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Latent Variable Models

Ho. et al. 2012

Sequence models

Parsing
Mixed membership models
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Latent Variable PCFG [Matsuzaki et al., 2005, 
Petrov et al. 2006]

PCFG Latent Variable PCFG
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Learning Parameters (EM)

Since latent variables are not observed in the data, we have to 
use Expectation Maximization (EM) to learn parameters

• Slow
• Local Minima

latent variables 
(unobserved in 
training data)

Observed variable
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Spectral Learning
 Different paradigm of learning in latent variable models based on 

linear algebra

 Theoretically,
 Provably consistent
 Can offer deeper insight into the identifiability

 Practically, 
 Local minima free
 As of now, performs comparably to EM with 10-100x speed-up
 Can also model non-Gaussian continuous data using kernels (usually 

performs much better than EM in this case)
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Related References
 Relevant works

 Hsu et al. 2009 – Spectral HMMs (also Bailly 2009)
 Siddiqi et al. 2009 – Features in Spectral Learning
 Parikh et al. 2011/2012 –Tensors to Generalize to Trees/Low Treewidth

Graphs
 Cohen et al. 2012 / 2013 – Spectral Learning of latent PCFGs

 Will present it from “matrix factorization” view:
 Balle et al. 2012 – Connection between Spectral Learning / Hankel Matrix 

Factorization
 Song et al. 2013 – Spectral Learning as Hierarchical Tensor Decomposition
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Focusing on Prediction
 In many applications that use latent variable models, the end task is 

not to recover the latent states, but rather to use the model for 
prediction among observed variables.

 Dynamical Systems – Predict future given past

future
past
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 We will only be concerned with quantities related to the observed 
variables:

 We do not care about the latent variables explicitly.

 Do we still need EM to learn the parameters?

Focusing on Prediction
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But if we don’t care about the 
latent variables....
 Why don’t we just integrate them out?

 Because integrating them out results in a clique 
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Marginal Does Not Factorize

Does not factorize due to the outer sum (Can somewhat distribute 
the sum, but doesn’t solve problem)
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But isn’t an HMM different from a 
clique?
 It depends on the number of latent states.

 Consider the following model.
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If H has only one state.....
 Then the observed variables are independent!
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What if H has many states?
 Let us say the observed variables each have m states.

 Then if H has m3 states then the latent model can be exactly 
equivalent to a clique (depending on how parameters are set).

 But what about all the other cases?
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The Question
 Under existing methods, latent models all require EM to learn 

regardless of the number of hidden states.

 However, is there a formulation of latent variable models 
where the difficulty of learning is a function of the number of 
latent states?

 This is the question that the spectral view will answer.
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 Sum Rule

 Equivalent view using Matrix Algebra

Sum Rule (Matrix Form)
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 Chain Rule

 Equivalent view using Matrix Algebra

 Note how diagonal is used to keep Y from being marginalized 
out.

Chain Rule (Matrix Form)

Means on diagonal
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Graphical Models: The Linear 
Algebra View

 In general, nothing we can say about the nature of this matrix.

A and B have m 
states each.
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 What if we know A and B are independent?

 Joint probability matrix is rank one, since all rows are multiples of 
one another!!

Independence: The Linear 
Algebra View
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Independence and Rank

 What about rank in between 1 and m?

has rank m (at most)

has rank 1

©Eric Xing @ CMU, 2012-2015 19



Low Rank Structure
 A and B are not marginally independent (They are only 

conditionally independent given X).

 Assume X has k states (while A and B have m states).

 Then,             

 Why?
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Low Rank Structure
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The Spectral View

 Latent variable models encode low rank dependencies among 
variables (both marginal and conditional)

 Use tools from linear algebra to exploit this structure.
 Rank
 Eigenvalues
 SVD
 Tensors
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A More Interesting Example

k states

m states

has rank k

©Eric Xing @ CMU, 2012-2015 23



Low Rank Matrices “Factorize”

m by n

We already know one factorization!!!

m by k k by n

If M has rank k

Factor of 4 variables Factor of 3 variables

Factor of 1 variable

Factor of 3 variables
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Alternate Factorizations
 The key insight is that this factorization is not unique.

 Consider Matrix Factorization. Can add any invertible 
transformation:

 The magic of spectral learning is that there exists an 
alternative factorization that only depends on observed 
variables!
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An  Alternate Factorization
 Let us say we only want to factorize this matrix of 4 variables 

such that it is product of matrices that contain at most three 
observed variables e.g. 
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An  Alternate Factorization
 Note that

 Product of green terms (in some order) is

 Product of red terms (in some order) is 
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An Alternate Factorization

factor of 4 variables factor of 3 variables factor of 3 variables

Caveat: some factors are no longer probability tables (do not have 
to be non-negative)

Advantage: Factors are only functions of observed variables! Can 
be directly computed from data without EM!!!!

We will call this factorization the observable factorization.
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Graphical Relationship
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Another Factorization

 Seems we would do better empirically if you could “combine” 
both factorizations. Will come back to this later.
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Relationship to Original 
Factorization
 What is the relationship between the original factorization and 

the new factorization?

Can I choose S to get the observable factorization?
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Relationship to Original 
Factorization
 Let 
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 It may not seem very amazing at the moment (we have only  
reduced the size of the factor by 1)

 What is cool is that every latent tree of V variables has such a 
factorization where:
 All factors are of size 3
 All factors are only functions of observed variables

Our Alternate Factorization

factor of 4 variables factor of 3 variables factor of 3 variables
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Training / Testing with Spectral 
Learning
 We have that

 In training, we compute estimates:

 In test time, we can compute probability estimates (let 
lowercase letters denote fixed evidence values): 
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Generalizing To More Variables
 Consider HMM with 5 observations. Using similar arguments 

as before we will get that:
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reshape and decompose 
recursively



Consistency
 A trivial consistent estimator is to simply attempt to estimate 

the “big” probability table from the data without making any 
conditional independence assumptions

 While this is consistent, it is not very statistically efficient

as number of samples 
increases
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Consistency
 A better estimate is to compute likelihood estimates of the 

factorization:

 But this requires running EM, which will get stuck in local 
optima and is not guaranteed to obtain the MLE of the 
factorized model
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Consistency
 In spectral learning, we estimate the alternate factorization 

from the data

 This is consistent and computationally tractable (at some loss 
of statistical efficiency due to the dependence on the inverse)
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Where’s the Catch?
 Before we said that if the number of latent states was very 

large then the model was equivalent to a clique.

 Where does that scenario enter in our factorization?

When does this inverse exist?
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When Does the Inverse Exist

 All the matrices on the right hand side must have full 
rank. (This is in general a requirement of spectral 
learning, although it can be somewhat relaxed)
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When m > k
 The inverse cannot exist, but this situation is easily fixable (project 

onto lower dimensional space)

 Where U, V are the top left/right k singular vectors of 
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When k > m
 The inverse does exist. But it no longer satisfies the following 

property, which we used to derive the factorization

 This is much more difficult to fix, and intuitively corresponds to 
how the problem becomes intractable if k >> m.
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What does k>m mean?
 Intuitively, large k, small m means long range dependencies

 Consider following generative process:
(1) With probability 0.5, let S= X, and with probability 0.5 let S=Y.
(2) Print A n times.
(3) Print S
(4) Go back to step (2)

With n=1 we either generate:
AXAXAXA…… or AYAYAYA…..

With n=2 we either generate:
AAXAAXAA….. or AAYAAYAA…….
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How many hidden states does 
HMM need?
 HMM needs 2n states.

 Needs to remember count as well as whether we picked S=X
or S=Y

 However, number of observed states m does not change, so 
our previous spectral algorithm will break for n > 2.

 How to deal with this in spectral framework?
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Making Spectral Learning Work 
In Practice
 We are only using marginals of pairs/triples of variables to 

construct the full marginal among the observed variables.

 Only works when k < m. 

 However, in real problems we need to capture longer range 
dependencies.
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Recall our factorization
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Key Idea: Use Long-Range 
Features

Construct feature 
vector of left side

Construct feature 
vector of right side
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Spectral Learning With Features

Use more complex feature instead:
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Experimentally,
 Has been shown by many authors that (with some work) 

spectral methods achieve comparable results to EM but are 
10-50x faster
 Parikh et al. 2011 / 2012
 Balle et al. 2012 
 Cohen et al. 2012 / 2013

 The following are some synthetic and real data results 
demonstrating the comparison between EM and spectral 
methods.
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Synthetic Data [Parikh et al. 2012]

 Different latent variable models

 Train: Learn parameters for a given model given samples of observed 
variables

 Test: Evaluate likelihood of random samples drawn from model and 
compare to the true likelihood
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Synthetic Data [Parikh et al. 2012]

 Synthetic 3rd order HMM Example (Spectral/EM/Online EM):

 Results for other structures look similar
Training Samples

Runtime vs. Sample Size

R
un

tim
e(

s)

Online EM

EM

Spectral

Training Samples

Error vs. Sample Size

Er
ro

r
Spectral

Online EM
EM

©Eric Xing @ CMU, 2012-2015 51



Supervised Parsing [Cohen et al. 2012/2013]

 Learn a latent variable Probabilistic Context Free Grammar model 
(latent PCFG) which is a PCFG augmented with additional latent 
states

 Train: Learn parameters given parse trees on training examples.
 Test: Estimate most likely parse structure on test sentences
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Empirical Results for Latent 
PCFGs [Cohen et al. 2013]
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Evaluation Measure: F1 bracketing score



Timing Results on Latent 
PCFGs[Cohen et al. 2013]
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 It is difficult to run EM if the conditional/marginal distributions 
are continuous and do not easily fit into a parametric family.

 However, we will see that Hilbert Space Embeddings can 
easily be combined with spectral methods for learning 
nonparametric latent models.

Dealing with Nonparametric, 
Continuous Variables
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Connection to Hilbert Space 
Embeddings
 Recall that we could substitute features for variables

Use more complex feature instead:
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Can Also Use Infinite 
Dimensional Features
 Replace

 with

 (and similarly for other quantities)

covariance 
operator
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Connection to Hilbert Space 
Embeddings

Discrete case:

Continuous case:
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Summary - EM & Spectral (Part I)

EM
Spectral

• Aims to Find MLE so more 
“statistically” efficient

• Can get stuck in local-optima

• Lack of theoretical guarantees

• Slow

• Easy to derive for new models

• Does not aim to find MLE so less 
statistically efficient.

• Local-optima-free

• Provably consistent

• Very fast

• Challenging to derive for new 
models (Unknown whether it can 
generalize to arbitrary loopy 
models)
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Summary - EM & Spectral (Part II)

EM Spectral
• No issues with negative numbers

• Allows for easy modelling with 
conditional distributions

• Difficult to incorporate long-range 
features (since it increases 
treewidth).

• Generalizes poorly to non-
Gaussian continuous variables.

• Problems with negative numbers. 
Requires explicit normalization to 
compute likelihood.

• Allows for easy modelling with 
marginal distributions

• Easy to incorporate long-range 
features.

• Easy to generalize to non-
Gaussian continuous variables 
via Hilbert Space Embeddings
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