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Recap of MCMC

 Markov Chain Monte Carlo methods use adaptive proposals 
Q(x’|x) to sample from the true distribution P(x)

 Metropolis-Hastings allows you to specify any proposal Q(x’|x)

 But choosing a good Q(x’|x) requires care

 Gibbs sampling sets the proposal Q(x’|x) to the conditional 
distribution P(x’|x)

 Acceptance rate always 1!
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Parallel MCMC for Large Scales

 Datasets and models can be very large

 Millions to billions of data points

 Millions to billions of random variables

 Compute time measured in CPU-years

 Need GBs to TBs of memory

 E.x. Yahoo web graph has ~1.4 billion nodes and 6.6 billion edges

 Imagine doing a Markov Random Field on that network

 Without parallelism, we cannot use large datasets and 
models!

 Today: how to use multiple CPUs and machines in MCMC
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Taking Multiple Chains

 Proper use of MCMC actually requires parallelism

 To determine convergence, you need to take multiple MCMC chains

 Chains are independent, so you can run one chain per CPU

 Once converged, you can combine samples from all chains
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Taking Multiple Chains

 Taking multiple chains doesn’t solve all issues, though

 If burn-in is long, then all chains will take a long time to converge!

 We need a way to take each sample faster…
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Idea: Run Gibbs Sampling in 
Parallel?

 Recall the alarm network

 Initialize all variables at t = 0 to False

 Idea: parallel Gibbs sample all variables at step t conditioned on t-1
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Naïve Parallel Gibbs Sampling

 Sampling P(B|A,E) at t = 1: Using Bayes Rule,

 (A,E) = (F,F), so we compute the following, and sample B = F
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Naïve Parallel Gibbs Sampling

 Sampling P(E|A,B): Using Bayes Rule,

 (A,B) = (F,F), so we compute the following, and sample E = T
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Naïve Parallel Gibbs Sampling

 Notice the difference

 Normal Gibbs sampling: compute P(E|A,B) based on Bt=1, At=0

 Naïve Parallel GS: compute P(E|A,B) based on Bt=0, At=0

 At step t, always condition on t-1 instead of most recently sampled value
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Naïve Parallel Gibbs Sampling

 Sampling P(A|B,E,J,M): Using Bayes Rule,

 (B,E,J,M) = (F,F,F,F), so we compute the following, and sample A = F
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Naïve Parallel Gibbs Sampling

 Sampling P(J|A): No need to apply Bayes Rule

 A = F, so we compute the following, and sample J = T
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Naïve Parallel Gibbs Sampling

 Sampling P(M|A): No need to apply Bayes Rule

 A = F, so we compute the following, and sample M = F
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Naïve Parallel Gibbs Sampling

 We just finished sampling variables t=1

 Why is the sampling parallelizable?

 We only conditioned on variable state at t=0, which is known in advance!

 We can sample B,E,A,J,M on separate processors, without having to 
send information between processors
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Naïve Parallel Gibbs Sampling

 In practice, works very well for some graphical models

 E.g. 

 collapsed Gibbs Sampling for LDA

 - Asynchronous Distributed Learning of Topic Models, Arthur Asuncion, 
Padhraic Smyth, Max Welling

 - Distributed Algorithms for Topic Models, David Newman, Arthur 
Asuncion, Padhraic Smyth, Max Welling 

 Just assign different zi’s to different processors or machines

 But there’s a problem…
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Where Naïve Parallel GS Fails

 Naïve Parallel GS may not converge to the stationary 
distribution

 Consider the following Bayes Net:

 Essentially an XOR relation between (A,B) and (A,C)

 Joint distribution P(A,B,C) has only 8 states, so we can compute the 
stationary distribution. It is dominated by 2 equally-probable states:

 (A,B,C) = (T,F,T) and (A,B,C) = (F,T,F)
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Where Naïve Parallel GS Fails

 Let’s initialize (A,B,C) = (F,F,F) and see what happens when 
we naively Gibbs sample in parallel…
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Where Naïve Parallel GS Fails

 Sampling P(A|B,C):

 (B,C) = (F,F) so we sample A = T
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Where Naïve Parallel GS Fails

 Sampling P(B|A): No need to apply Bayes Rule

 A = F so we sample B = T
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Where Naïve Parallel GS Fails

 Sampling P(C|A): No need to apply Bayes Rule

 A = F so we sample C = T

19

t A B C

0 F F F

1 T T T

2

3

4

© Eric Xing @ CMU, 2005-2015

B

A

C

A P(B)

T 0.0001

F 0.9999

A P(C)

T 0.0001

F 0.9999

0)001.0()|(

1)999.0()|(





FAFCP

FATCP



Where Naïve Parallel GS Fails

 Easy to see that at t=2, we will get (A,B,C) = (F,F,F)
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Where Naïve Parallel GS Fails

 Easy to see that at t=2, we will get (A,B,C) = (F,F,F)

 At t=3, (A,B,C) = (T,T,T)
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Where Naïve Parallel GS Fails

 Easy to see that at t=2, we will get (A,B,C) = (F,F,F)

 At t=3, (A,B,C) = (T,T,T)

 At t=4, (A,B,C) = (F,F,F)
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Where Naïve Parallel GS Fails

 Easy to see that at t=2, we will get (A,B,C) = (F,F,F)

 At t=3, (A,B,C) = (T,T,T)

 At t=4, (A,B,C) = (F,F,F)

 Can you see the problem?
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Where Naïve Parallel GS Fails

 We know the stationary distribution is [(F,T,F), (T,F,T)]

 But naïve parallel GS gets stuck in [(T,T,T), (F,F,F)]

 Naïve parallel GS performs poorly on near-discrete distributions

 What is the correct way to Gibbs sample in parallel?
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Correct Parallel Gibbs Sampling

 Recall that in MRFs, we Gibbs sample by sampling from 
P(x|MB(x)), the conditional distribution of x given its Markov 
Blanket MB(x)

 For MRFs, the Markov Blanket of x is just its neighbors

 In the MRF below, the red node’s Markov Blanket consists of the blue 
nodes
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Correct Parallel Gibbs Sampling

 Observe that we can correctly Gibbs sample the two green 
nodes simultaneously

 Neither node is part of the other’s Markov Blanket, so their conditional 
distributions do not depend on each other

 Sampling one of the green nodes doesn’t change the conditional 
distribution of the other node!
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Correct Parallel Gibbs Sampling

 How do we generalize this idea to the whole graph?

 Find subsets of nodes, such that all nodes in a given subset are not in 
each other’s Markov Blankets, and the subsets cover the whole graph

 The subsets should be as large as possible

 Because we can Gibbs sample all nodes in a subset at the same time

 At the same time, we want as few subsets as possible

 The Markov Blankets of different subsets overlap, so they cannot be sampled at the 
same time. We must process the subsets sequentially.
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Correct Parallel Gibbs Sampling

 We can find these covering subsets with k-coloring algorithms 
(Gonzales et al., 2011)

 A k-coloring algorithm colors a graph using k colors, such that:

 Every node gets one color

 No edge has two nodes of the same color

 Trees always admit a 2-coloring (e.g. below)

 Assign one color to some node, and alternate colors as you move away
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Colored Fields to Thin Junction 
Trees, Joseph E. Gonzalez, 
Yucheng Low, Arthur Gretton, 
Carlos Guestrin, AISTATS 2011



Correct Parallel Gibbs Sampling

 Bipartite graphs are always 2-colorable

 Color each side of the bipartite graph with opposite colors

 e.x. Latent Dirichlet Allocation model is bipartite

 However, not all graphs have k-colorings for all k ≥ 2

 In the worst case, a graph with n nodes can require n colors

 The full clique is one such graph

 Determining if a graph is k-colorable for k > 2 is NP-complete

 In practice, we employ heuristics to find k-colorings

 Instead of using k-colorings, why not just Gibbs sample all 
variables at the same time?

 The Markov Chain may become non-ergodic, and is no longer 
guaranteed to converge to the stationary distribution!
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Online Parallel MCMC

 In “online” algorithms, we need to process new data points 
one-at-a-time

 Moreover, we have to “forget” older data points because memory is finite

 For such applications to be viable, we can only afford 
constant time work per new data point

 Otherwise we will reach a point where new data can no longer be 
processed in a reasonable amount of time

 We also want the algorithm to be parallel for scaling up

 What MCMC techniques can we use to make an online 
parallel algorithm?
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Sequential Monte Carlo

 SMC is a generalization of Particle Filters

 Recall that PFs incrementally sample P(Xt|Y1:t), where the Xs are latent 
r.v.s and the Ys are observations under a state-space model

 SMC does not assume the GM is a state-space model, or has any 
particular structure at all

 Suppose we have n r.v.s x1,…,xn

 SMC first draws samples from the marginal distribution P(x1), then 
P(x1:2), and so on until P(x1:n)

 Key idea: Construct proposals such that we sample from P(x1:k+1) in 
constant time, given samples from P(x1:k)

 Like other MCMC algorithms, we only require that we can evaluate 
P’(x1:n) = aP(x1:n) for some unknown a
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Sequential Importance Sampling

 SIS is the foundation of Sequential Monte Carlo

 It allows new variables to be sampled in constant time, without 
resampling older variables

 SIS uses proposal distributions with the following structure:

 Notice we can propose xk+1 if we’ve already drawn x1:k, without having to 
redraw x1:k
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Sequential Importance Sampling

 In normalized importance sampling, recall how the sample 
weights wi are defined:

 In SIS, the unnormalized weights r can be rewritten as a 
telescoping product:
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Sequential Importance Sampling

 This means the unnormalized weights r can be computed incrementally

 Compute αn and use it to update r(x1:n-1) to r(x1:n)

 NB: For this update to be constant time, we also require P’n(x1:n) to be computable 
from P’n-1(x1:n-1) in constant time

 We remember the unnormalized weights r at each iteration, and compute 
the normalized weights w as needed from r

 Thus, we can sample x AND compute the normalized weights w using 
constant time per new variable xn

 So SIS meets the requirements for an online inference algorithm!

 Even better, the samples don’t depend on each other

 Assign one CPU core per sample to make the SIS algorithm parallel!
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Sequential Importance Sampling

 SIS algorithm:

 At time n = 1

 Parallel draw samples xi
1 ~ q1(x1)

 Parallel compute unnormalized weights

 Compute normalized weights wi
1 by normalizing ri

1

 Although this step is sequential, it takes almost no time to perform

 At time n ≥ 2

 Parallel draw samples xi
n ~ qn(xn|x

i
1:n-1)

 Parallel compute unnorm. wgts.

 Compute normalized weights wi
n by normalizing ri

n

 Although this step is sequential, it takes almost no time to perform

© Eric Xing @ CMU, 2005-2015 35

)(/)( 11111
iii xqxPr 

)|()(

)(
)(

1:11:11

:1
1:11 i

n
i
nn

i
nn

i
nni

n
i
nn

i
n

i
n

xxqxP

xP
rxrr



 


 



Sequential Importance Sampling

 But we are not done yet!

 Unfortunately, SIS suffers from a severe drawback: the 
variance of the samples increases exponentially with n!

 See eq (31) of Doucet’s SMC tutorial for an example

 Resampling at each iteration will decrease the sample 
variance!

 Similar to weighted resampling from the first MC lecture!
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Multinomial Resampling

 Suppose we have m samples x1,…,xm with corresponding 
importance weights w1,…,wm

 Construct a categorical distribution from these samples:

 This distribution has m categories (choices)

 The probability of drawing category k is wk

 Drawing category k gets us xk

 To resample, just draw N times from this distribution

 Note that N can be greater/less than m!

 For more advanced strategies such as systematic and 
residual resampling, refer to page 13 of Doucet’s SMC tutorial
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Why Resample?

 Apart from decreasing variance, there are other reasons…

 Resampling removes samples xk with low weights wk

 Low-weight samples come from low-probability regions of P(x)

 We want to focus computation on high-probability regions of P(x)

 Notice that each sample gets an equal amount of computation, 
regardless of its weight wk

 Resampling ensures that more computation is spent on samples xk that 
come from high-probability regions of P(x)

 Resampling prevents a small number of samples xk from 
dominating the empirical distribution

 Resampling resets all weights wk to 1/N

 This prevents sample weights wk from growing until they reach 1
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Sequential Monte Carlo

 The SMC algorithm is just SIS with resampling:

 At time n = 1

 Parallel draw samples xi
1 ~ q1(x1)

 Parallel compute unnormalized weights

 Compute normalized weights wi
1 by normalizing ri

1

 Parallel resample wi
1, x

i
1 into N equally-weighted particles xi

1

 At time n ≥ 2

 Parallel draw samples xi
n ~ qn(xn|x

i
1:n-1)

 Parallel compute unnorm. wgts.

 Compute normalized weights wi
n by normalizing ri

n

 Parallel resample wi
n,x

i
1:n into N equally-weighted particles xi

1:n
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Sequential Monte Carlo

 The SMC algorithm is just SIS with resampling:

 At time n = 1

 Parallel draw samples xi
1 ~ q1(x1)

 Parallel compute unnormalized weights

 Compute normalized weights wi
1 by normalizing ri

1

 Parallel resample wi
1, x

i
1 into N equally-weighted particles xi

1

 At time n ≥ 2

 Parallel draw samples xi
n ~ qn(xn|x

i
1:n-1)

 Parallel compute unnorm. wgts.

 Compute normalized weights wi
n by normalizing ri

n

 Parallel resample wi
n,x

i
1:n into N equally-weighted particles xi

1:n

© Eric Xing @ CMU, 2005-2015 40

)(/)( 11111
iii xqxPr 

)|()(

)(
)(

1:11:11

:1
1:11 i

n
i
nn

i
nn

i
nni

n
i
nn

i
n

i
n

xxqxP

xP
rxrr



 


 

-Scalable Dynamic Nonparametric Bayesian Models of Content and Users, 
Amr Ahmed and Eric Xing



Asynchronous Sequential Monte 
Carlo

 Use a cascade of particles 

 Barrier synchronization

 Shown to be consistent and unbiased estimate
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-Asynchronous Anytime Sequential Monte Carlo, Brooks Paige, Frank 
Wood, Arnaud Doucet and Yee Whye The, NIPS 2014



Summary

 Parallel Gibbs sampling

 Naïve strategy: sample all variables at the same time

 Correct strategy: perform graph colorings and sample same-colored 
nodes in parallel

 Sequential Monte Carlo

 Uses incremental proposal distributions

 Provides a framework for designing online, parallel MCMC algorithms
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Parallel Inference for Bayesian 
Nonparametric

 Dirichlet Process Mixture Model (recap)

 Inference schemes (recap)

 Parallel inference schemes

 Results
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Finite Mixture Model:- Restaurant 
Perspective
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People sit on the table with the most preferred dish/color 



Finite Mixture Model:- Restaurant 
Perspective

 Table:

 Cluster

 People:

 Items to be clustered

 Parameters:

 Dish/color on each table

 Center of each cluster

 Hidden Variable:

 Assignment of people to each table
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Finite Mixture Model:- Restaurant 
Perspective
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People sit on the table with the most preferred dish/color 

Which clustering algorithm will it lead to?



Finite Mixture Model:- Restaurant 
Perspective
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People sit on the table with the most preferred dish/color 

Which clustering algorithm will it lead to?

Hard Kmeans



Finite Mixture Model:- Restaurant 
Perspective
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People sit on the table proportional to appreciation of dish/color 

Which clustering algorithm will it lead to?



Finite Mixture Model:- Restaurant 
Perspective
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People sit on the table proportional to appreciation of dish/color 

Which clustering algorithm will it lead to?

Soft Kmeans



Soft Kmeans Generative Model
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Finite Mixture Model:- Restaurant 
Perspective
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People sit on the table proportional to appreciation of dish/color and
number of people sitting on the table 

Which clustering algorithm will it lead to?

Dirichlet Distribution 
Mixture Model



Finite MM Generative Model
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Finite Mixture Model:- Restaurant 
Perspective
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People sit on the table proportional to appreciation of dish/color and
number of people sitting on the table 

Which clustering algorithm will it lead to?

Dirichlet Distribution 
Mixture Model



Infinite Mixture Model:-
Restaurant Perspective
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People sit on the table proportional to appreciation of dish/color and
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Infinite Mixture Model:-
Restaurant Perspective
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People sit on the table proportional to appreciation of dish/color and
number of people sitting on the table 



Turning the definition
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Stick Breaking Construction
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Take a stick of unit length 

Step 2:- Break it into two parts

Step 3:- Choose a dish

Step 1:-

Step 4:- Go to step 2

Proportional 
to selecting a 
table

Dish



Stick Breaking Construction
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Graphical Model Representation
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Proportional to 
number of customer 
sitting on the table

Which table each 
customer sit at

Which dish is 
selected at each 
table

Dirichlet Process Mixture 
Model



Inference

 Gibbs Sampling:-

 Sample each of the variable given the rest.

 Variables to sample are table proportion Vk , table assignment to each 
customer (Z) and dish at each table η
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Inference

 Parallel Gibbs Sampling 1:-

 Sample Vk and ᶯk globally

 Given Vk and ᶯk , Z are independent of each other
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Inference

 Parallel Gibbs Sampling:-

 Sample Vk and ᶯk globally

 Given Vk and ᶯk , Z are independent of each other

 Poor mixing
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Inference

 Parallel Gibbs Sampling 2:-

 Sample Vk and ᶯk globally

 Sample a noisy version of Vk and ᶯk for each processor

 Sample Z independently in each processor
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-Distributed Algorithms for Topic Models, David Newman, Arthur Asuncion, 
Padhraic Smyth, Max Welling



Inference

 Collapsed Gibbs Sampler:-

 Integrate out Vk and ηk

 Leads to better mixing

 Parallel inference: Hard
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Inference

 Collapsed Gibbs suffer from large computational cost

© Eric Xing @ CMU, 2005-2015 65

Running Example: 
10 million data 
points to be 
clustered.



Inference

 Variational Inference

 Approximate the posterior with a distribution belonging to a more 
manageable family of distribution

 Parallel inference: Easy

 Search within a restricted class of models, looses the expressiveness 

 Typically less accuracy than MCMC methods
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Inference

 Sequential Monte Carlo Method:-

 Keep a pools of particles, approximate the distribution using  weighted 
combination of the pool 

 Parallel inference: Easy

 High variance for naïve implementation, needs resampling (MCMC )
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Parallel MCMC

 Naïve 

 Run collapsed sampler on individual core

 Combine the result approximately !!
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Parallel MCMC

 Naïve 

 Run collapsed sampler on individual core

 Combine the result approximately !!

 How

 Why should two newly discovered clustered in two different processor be 
the same? 

© Eric Xing @ CMU, 2005-2015 69



Parallel MCMC

 Naïve 

 Sample Hyper parameter for each 

 Run collapsed sampler on individual core

 Combine the result approximately !!
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Parallel MCMC

 Idea: Dirichlet Mixture of Dirichlet processes are Dirichlet
processes
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Parallel MCMC
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Parallel MCMC

 Idea: Dirichlet Mixture of Dirichlet processes are Dirichlet
processes
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Auxiliary Variable Model For DP

 The generative process is as follows :-
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Inference

 Conditioned on the Restaurant allocation  data are distributed 
according  to P independent Dirichlet process

 Perform local collapsed gibbs sampling on the independent 
DPs

 For the global parameters perform MH

 Select a cluster ‘c’ and a processor ‘p’ 

 Propose: move ‘c’ to ‘p’

 Acceptance ratio depends on cluster size

 Can pass the indices of the cluster item.

 Can be done asynchronously without affecting the 
performance.
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Result
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Extension to HDP
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Take home message

 Naïve parallel inference scheme does not always work

 Utilize structure of the problem: Conditional independence 

 Exact parallel inference or bound on error
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