 .01

Jddlildld

Output

10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001
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Training 4+
s

Sum of squared errors for each output unit
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Training 4+
T ——
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. 000
Modern ANN topics:
. o000
o000
1} 17 . o0
eep” Learning -
ior.command
Categorical judgments, g
decision making Simple visual forms
edges, corners
100-130 ms PFC
ligh level object
—escriptions,
faces, objects
To spinal cord
=< Tofingermuscle «_ ~~~_—160-220ms
180-260 ms
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Non-linear LR vs. ANN

(23-1) possible combinations

Y = a(Xq) + b(X,) + c(Xg) + d(X1X5) + ...

© Eric Xing @ CMU, 2015 18



Computer vision features .o

Normalized anh Qpln image
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Input Image  Gradient Image

Drawbacks of feature engineering
1. Needs expert knowledge G
2. Time consuming hand-tuning

30 Ng
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Using ANN to capture
hierarchical representation

Trainable Trainable
Feature |fsssssssssssnnnns > Feature —
Extractor Extractor

Trainable
Classifier

Good Representations are hierarchical

 In Language: hierarchy in syntax and semantics
— Words->Parts of Speech->Sentences->Text
— Objects,Actions,Attributes...-> Phrases -> Statements -> Stories

- In Vision: part-whole hierarchy
— Pixels->Edges->Textons->Parts->Objects->Scenes

© Eric Xing @ CMU, 2015



“Deep” learning: learning hierarchical
representations

Trainable
Feature
Extractor

Trainable
Feature —
Extractor

Trainable
Classifier

Learned Internal Representation

- Deep Learning: learning a hierarchy of internal representations

- From low-level features to mid-level invariant representations,

to object identities

- Representations are increasingly invariant as we go up the

layers

 using multiple stages gets around the specificity/invariance

dilemma

© Eric Xing @ CMU, 2015
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000
0000
X X X J
(41 77 ::.
Deep” models S
e Neural Networks: Feed-forward*
e You have seen it
e “Deep” Restrictive Boltzmann Machines (RBM)
e Probabilistic — Undirected: MRFs and RBMs* Different loss
- function
designs
e Autoencoders (multilayer NN with output = input)

e Non-Probabilistic -Directed: PCA, Sparse Coding

e Recurrent Neural Networks*
Different

= architecture

i designs
e Convolutional Neural Nets J

© Eric Xing @ CMU, 2015 22



Example I: The Restrictive Boltzmann | seés
Machines, aka., the “Harmonium” oo

hidden units

visible units

The Harmonium (Smolensky —'86)
History:

Smolensky ('86), Proposed the architechture.

Freund & Haussler ('92), The “Combination Machine” (binary), learning with projection pursuit.
Hinton ('02), The “Restricted Boltzman Machine” (binary), learning with contrastive divergence.
Marks & Movellan ('02), Diffusion Networks (Gaussian).

Welling, Hinton, Osindero ('02), “Product of Student-T Distributions” (super-Gaussian)

© Eric Xing @ CMU, 2015 23



A Two-layer MRFs
hidden units
/N
il
visible units

Boltzmann machines:

p(x.h[0) =expl 26,4,(x)+ 20,4, (h) + 26,6, (x.h)) - A®) }

© Eric Xing @ CMU, 2015 24



A Constructive Definition
h

v J

X.

pra(h) ][ exp{ 0,9;(h;) |

x how do we couple them?

Ping (X) OCH exp{ 0, 1 (x) }
p(x.h[6) =expl 26,T,(x)+ Z4,d;(h)+ LT (x)W,

© Eric Xi*g @ CMU, 2015
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000
0000
(X X X}
. L. 3
A Constructive Definition :
h.
I p(x|h):H p(x, | h),
p(x, |h) = exp{ Z@.a fL () +A {0, }
0, = Oy + 202G, (h)) = 6, + 2W)g,(h)

Xi p(h|x)=]] p(h, |x) vector of local
coupling in the log- j : sutficient statistics
domain with A A (features)
chifted parameters p(h; | x) = exp{ szbg S(h)+B ({4, }

A = A +ZWbe (%)= 2, +ZW’bf(x)

1a 1a
ia

They map to the harmonium random field:

p(xhw)—exp{Z f(x)+ 24,0,(h)+ Zf (%)W, .G (h)}

© Eric X*g @ CMU, 2015



The Computational Trade-off -

Undirected model: Learning is hard, inference is easy.

Directed Model: Learning is "easier", inference is hard.

Example: Document Retrieval.

words

Retrieval is based on comparing (posterior) topic distributions of documents.

- directed models: inference is slow. Learning is relatively “easy”.

- undirected model: inference is fast. Learning is slow but can be done offline.
© Eric Xing @ CMU, 2015
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An RMB for text/image o

EFH or DWH (welling et al 2005, Xing et al 2005):

h; = 3: topic ] has strength 3
hyER, (h)= SW,, X

Xi = 1: word I has count n

X = [Xigo X g Xy box, €08 2 %, =1

words counts

p(h|x) = H Normalhj[ ZVVU. X1 ]

p(x|h) = ]| Softmax X[ @+ 20 h ]
i j

Softmax , [ + %, VVij hi] ocexp{(&i + 3, Wij hj)T )*(i}, note parameterization cost! ( Vvij = [Wil,j _____

In practice, only 1-0 counting is used!!!
© Eric Xing @ CMU, 2015 28



Recall 4+
Properties of Directed Networks 4

N

= intuitive causal structural, easy to design, comprehend and manipulate
= Bayesian extensions:

= straightforward to set up, conjugate ..., but hyper-para fitting is non-trivial
= Computational properties:

hidden units

visible units

© Eric Xing @ CMU, 2015 29



Properties of Directed Networks

e [actors are marginally . . .
Independent.

e [actors are conditionally
dependent given observations
on the visible nodes.

P(w[()P(/)

P(w)

P(t]w)=

e Easy ancestral sampling.

e Learning with (variational) EM h i
pe( | g e

© Eric Xing @ CMU, 2015




Properties of RBMs ;

e [actors are marginally dependent. m

e [actors are conditionally
Independent given observations on
the visible nodes.

P(C{w) =11, P(¢;|w)

e |terative Gibbs sampling.

e Learning with contrastive
divergence

© Eric Xing @ CMU, 2015



Deep RBMSs



Example II: Convolutional Networks o

Convolutions, Pooling . L .
e Subsampling - Convolutions,
Filtering C -
Classification
—.-..
| — — gt '

Convolutions,

Filtering Pooling

. . . Subsampling
& Hierarchical Architecture

» Representations are more global, more invariant, and more
abstract as we go up the layers

@ Alternated Layers of Filtering and Spatial Pooling
» Filtering detects conjunctions of features
» Pooling computes local disjunctions of features

@ Fully Trainable
» All the layers are trainable

© Eric Xing @ CMU, 2015 33



Filtering + NonLinearity + Pooling =1
stage of a Convolutional Net

« [Hubel & Wiesel 1962]:
— simple cells detect local features

— complex cells “pool” the outputs of simple cells within a retinotopic

neighborhood. “Simple cells”
“Complex cells”

pooling

Multiple - subsampling/

convolutions \

Retinotopic Feature Maps

© Eric Xing @ CMU, 2015

34




Convolutional Net Architecture
for Hand-writing recognition
Layer 3 ver Layer 5
nput e e e, 1201000 EL 10001
Layer 6: 10
Ex5 H2x2 SX5 . 2x2 convolution
convolution pooling/ convolution pooling/

subsampling

subsampling

e Convolutional net for handwriting recognition (400,000 synapses)
e Convolutional layers (simple cells): all units in a feature plane share the same weights

e Pooling/subsampling layers (complex cells): for invariance to small distortions.

e Supervised gradient-descent learning using back-propagation

e The entire network is trained end-to-end. All the layers are trained simultaneously.

e [LeCun etal. Proc IEEE, 1998]

© Eric Xing @ CMU, 2015
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How to train?

—

To compute all the derivatives, we use a backward sweep called the back-propagation

algorithm that uses the recurrence equation for —g f

Energy
e| m OE _ 9C(XnY)
X, ~ " o0X
c(Xn, Y)
[ [} B JFE - oFE al"n.(Xn. 19"".11)
Xn dE/dXn BX'H, 1 E)-)(n E)X,, 1
cgn'ff': Pn(Xn-1, W) m 9E _ OE OFA X i W)
Xn-1' |=-‘t dXn-1 0“1::. o E)X,,_ (‘)“"-n
1 m _OE _ _OE OFn1(Xn-2,Wn_1)
Xij g dE/dX DXacs - Dl X s
Wi i
A= Fi(Xi-1, Wi) - OF  8E OFa_1(Xn_2,Wn_1)
m-1|r!c[m(.l 8‘1’" -1 o aX" -1 8"“’11—-1
S W ....etc, until we reach the first module.
Wi=sr  Fixo, w1 BRI o o o ’
. B we now have all the ;)‘{ forz € (1, n|.
xo! desired il . '
input X output Y

But this is very slow !!!

© Eric Xing @ CMU, 2015 36



Layer-wise Unsupervised Pre- T
training -

input . . . .

© Eric Xing @ CMU, 2015 37



Layer-wise Unsupervised Pre- T
training -

features o .
input o0 .

© Eric Xing @ CMU, 2015 38



Layer-wise Unsupervised Pre-
training -

Reconstruction
of input

“ ‘ ‘ input

features

amssssese———— | )

input

© Eric Xing @ CMU, 2015 39



Layer-wise Unsupervised Pre- T
training -

features o .
input o0 .

© Eric Xing @ CMU, 2015 40



Layer-wise Unsupervised Pre-
training -

More abstract
features

features

input

© Eric Xing @ CMU, 2015 41



Layer-wise Unsupervised Pre- T
training oo

Reconstruction
of features

More abstract
features

E—— -

features O

input
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Layer-wise Unsupervised Pre-
training -

More abstract
features

features

input
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Layer-wise Unsupervised Pre- T
training oo
Even more

abstract features

More abstract
features

features

input

© Eric Xing @ CMU, 2015 44



Layer-wise Unsupervised Pre-
training oo

Even more
abstract features

More abstract
features

features

input

© Eric Xing @ CMU, 2015 45



Feature learning

e Successful learning of intermediate representations
[Lee et al ICML 2009, Lee et al NIPS 2009]

High-level

- L -
- w ! S .
‘ '?' !T, ‘U B Layer 3 linguistic representations

SIS O IR A b Leverl E2J =

© Eric Xing @ CMU, 2015 46



Deep Learning is Amazing!!! os

- S

Tasks for Which' Deep Convolutional Nets are the B&st Y LeCun
D MA Ranzato

# Handwritin
# OCR in the
& Traffic sign
# Pedestrian

# Volumetric
# Human Acti

ecognition MNIST (many), Arabic HWX (IDSIA)

' OL1]: StreetView House Numbers (NYU and others)

itlin [2011] GTSRB competition (IDSIA, NYU)
of[2013]: INRIA datasets and others (NYU)

# Object Reco

edpamentation [JR09] connectomics (IDSIA, MIT)
I 1gHally®ood II datafet (3’( ford)
2] ol petition o
# Scene Parsin ant r w, Barce )

# Scene parsing .ron dep i’ agc [. " 13]"NYU RGB-L datdset (NYU)
# Speech Recognition [207. _ Acoi tic nod .ing (IBM and Google)
# Breast cancer cell mitosis detection [2011] MITOS (IDSIA)

# The list of perceptual tasks for which ConvNets hold the record is growing.

# Most of these tasks (but not all) use purely supervised convnets.
© Eric Xing @ CMU, 2015 47



A Few Thoughts on How We May
Want to Further Study DNN




What makes it work? Why? 3T
LS .

>ar.} hen o
miracle
‘ DCcur<

(o=
Good work - but 7 tlink o
we might need a little
rriore detail right fere. &
© Eric Xing @ CMU, 2015
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An MLer’s View of the World

Loss functions

et RN o

Structures

e A AR
il ‘

Constraints

T .
‘.'ll In

Algorithms
SRR RSRR "
H ki

Stopping criteria
Change in objective, change in
update ...

© Eric Xing @ CMU, 2015
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Performances?
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<
>

Empirical goal:  e.g., classification, feature

learning
Structure: Graphical
Objective: Something aggregated from

local functions

Vocabulary: Neuron, activation/gate function

Algorithm: A single, unchallenged,
inference algorithm -- BP

Evaluation: On a black-box score -- end
performance

Implementation: Many untold-tricks

Experiments: Massive, real data (GT
unknown)

© Eric Xing @ CMU, 2015

?

e.g., transfer learning, latent
variable inference

Graphical

Something aggregated from local
functions

Variables, potential function

A major focus of open research,
many algorithms, and more to
come

On almost every intermediate
guantity

More or less standardized

Modest, often simulated data
(GT known)

51



A slippery slope to mythology? -

e How to conclusively determine what an improve in
performance could come from:

e Better model (architecture, activation, loss, size)?
e Better algorithm (more accurate, faster convergence)?
e Better training data?

e Current research in DL seem to get everything

above mixed by evaluating on a black-box
“performance score” that is not directly reflecting

e Correctness of inference
e Achievability/usefulness of model
e Variance due to stochasticity

© Eric Xing @ CMU, 2015
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Average Accuracy %

to name a few:

Per training-iteration time
Tolerance to inaccurate inference
|dentifiability

| | |

Although a single dimension (# of layers) is
compared, many other dimensions may also change,

—*=1 hid. layer
—-+-2 hid. layers ||
~* 4 hid. layers
—=—8 hid. layers
“ 10 hid. layers |
12 hid. layers

60 an 100
© Eric Xings@ MU, 2015
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Inference quality -

e Training error is the old concept of a classifier with
no hidden states, no inference is involved, and thus
inference accuracy Is not an issue

e But a DNN is not just a classifier, some DNNs are
not even fully supervised, there are MANY hidden
states, why their inference quality is not taken
seriously?

e In DNN, inference accuracy = visualizing features
e Study of inference accuracy is badly discouraged
e Loss/accuracy is not monitored

© Eric Xing @ CMU, 2015 54



Inference/Learning Algorithm,
and their evaluation

© Eric Xing @ CMU, 2015 55



Learning a GM with Hidden i
Variables — the thought process os

e |n fully observed iid settings, the log likelihood decomposes into a
sum of local terms (at least for directed models).

¢.(0;D) =log p(x,z|0) =log p(z|6,) +log p(x|z,6,)

e \With latent variables, all the parameters become coupled together
via marginalization

4(0;D)=log> p(x,z|0)=log > p(z]6,)p(x|z,6,)
Z YA YA Z

3 ©FEric Xing @ CMU, 2015 56



Gradient Learning for mixture T
models oo

e We can learn mixture densities using gradient descent on the log
likelihood. The gradients are quite interesting:

[(0) =og p(x16) = log ¥ 7, p, (x|6,)

ol 1 ap, (x|0
_ Eﬂk pk( ‘ k)
90, p(x10)< 36,
T dlog p, (x|6,)
=E £ p.(x|6,) (X[6,
~ p(x10) 36,
p(x[0,) dlog p,(x|6,) al,
-3 -3
=" p(x16) 96, =~ 50,

e [n other words, the gradient is aggregated from many other
Intermediate states

e Implication: costly iteration, heavy coupling between parameters
e Other issues: imposing constraints, identifiability ...

© Eric Xing @ CMU, 2015 57



Then Alternative Approaches T
Were Proposed 4+
e The EM algorithm >
e M: a convex problem Qo)
e E: approximate constrained optimization
Mean field
BP/LBP ' |
Marginal polytope ( ‘
Qe

e Spectrum algorithm:

e redefine intermediate states, convexify the original problem

© Eric Xing @ CMU, 2015

58



Learning a DNN

—

To compute all the derivatives, we use a backward sweep called the back-propagation

algorithm that uses the recurrence equation for ddf

Energy
Et . O e (')CT(.\-,,,)')
IOX:: © X
cXn, Y)
3 B OE — oF n"'n.(f\’n. 1:”31)
‘HI dE/gXn Y a."'n—] ax'n 81Yn—1
e m OE _ OE OFn(Xa_1,Wn)
Xn-1f|f‘3'“ axXn=1 (.)“’rn, E)Xn é)“'n
¥ W _OF _ _OF OFn1(Xn_2.Wn_1)
L O0Aqg—2 - 0X, 1 O0Xn-2
Wi
o] O m_OE _ _OE OFn1(Xn_2,Wn_1)
=i T W1 — 0Xn— W1
x1) e W ...etc, until we reach the first module.
e F1(X0, W1) . " .
dEdw- W we now have all the 5 for i € [1,n].
XO' desired 7 :
input X output ¥

© Eric Xing @ CMU, 2015 59



Learning a DNN .

e In a nutshell, sequentially, and recursively apply:

tH _ -

(Si - h'(ai) Z:j 5j'wj,i

e Things can getting hairy when locally defined losses are
Introduced, e.g., auto-encoder, which breaks a loss-driven
global optimization formulation

-7 gl 7, Z A
) 3 2|
(e.[m,.7") e[, v )iz-2F

e Depending on starting point, BP converge or diverge with
probability 1

e A serious problem in Large-Scale DNN

w

© Eric Xing @ CMU, 2015 60



Some new ideas to speed up o°

e Stacking from smaller building blocks

e Layers ' @

U
e Blocks Z(e]elolelolele);
ROOO0000) 7y
mOOO00Q0) OO0Y000) CO0000) mOOOQO00
Wi W' Wi Wi
«©0000 00000  «©0000 x ©0000

e Approximate Inference

e Undirected connections for all layers (Markov net) [Related work: Salakhutdinov
and Hinton, 2009]

e Block Gibbs sampling or mean-field
e Hierarchical probabilistic inference

e Layer-wise Unsupervised Learning

© Eric Xing @ CMU, 2015



Backprop in Practice | | Y LeCun
. MA Ranzato

# Use RelLU non-linearities (tanh and logistic are falling out of favor)
# Use cross-entropy loss for classification

# Use Stochastic Gradient Descent on minibatches

# Shuffle the training samples

@ Normalize the input variables (zero mean, unit variance)

# Schedule to decrease the learning rate

& Use a bit of L1 or L2 regularization on the weights (or a combination)
» But it's best to turn it on after a couple of epochs

@l Use “dropout” for regularization
» Hinton et al 2012 http://arxiv.org/abs/1207.0580

& Lots more in [LeCun et al. “Efficient Backprop” 1998]

# Lots, lots more in “Neural Networks, Tricks of the Trade” (2012 edition)
edited by G. Montavon, G. B. Orr, and K-R Miuller (Springer)

© Eric Xing @ CMU, 2015 62



YY)
o000
o000
eo0
o0
o

DL GM

Utility of the network

e A vehicle to conceptually synthesize e A vehicle for synthesizing a global loss

complex decision hypothesis
e stage-wise projection and aggregation

e A vehicle for organizing computing
operations
e stage-wise update of latent states

e A vehicle for designing processing
steps/computing modules

e Layer-wise parallization

e NoO obvious utility in evaluating DL
algorithms

Utility of the Loss Function

e Global loss? Well it is non-convex
anyway, why bother ?

function from local structure
e potential function, feature function

e A vehicle for designing sound and
efficient inference algorithms
e Sum-product, mean-field
e A vehicle to inspire approximation and
penalization
e Structured MF, Tree-approx

e A vehicle for monitoring theoretical and

empirical behavior and accuracy of
inference

e A major measure of quality of algorithm

and model

© Eric Xing @ CMU, 2015
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An Old Study of DL as GM cece
Learning s, russe, soraan, uar 00 4+

A sigmoid belief network at a GM, and mean-field partitions

"""""""""""""""

SEOOOO0D 50000060

Pz e I e e s e et

SB00000DDD 0000000000 PO

Study focused on only inference/learning accuracy, speed, and partition

Singleton marginal error CPU time
0.5 140 —
0.4+ 1
GMF, 100"
- _ N __
80
0.2r T . 60"
I 40
0.17 ) 1
200
0 o mm N |
no obs with obs no obs with obs

Now we can ask, with a correctly learned DN, is it doing will on the desired t6a43k?

© Eric Xing @ CMU, 2015



Why A Graphical Model eecs
formulation of DL might be fruitful? o

e Modular design: easy to incorporate knowledge and
Interpret, easy to integrate feature learning with high level
tasks, easy to built on existing (partial) solutions

e Defines an explicit and natural objective

e Guilds strategies for systematic study of inference,
parallelization, evaluation, and theoretical analysis

e A clear path to further upgrade:
e structured prediction
e Integration of multiple data modality
e Modeling complex: time series, missing data, online data ...

e Big DL on distributed architectures, where things can get
messy everywhere due to incorrect parallel computations
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Easy to incorporate knowledge
and interpret

targets g <
b

articulation ‘@
distortion-free acoustics «g,
0

distorted acoustics i

y

distortion factors &
feedback to articulation

Slides Courtesy:
Li Deng
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000
Easy to integrate feature learning with | sess
high level tasks oo
Hidden Markov Model Hidden Markov Model
+ +
Gaussian Mixture Model Deep Neural Network
Jointly trained, but shallow Deep, but separately trained

Hidden Markov Model
+
Deep Graphical Models

|

Jointly trained and deep
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Conclusion :

e In GM: lots of efforts are directed to improving inference
accuracy and convergence speed

e An advanced tutorial would survey dozen’s of inference
algorithms/theories, but few use cases on empirical tasks

e In DL: most effort is directed to comparing different
architectures and gate functions (based on empirical
performance on a downstream task)

e An advanced tutorial typically consist of a list of all designs of nets,
many use cases, but a single name of algorithm: back prop of SGD

e The two fields are similar at the beginning (energy, structure,
etc.), and soon diverge to their own signature pipelines

e A convergence might be necessary and fruitful
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