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Recap of MCMC

 Markov Chain Monte Carlo methods use adaptive proposals 
Q(x’|x) to sample from the true distribution P(x)

 Metropolis-Hastings allows you to specify any proposal Q(x’|x)

 But choosing a good Q(x’|x) requires care

 Gibbs sampling sets the proposal Q(x’|x) to the conditional 
distribution P(x’|x)

 Acceptance rate always 1!
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Parallel MCMC for Large Scales

 Datasets and models can be very large

 Millions to billions of data points

 Millions to billions of random variables

 Compute time measured in CPU-years

 Need GBs to TBs of memory

 E.x. Yahoo web graph has ~1.4 billion nodes and 6.6 billion edges

 Imagine doing a Markov Random Field on that network

 Without parallelism, we cannot use large datasets and 
models!

 Today: how to use multiple CPUs and machines in MCMC
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Taking Multiple Chains

 Proper use of MCMC actually requires parallelism

 To determine convergence, you need to take multiple MCMC chains

 Chains are independent, so you can run one chain per CPU

 Once converged, you can combine samples from all chains
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Taking Multiple Chains

 Taking multiple chains doesn’t solve all issues, though

 If burn-in is long, then all chains will take a long time to converge!

 We need a way to take each sample faster…
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Idea: Run Gibbs Sampling in 
Parallel?

 Recall the alarm network

 Initialize all variables at t = 0 to False

 Idea: parallel Gibbs sample all variables at step t conditioned on t-1
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Naïve Parallel Gibbs Sampling

 Sampling P(B|A,E) at t = 1: Using Bayes Rule,

 (A,E) = (F,F), so we compute the following, and sample B = F
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Naïve Parallel Gibbs Sampling

 Sampling P(E|A,B): Using Bayes Rule,

 (A,B) = (F,F), so we compute the following, and sample E = T
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Naïve Parallel Gibbs Sampling

 Notice the difference

 Normal Gibbs sampling: compute P(E|A,B) based on Bt=1, At=0

 Naïve Parallel GS: compute P(E|A,B) based on Bt=0, At=0

 At step t, always condition on t-1 instead of most recently sampled value
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Naïve Parallel Gibbs Sampling

 Sampling P(A|B,E,J,M): Using Bayes Rule,

 (B,E,J,M) = (F,F,F,F), so we compute the following, and sample A = F
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Naïve Parallel Gibbs Sampling

 Sampling P(J|A): No need to apply Bayes Rule

 A = F, so we compute the following, and sample J = T
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Naïve Parallel Gibbs Sampling

 Sampling P(M|A): No need to apply Bayes Rule

 A = F, so we compute the following, and sample M = F
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Naïve Parallel Gibbs Sampling

 We just finished sampling variables t=1

 Why is the sampling parallelizable?

 We only conditioned on variable state at t=0, which is known in advance!

 We can sample B,E,A,J,M on separate processors, without having to 
send information between processors
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Naïve Parallel Gibbs Sampling

 In practice, works very well for some graphical models

 E.g. 

 collapsed Gibbs Sampling for LDA

 - Asynchronous Distributed Learning of Topic Models, Arthur Asuncion, 
Padhraic Smyth, Max Welling

 - Distributed Algorithms for Topic Models, David Newman, Arthur 
Asuncion, Padhraic Smyth, Max Welling 

 Just assign different zi’s to different processors or machines

 But there’s a problem…
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Where Naïve Parallel GS Fails

 Naïve Parallel GS may not converge to the stationary 
distribution

 Consider the following Bayes Net:

 Essentially an XOR relation between (A,B) and (A,C)

 Joint distribution P(A,B,C) has only 8 states, so we can compute the 
stationary distribution. It is dominated by 2 equally-probable states:

 (A,B,C) = (T,F,T) and (A,B,C) = (F,T,F)
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Where Naïve Parallel GS Fails

 Let’s initialize (A,B,C) = (F,F,F) and see what happens when 
we naively Gibbs sample in parallel…
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Where Naïve Parallel GS Fails

 Sampling P(A|B,C):

 (B,C) = (F,F) so we sample A = T
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Where Naïve Parallel GS Fails

 Sampling P(B|A): No need to apply Bayes Rule

 A = F so we sample B = T
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Where Naïve Parallel GS Fails

 Sampling P(C|A): No need to apply Bayes Rule

 A = F so we sample C = T
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Where Naïve Parallel GS Fails

 Easy to see that at t=2, we will get (A,B,C) = (F,F,F)
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Where Naïve Parallel GS Fails

 Easy to see that at t=2, we will get (A,B,C) = (F,F,F)

 At t=3, (A,B,C) = (T,T,T)
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Where Naïve Parallel GS Fails

 Easy to see that at t=2, we will get (A,B,C) = (F,F,F)

 At t=3, (A,B,C) = (T,T,T)

 At t=4, (A,B,C) = (F,F,F)
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Where Naïve Parallel GS Fails

 Easy to see that at t=2, we will get (A,B,C) = (F,F,F)

 At t=3, (A,B,C) = (T,T,T)

 At t=4, (A,B,C) = (F,F,F)

 Can you see the problem?

23

t A B C

0 F F F

1 T T T

2 F F F

3 T T T

4 F F F

© Eric Xing @ CMU, 2005-2015

B

A

C

A P(B)

T 0.0001

F 0.9999

A P(C)

T 0.0001

F 0.9999



Where Naïve Parallel GS Fails

 We know the stationary distribution is [(F,T,F), (T,F,T)]

 But naïve parallel GS gets stuck in [(T,T,T), (F,F,F)]

 Naïve parallel GS performs poorly on near-discrete distributions

 What is the correct way to Gibbs sample in parallel?
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Correct Parallel Gibbs Sampling

 Recall that in MRFs, we Gibbs sample by sampling from 
P(x|MB(x)), the conditional distribution of x given its Markov 
Blanket MB(x)

 For MRFs, the Markov Blanket of x is just its neighbors

 In the MRF below, the red node’s Markov Blanket consists of the blue 
nodes

© Eric Xing @ CMU, 2005-2015 25



Correct Parallel Gibbs Sampling

 Observe that we can correctly Gibbs sample the two green 
nodes simultaneously

 Neither node is part of the other’s Markov Blanket, so their conditional 
distributions do not depend on each other

 Sampling one of the green nodes doesn’t change the conditional 
distribution of the other node!
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Correct Parallel Gibbs Sampling

 How do we generalize this idea to the whole graph?

 Find subsets of nodes, such that all nodes in a given subset are not in 
each other’s Markov Blankets, and the subsets cover the whole graph

 The subsets should be as large as possible

 Because we can Gibbs sample all nodes in a subset at the same time

 At the same time, we want as few subsets as possible

 The Markov Blankets of different subsets overlap, so they cannot be sampled at the 
same time. We must process the subsets sequentially.
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Correct Parallel Gibbs Sampling

 We can find these covering subsets with k-coloring algorithms 
(Gonzales et al., 2011)

 A k-coloring algorithm colors a graph using k colors, such that:

 Every node gets one color

 No edge has two nodes of the same color

 Trees always admit a 2-coloring (e.g. below)

 Assign one color to some node, and alternate colors as you move away
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Correct Parallel Gibbs Sampling

 Bipartite graphs are always 2-colorable

 Color each side of the bipartite graph with opposite colors

 e.x. Latent Dirichlet Allocation model is bipartite

 However, not all graphs have k-colorings for all k ≥ 2

 In the worst case, a graph with n nodes can require n colors

 The full clique is one such graph

 Determining if a graph is k-colorable for k > 2 is NP-complete

 In practice, we employ heuristics to find k-colorings

 Instead of using k-colorings, why not just Gibbs sample all 
variables at the same time?

 The Markov Chain may become non-ergodic, and is no longer 
guaranteed to converge to the stationary distribution!
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Online Parallel MCMC

 In “online” algorithms, we need to process new data points 
one-at-a-time

 Moreover, we have to “forget” older data points because memory is finite

 For such applications to be viable, we can only afford 
constant time work per new data point

 Otherwise we will reach a point where new data can no longer be 
processed in a reasonable amount of time

 We also want the algorithm to be parallel for scaling up

 What MCMC techniques can we use to make an online 
parallel algorithm?
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Sequential Monte Carlo

 SMC is a generalization of Particle Filters

 Recall that PFs incrementally sample P(Xt|Y1:t), where the Xs are latent 
r.v.s and the Ys are observations under a state-space model

 SMC does not assume the GM is a state-space model, or has any 
particular structure at all

 Suppose we have n r.v.s x1,…,xn

 SMC first draws samples from the marginal distribution P(x1), then 
P(x1:2), and so on until P(x1:n)

 Key idea: Construct proposals such that we sample from P(x1:k+1) in 
constant time, given samples from P(x1:k)

 Like other MCMC algorithms, we only require that we can evaluate 
P’(x1:n) = aP(x1:n) for some unknown a
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Sequential Importance Sampling

 SIS is the foundation of Sequential Monte Carlo

 It allows new variables to be sampled in constant time, without 
resampling older variables

 SIS uses proposal distributions with the following structure:

 Notice we can propose xk+1 if we’ve already drawn x1:k, without having to 
redraw x1:k

© Eric Xing @ CMU, 2005-2015 32











n

k
kkk

nnnnnnn

xxqxq

xxqxqxq

2
1:111

1:11:11:1

)|()(

)|()()(



Sequential Importance Sampling

 In normalized importance sampling, recall how the sample 
weights wi are defined:

 In SIS, the unnormalized weights r can be rewritten as a 
telescoping product:

© Eric Xing @ CMU, 2005-2015 33


i

ii

P
wxfXf )()(

)(

)(
i

i
i

xQ

xP
r







j

j

i
i

r

r
wwhere and






















n

k
kk

nnnn

nnnnn

nn

nn

nn

nn

nn
n

xxr

xxr

xxqxP

xP

xq

xP

xq

xP
xr

2
:111

:11:11

1:11:11

:1

1:11

1:11

:1

:1
:1

)()(

)()(

)|()(

)(

)(

)(

)(

)(
)(





)|()(

)(
)(

1:11:11

:1
:1







nnnnn

nn
nn

xxqxP

xP
xwhere



Sequential Importance Sampling

 This means the unnormalized weights r can be computed incrementally

 Compute αn and use it to update r(x1:n-1) to r(x1:n)

 NB: For this update to be constant time, we also require P’n(x1:n) to be computable 
from P’n-1(x1:n-1) in constant time

 We remember the unnormalized weights r at each iteration, and compute 
the normalized weights w as needed from r

 Thus, we can sample x AND compute the normalized weights w using 
constant time per new variable xn

 So SIS meets the requirements for an online inference algorithm!

 Even better, the samples don’t depend on each other

 Assign one CPU core per sample to make the SIS algorithm parallel!
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Sequential Importance Sampling

 SIS algorithm:

 At time n = 1

 Parallel draw samples xi
1 ~ q1(x1)

 Parallel compute unnormalized weights

 Compute normalized weights wi
1 by normalizing ri

1

 Although this step is sequential, it takes almost no time to perform

 At time n ≥ 2

 Parallel draw samples xi
n ~ qn(xn|x

i
1:n-1)

 Parallel compute unnorm. wgts.

 Compute normalized weights wi
n by normalizing ri

n

 Although this step is sequential, it takes almost no time to perform
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Sequential Importance Sampling

 But we are not done yet!

 Unfortunately, SIS suffers from a severe drawback: the 
variance of the samples increases exponentially with n!

 See eq (31) of Doucet’s SMC tutorial for an example

 Resampling at each iteration will decrease the sample 
variance!

 Similar to weighted resampling from the first MC lecture!
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Multinomial Resampling

 Suppose we have m samples x1,…,xm with corresponding 
importance weights w1,…,wm

 Construct a categorical distribution from these samples:

 This distribution has m categories (choices)

 The probability of drawing category k is wk

 Drawing category k gets us xk

 To resample, just draw N times from this distribution

 Note that N can be greater/less than m!

 For more advanced strategies such as systematic and 
residual resampling, refer to page 13 of Doucet’s SMC tutorial
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Why Resample?

 Apart from decreasing variance, there are other reasons…

 Resampling removes samples xk with low weights wk

 Low-weight samples come from low-probability regions of P(x)

 We want to focus computation on high-probability regions of P(x)

 Notice that each sample gets an equal amount of computation, 
regardless of its weight wk

 Resampling ensures that more computation is spent on samples xk that 
come from high-probability regions of P(x)

 Resampling prevents a small number of samples xk from 
dominating the empirical distribution

 Resampling resets all weights wk to 1/N

 This prevents sample weights wk from growing until they reach 1
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Sequential Monte Carlo

 The SMC algorithm is just SIS with resampling:

 At time n = 1

 Parallel draw samples xi
1 ~ q1(x1)

 Parallel compute unnormalized weights

 Compute normalized weights wi
1 by normalizing ri

1

 Parallel resample wi
1, x

i
1 into N equally-weighted particles xi

1

 At time n ≥ 2

 Parallel draw samples xi
n ~ qn(xn|x

i
1:n-1)

 Parallel compute unnorm. wgts.

 Compute normalized weights wi
n by normalizing ri

n

 Parallel resample wi
n,x

i
1:n into N equally-weighted particles xi

1:n
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Sequential Monte Carlo

 The SMC algorithm is just SIS with resampling:

 At time n = 1

 Parallel draw samples xi
1 ~ q1(x1)

 Parallel compute unnormalized weights

 Compute normalized weights wi
1 by normalizing ri

1

 Parallel resample wi
1, x

i
1 into N equally-weighted particles xi

1

 At time n ≥ 2

 Parallel draw samples xi
n ~ qn(xn|x

i
1:n-1)

 Parallel compute unnorm. wgts.

 Compute normalized weights wi
n by normalizing ri

n

 Parallel resample wi
n,x

i
1:n into N equally-weighted particles xi

1:n
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Asynchronous Sequential Monte 
Carlo

 Use a cascade of particles 

 Barrier synchronization

 Shown to be consistent and unbiased estimate
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Summary

 Parallel Gibbs sampling

 Naïve strategy: sample all variables at the same time

 Correct strategy: perform graph colorings and sample same-colored 
nodes in parallel

 Sequential Monte Carlo

 Uses incremental proposal distributions

 Provides a framework for designing online, parallel MCMC algorithms

© Eric Xing @ CMU, 2005-2015 42



Parallel Inference for Bayesian 
Nonparametric

 Dirichlet Process Mixture Model (recap)

 Inference schemes (recap)

 Parallel inference schemes

 Results
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Finite Mixture Model:- Restaurant 
Perspective
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Finite Mixture Model:- Restaurant 
Perspective

 Table:

 Cluster

 People:

 Items to be clustered

 Parameters:

 Dish/color on each table

 Center of each cluster

 Hidden Variable:

 Assignment of people to each table
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Finite Mixture Model:- Restaurant 
Perspective
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Which clustering algorithm will it lead to?



Finite Mixture Model:- Restaurant 
Perspective
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People sit on the table with the most preferred dish/color 

Which clustering algorithm will it lead to?

Hard Kmeans



Finite Mixture Model:- Restaurant 
Perspective
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People sit on the table proportional to appreciation of dish/color 

Which clustering algorithm will it lead to?



Finite Mixture Model:- Restaurant 
Perspective
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People sit on the table proportional to appreciation of dish/color 

Which clustering algorithm will it lead to?

Soft Kmeans



Soft Kmeans Generative Model
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Zi

Xi

i = 1, … N

ηk

H

k = 1, … K

for k=1, … K
ηk ~ H

for i=1, … N
Zi ~ U(1,K)
Xi ~ f(ηzi)

appreciation of 
dish/color 



Finite Mixture Model:- Restaurant 
Perspective
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People sit on the table proportional to appreciation of dish/color and
number of people sitting on the table 

Which clustering algorithm will it lead to?

Dirichlet Distribution 
Mixture Model



Finite MM Generative Model
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Zi

Xi

i = 1, … N

ηk

H

k = 1, … K

for k=1, … K
ηk ~ H

θ ~ Dir(α)
for i=1, … N

Zi ~ Mul(θ)
Xi ~ f(ηzi)

θ

α



Finite Mixture Model:- Restaurant 
Perspective
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People sit on the table proportional to appreciation of dish/color and
number of people sitting on the table 

Which clustering algorithm will it lead to?

Dirichlet Distribution 
Mixture Model



Infinite Mixture Model:-
Restaurant Perspective
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People sit on the table proportional to appreciation of dish/color and
number of people sitting on the table 



Infinite Mixture Model:-
Restaurant Perspective
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People sit on the table proportional to appreciation of dish/color and
number of people sitting on the table 



Turning the definition
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Proportional 
to selecting a 
table

Dish on the table



Stick Breaking Construction
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Take a stick of unit length 

Step 2:- Break it into two parts

Step 3:- Choose a dish

Step 1:-

Step 4:- Go to step 2

Proportional 
to selecting a 
table

Dish



Stick Breaking Construction
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Proportional 
to selecting a 
table

Dish on the table



Graphical Model Representation
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Proportional to 
number of customer 
sitting on the table

Which table each 
customer sit at

Which dish is 
selected at each 
table

Dirichlet Process Mixture 
Model



Inference

 Gibbs Sampling:-

 Sample each of the variable given the rest.

 Variables to sample are table proportion Vk , table assignment to each 
customer (Z) and dish at each table η
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- Finding scientific topics, Thomas L. Griffiths and Mark Steyvers PNAS 2004



Inference

 Parallel Gibbs Sampling 1:-

 Sample Vk and ᶯk globally

 Given Vk and ᶯk , Z are independent of each other
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Inference

 Parallel Gibbs Sampling:-

 Sample Vk and ᶯk globally

 Given Vk and ᶯk , Z are independent of each other

 Poor mixing
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Inference

 Parallel Gibbs Sampling 2:-

 Sample Vk and ᶯk globally

 Sample a noisy version of Vk and ᶯk for each processor

 Sample Z independently in each processor
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-Distributed Algorithms for Topic Models, David Newman, Arthur Asuncion, 
Padhraic Smyth, Max Welling



Inference

 Collapsed Gibbs Sampler:-

 Integrate out Vk and ηk

 Leads to better mixing

 Parallel inference: Hard
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Inference

 Collapsed Gibbs suffer from large computational cost
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Running Example: 
10 million data 
points to be 
clustered.



Inference

 Variational Inference

 Approximate the posterior with a distribution belonging to a more 
manageable family of distribution

 Parallel inference: Easy

 Search within a restricted class of models, looses the expressiveness 

 Typically less accuracy than MCMC methods
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Inference

 Sequential Monte Carlo Method:-

 Keep a pools of particles, approximate the distribution using  weighted 
combination of the pool 

 Parallel inference: Easy

 High variance for naïve implementation, needs resampling (MCMC )
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Parallel MCMC

 Naïve 

 Run collapsed sampler on individual core

 Combine the result approximately !!
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Restaurant 1

Restaurant P

- Asynchronous Distributed Learning of 
Topic Models, Arthur Asuncion, Padhraic
Smyth, Max Welling, NIPS 2009



Parallel MCMC

 Naïve 

 Run collapsed sampler on individual core

 Combine the result approximately !!

 How

 Why should two newly discovered clustered in two different processor be 
the same? 
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Parallel MCMC

 Naïve 

 Sample Hyper parameter for each 

 Run collapsed sampler on individual core

 Combine the result approximately !!
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Restaurant 1

Restaurant P

- Asynchronous Distributed Learning of 
Topic Models, Arthur Asuncion, Padhraic
Smyth, Max Welling, NIPS 2009



Parallel MCMC

 Idea: Dirichlet Mixture of Dirichlet processes are Dirichlet
processes
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Parallel MCMC

 Idea: Dirichlet Mixture of Dirichlet processes are Dirichlet
processes
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Restaurant 1

Restaurant P



Parallel MCMC

 Idea: Dirichlet Mixture of Dirichlet processes are Dirichlet
processes
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Restaurant 1

Restaurant P



Parallel MCMC

 Idea: Dirichlet Mixture of Dirichlet processes are Dirichlet
processes
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Restaurant 1

Restaurant P



Auxiliary Variable Model For DP

 The generative process is as follows :-
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Inference

 Conditioned on the Restaurant allocation  data are distributed 
according  to P independent Dirichlet process

 Perform local collapsed gibbs sampling on the independent 
DPs

 For the global parameters perform MH

 Select a cluster ‘c’ and a processor ‘p’ 

 Propose: move ‘c’ to ‘p’

 Acceptance ratio depends on cluster size

 Can pass the indices of the cluster item.

 Can be done asynchronously without affecting the 
performance.
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Result
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Extension to HDP
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Take home message

 Naïve parallel inference scheme does not always work

 Utilize structure of the problem: Conditional independence 

 Exact parallel inference or bound on error
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