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Recap of MCMC

e Markov Chain Monte Carlo methods use adaptive proposals
Q(x’'|x) to sample from the true distribution P(x)

e Metropolis-Hastings allows you to specify any proposal Q(x’|x)
e But choosing a good Q(x’|x) requires care

e Gibbs sampling sets the proposal Q(x’|x) to the conditional

distribution P(x’|x)

e Acceptance rate always 1!
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Parallel MCMC for Large Scale

e Datasets and models can be very large
e Millions to billions of data points
e Millions to billions of random variables
e Compute time measured in CPU-years
e Need GBs to TBs of memory

e E.x. Yahoo web graph has ~1.4 billion nodes and 6.6 billion edges
Imagine doing a Markov Random Field on that network

e Without parallelism, we cannot use large datasets and
models!

e Today: how to use multiple CPUs and machines in MCMC
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e Proper use of MCMC actually requires parallelism
To determine convergence, you need to take multiple MCMC chains
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Chains are independent, so you can run one chain per CPU

Once converged, you can combine samples from all chains
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e Taking multiple chains doesn’t solve all issues, though
e If burn-in is long, then all chains will take a long time to converge!
e \We need a way to take each sample faster...
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Idea: Run Gibbs Sampling in
Parallel?
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e Recall the alarm network
e Initialize all variables att = 0 to False
e |dea: parallel Gibbs sample all variables at step t conditioned on t-1

=
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e Sampling P(B|A,E) att = 1: Using Bayes Rule,
P(B|A,E)x P(A|B,E)P(B)
e (AE)=(F,F), sowe compute the following, and sample B =F
P(B=T|A=F,E=F)x(0.06)(0.01)=0.0006
P(B=F|A=F,E=F)«(0.999)(0.999) =0.9980
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e Sampling P(E|A,B): Using Bayes Rule,
P(E|A,B)x P(A|B,E)P(E)
e (AB)=(F,F), so we compute the following, and sample E=T
P(E=T|A=F,B=F)o«(0.71)(0.02) =0.0142
P(E=F|A=F,B=F)«(0.999)(0.998)=0.9970
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e Notice the difference
Normal Gibbs sampling: compute P(E|A,B) based on B_4, A5
Naive Parallel GS: compute P(E|A,B) based on B, A,
At step t, always condition on t-1 instead of most recently sampled value
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e Sampling P(A|B,E,J,M): Using Bayes Rule,
P(A|B,E,J,M)x P(J|A)P(M | A)P(A|B,E)
e (B,E,JM)=(F,F,F,F), sowe compute the following, and sample A=F
P(A=T|B=F,E=F,J=F,M =F) o« (0.1)(0.3)(0.001) =0.00003
P(A=F|B=F,E=F,J=F,M =F) o« (0.95)(0.99)(0.999) =0.9396
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e Sampling P(J|A): No need to apply Bayes Rule

e A=F, sowe compute the following, and sample J =T
P(J=T|A=F)x0.05
P(J=F|A=F)x0.95
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e Sampling P(M|A): No need to apply Bayes Rule

e A =F, sowe compute the following, and sample M = F
PM=T|A=F)x0.01
PM=F|A=F)«0.99
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e We just finished sampling variables t=1
e \Why is the sampling parallelizable?
We only conditioned on variable state at t=0, which is known in advance!

We can sample B,E,A,J,M on separate processors, without having to
send information between processors
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Naive Parallel Glbbs Samplmg

e In practice, works very well for some graphical models
e E.Q.
collapsed Gibbs Sampling for LDA
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- Asynchronous Distributed Learning of Topic Models, Arthur Asuncion,
Padhraic Smyth, Max Welling

- Distributed Algorithms for Topic Models, David Newman, Arthur
Asuncion, Padhraic Smyth, Max Welling

e Just assign different z/’s to different processors or machines

e But there’s a problem...

© Eric Xing @ CMU, 2005-2015 14



Where Naive Parallel GS Fails

e Naive Parallel GS may not converge to the stationary
distribution

e Consider the following Bayes Net:

T 0.0001 G e T 0.0001
F  0.9999 F  0.9999
e Essentially an XOR relation between (A,B) and (A,C)

e Joint distribution P(A,B,C) has only 8 states, so we can compute the
stationary distribution. It is dominated by 2 equally-probable states:

(A,B,C)=(T,F,T)and (A,B,C) = (F,T,F)
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e Let's initialize (A,B,C) = (F,F,F) and see what happens when
we naively Gibbs sample in parallel...
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e Sampling P(A|B,C):
P(A|B,C)x P(B|A)P(C| A)
e (B,C)=(F,F)sowesample A=T
P(A=T|B=F,C=F)x(0.999)0.999)~1
P(A=F|B=F,C=F)«(0.001)(0.001)=0
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e Sampling P(B|A): No need to apply Bayes Rule

e A=FsowesampleB=T
P(B=T|A=F)ox(0.999)~1
P(B=F|A=F)x(0.001)=0
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e Sampling P(C|A): No need to apply Bayes Rule

e A=FsowesampleC=T
P(C=T|4A=F)«(0.999) =1
P(C=F|A=F)«(0.001)=0
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e Easy to see that at t=2, we will get (A,B,C) = (F,F,F)
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Where Naive Parallel GS Fails
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e FEasy to see that at t=2, we will get (A,B,C) = (F,F,F)
e Att=3, (AB,C)=(T,T,T)
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Where Naive Parallel GS Fails
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e FEasy to see that at t=2, we will get (A,B,C) = (F,F,F)
e Att=3, (AB,C)=(T,T,T)
o Att=4,(AB,C)=(F,F,F)
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Where Naive Parallel GS Fails

T 0.0001
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Easy to see that at t=2, we will get (A,B,C) = (F,F,F)
At t=3, (A,B,C) = (T,T,T)

Att=4, (A,B,C) = (F,F,F)

Can you see the problem?
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e \We know the stationary distribution is [(F,T,F), (T,F,T)]
e But naive parallel GS gets stuck in [(T,T,T), (F,F,F)]

A|_PB) | A|_P(C) |
T 0.0001 ° ° T 0.0001
F 0.9999 F 0.9999

e Naive parallel GS performs poorly on near-discrete distributions

e What is the correct way to Gibbs sample in parallel?
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Correct Parallel Gibbs Sampl

e Recall that in MRFs, we Gibbs sample by sampling from
P(x|MB(x)), the conditional distribution of x given its Markov
Blanket MB(x)

e For MRFs, the Markov Blanket of x is just its neighbors

e Inthe MRF below, the red node’s Markov Blanket consists of the blue
nodes

© Eric Xing @ CMU, 2005-2015 25



Correct Parallel Gibbs Sampl

e Observe that we can correctly Gibbs sample the two green
nodes simultaneously

Neither node is part of the other's Markov Blanket, so their conditional
distributions do not depend on each other

Sampling one of the green nodes doesn’t change the conditional
distribution of the other node!

© Eric Xing @ CMU, 2005-2015 26



e How do we generalize this idea to the whole graph?

Find subsets of nodes, such that all nodes in a given subset are not in
each other’'s Markov Blankets, and the subsets cover the whole graph

The subsets should be as large as possible
Because we can Gibbs sample all nodes in a subset at the same time

At the same time, we want as few subsets as possible

The Markov Blankets of different subsets overlap, so they cannot be sampled at the
same time. We must process the subsets sequentially.

© Eric Xing @ CMU, 2005-2015 27



Correct Parallel Gibbs Samplin

e \We can find these covering subsets with k-coloring algorithms
(Gonzales et al., 2011)

e A k-coloring algorithm colors a graph using k colors, such that:
Every node gets one color
No edge has two nodes of the same color
e Trees always admit a 2-coloring (e.g. below)
e Assign one color to some node, and alternate colors as you move away

- Parallel Gibbs Sampling: From
Colored Fields to Thin Junction
Trees, Joseph E. Gonzalez,
Yucheng Low, Arthur Gretton,
©Eric Xing @ CMU, 2005-2015  Carlos Guestrin, AISTATS 2071



Correct Parallel Gibbs Sampl

e Bipartite graphs are always 2-colorable
e Color each side of the bipartite graph with opposite colors
e e.X. Latent Dirichlet Allocation model is bipartite

e However, not all graphs have k-colorings for all k = 2
e In the worst case, a graph with n nodes can require n colors
The full clique is one such graph
e Determining if a graph is k-colorable for k > 2 is NP-complete
e In practice, we employ heuristics to find k-colorings

e Instead of using k-colorings, why not just Gibbs sample all
variables at the same time?

e The Markov Chain may become non-ergodic, and is no longer

guaranteed to converge to the stationary distribution!
© Eric Xing @ CMU, 2005-2015 29



Online Parallel MCM

e In “online” algorithms, we need to process new data points
one-at-a-time
e Moreover, we have to “forget” older data points because memory is finite

e For such applications to be viable, we can only afford
constant time work per new data point

e Otherwise we will reach a point where new data can no longer be
processed in a reasonable amount of time

e We also want the algorithm to be parallel for scaling up

e What MCMC techniques can we use to make an online
parallel algorithm?
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Sequential Monte Carlo

e SMC is a generalization of Particle Filters

Recall that PFs incrementally sample P(X{Y,.), where the Xs are latent
r.v.s and the Ys are observations under a state-space model

SMC does not assume the GM is a state-space model, or has any
particular structure at all

e Suppose we have nr.v.s Xq,...,X,

SMC first draws samples from the marginal distribution P(x,), then
P(x,.,), and so on until P(x,.,)

Key idea: Construct proposals such that we sample from P(x,.,,4) in
constant time, given samples from P(x,.,)

Like other MCMC algorithms, we only require that we can evaluate
P’(x,.,) = aP(x,.,) for some unknown a

© Eric Xing @ CMU, 2005-2015 31



Sequential Importa

e SIS is the foundation of Sequential Monte Carlo

e It allows new variables to be sampled in constant time, without
resampling older variables

e SIS uses proposal distributions with the following structure:

qn (xl:n ) - qnfl (xl:nfl )qn ('xn ‘ xl:nfl )

=q,(x, )H g (X [ x51)
k=2

e Notice we can propose X, if we've already drawn X,.,, without having to
redraw X.,
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Sequential Importance Sampl

e |n normalized importance sampling, recall how the sample
weights w' are defined:

(0}, = X 1w
h Wi:’”_i g V[:P,(X[)
where er an Q(xi)

J

e In SIS, the unnormalized weights r can be rewritten as a
telescoping product:
q,(x.,)
_ P (x,) P/(x,,)
q,1(xp,1) Pn’4 (X109, (x, | X,,-1)

- n—1 (xlzn—l )an ('xl:n )

)] [ ()

r(x.,)=

[)n,(xl:n )
[)n,—l (“xlzn—l )qn (xn | xl:n—l )

Where an (xl:n) -
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Sequential Importance Sampling

Rq'(xlzn )

r(x,)=rx)| | o (x.,) where a,(x,)=—
. o g e 1 P (x,.)q,(x, | x,._)

e This means the unnormalized weights r can be computed incrementally

Compute a, and use it to update r(x,..4) to r(x,.,)

NB: For this update to be constant time, we also require P’ (x,.,) to be computable
from P’,_1(X4.,.1) in constant time

We remember the unnormalized weights r at each iteration, and compute
the normalized weights w as needed from r

e Thus, we can sample x AND compute the normalized weights w using
constant time per new variable x,

So SIS meets the requirements for an online inference algorithm!

e Even better, the samples don’t depend on each other
Assign one CPU core per sample to make the SIS algorithm parallel!
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Sequential Importance Sampling

e SIS algorithm:

e Attimen=1

Parallel draw samples x'; ~ q,(x,)

Parallel compute unnormalized weights »' = P(x})/q,(x))

Compute normalized weights w', by normalizing r',

= Although this step is sequential, it takes almost no time to perform
e Attimen=z=2

Parallel draw samples x', ~ q,(X,|X'1.n.1) |
ACH)

[)n'fl ('xll:nfl )qn (xllq ‘ xllznfl )

Parallel compute unnorm. wgts. ' =" o (x )=r',

Compute normalized weights w' . by normalizing r'
= Although this step is sequential, it takes almost no time to perform
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Sequential Importance Sampling

e But we are not done yet!

e Unfortunately, SIS suffers from a severe drawback: the
variance of the samples increases exponentially with n!

e See eq (31) of Doucet’'s SMC tutorial for an example

e Resampling at each iteration will decrease the sample
variance!

e Similar to weighted resampling from the first MC lecture!
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e Suppose we have m samples x',...,x™ with corresponding

importance weights w,...,wm

Construct a categorical distribution from these samples:
e This distribution has m categories (choices)

e The probability of drawing category k is w¥

e Drawing category k gets us xk

To resample, just draw N times from this distribution
e Note that N can be greater/less than m!

For more advanced strategies such as systematic and
residual resampling, refer to page 13 of Doucet’s SMC tutorial
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Why Resample?

e Apart from decreasing variance, there are other reasons...

e Resampling removes samples x* with low weights wk
e Low-weight samples come from low-probability regions of P(x)
We want to focus computation on high-probability regions of P(x)

e Notice that each sample gets an equal amount of computation,
regardless of its weight w,

Resampling ensures that more computation is spent on samples x, that
come from high-probability regions of P(x)

e Resampling prevents a small number of samples x, from
dominating the empirical distribution
e Resampling resets all weights w, to 1/N
This prevents sample weights w, from growing until they reach 1

© Eric Xing @ CMU, 2005-2015 38



e The SMC algorithm is just SIS with resampling:

e Attimen=1

Parallel draw samples x'; ~ q,(x,)

Parallel compute unnormalized weights # =B/(x;)/¢,(x})

Compute normalized weights w', by normalizing r',

Parallel resample w',, X', into N equally-weighted particles X,
e Attimen=z=2

Parallel draw samples x', ~ q.,(X.[X'1.,.1) Pl )
n I:n

[)n'fl ('xll:nfl )qn (xllq ‘ xllznfl )

Parallel compute unnorm. wgts. 7, =7,,a,(x,,) =7,

Compute normalized weights w' . by normalizing r'
Parallel resample w' ,x!,.. into N equally-weighted particles X,

-Scalable Dynamic Nonparametric Bayesian Models of Content and Users,
Amr Ahmed and Eric Xing
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e The SMC algorithm is just SIS with resampling:

e Attimen=1

Parallel draw samples x'; ~ q,(x,)
Parallel compute unnormalized weights ' =B/(x,)/q,(x})

Compute normalized weights w', by normalizing r',

Parallel resample w',, X', into N equally-weighted particles X,
e Attimen=z=2

Parallel draw samples x', ~ q.,(X.[X'1.,.1) Pl )
n I:n

[)n'fl ('xll:nfl )qn (xllq ‘ xllznfl )

Parallel compute unnorm. wgts. 7, =7,,a,(x,,) =7,

Compute normalized weights w', by normalizing r'

Parallel resample w' ,x!,.. into N equally-weighted particles X,

-Scalable Dynamic Nonparametric Bayesian Models of Content and Users,
Amr Ahmed and Eric Xing
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Asynchronous Sequential Monte
Carlo

e Use a cascade of particles
e Barrier synchronization
e Shown to be consistent and unbiased estimate

-Asynchronous Anytime Sequential Monte Carlo, Brooks Paige, Frank

Wood, Arnaud Doucet and Yee Whye The, NIPS 2014

© Eric Xing @ CMU, 2005-2015
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e Parallel Gibbs sampling
e Naive strategy: sample all variables at the same time

e Correct strategy: perform graph colorings and sample same-colored
nodes in parallel

e Sequential Monte Carlo
e Uses incremental proposal distributions
e Provides a framework for designing online, parallel MCMC algorithms

© Eric Xing @ CMU, 2005-2015 42



Parallel Inference for Bayesian
Nonparametric

e Dirichlet Process Mixture Model (recap)
e Inference schemes (recap)

e Parallel inference schemes

e Results

© Eric Xing @ CMU, 2005-2015 43



Finite Mixture Model:- Restaurant
Perspective

People sit on the table with the most preferred dish/color

© Eric Xing @ CMU, 2005-2015 44



Finite Mixture Model:- Restaurant
Perspective

e J[able:

Cluster

e People:

ltems to be clustered

e Parameters:

Dish/color on each table
Center of each cluster

e Hidden Variable:

Assignment of people to each table

© Eric Xing @ CMU, 2005-2015
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Finite Mixture Model:- Restaurant
Perspective

People sit on the table with the most preferred dish/color

Which clustering algorithm will it lead to?

© Eric Xing @ CMU, 2005-2015 46



Finite Mixture Model:- Restaurant
Perspective

People sit on the table with the most preferred dish/color

Which clustering algorithm will it lead to?

Hard Kmeans

© Eric Xing @ CMU, 2005-2015
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Finite Mixture Model:- Restaurant
Perspective

People sit on the table proportional to appreciation of dish/color

Which clustering algorithm will it lead to?

© Eric Xing @ CMU, 2005-2015 48



Finite Mixture Model:- Restaurant
Perspective

People sit on the table proportional to appreciation of dish/color

Which clustering algorithm will it lead to?

Soft Kmeans

© Eric Xing @ CMU, 2005-2015
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for k=1, ... K

n,~H
fori=1,... N
Z. ~ U(1,K)
X; ~ f(n,)

i=1,...N

© Eric Xing @ CMU, 2005-2015
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Finite Mixture Model:- Restaurant
Perspective

People sit on the table proportional to appreciation of dish/color and
number of people sitting on the table

Which clustering algorithm will it lead to?

Dirichlet Distribution
Mixture Model

© Eric Xing @ CMU, 2005-2015
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fori=1, ... N Ql)
Z. ~ Mul(8) ° )

X; ~ f(n,) i=1,...N k=1,...K

© Eric Xing @ CMU, 2005-2015 52



Finite Mixture Model:- Restaurant
Perspective

People sit on the table proportional to appreciation of dish/color and
number of people sitting on the table

Which clustering algorithm will it lead to?

Dirichlet Distribution
Mixture Model

© Eric Xing @ CMU, 2005-2015
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Infinite Mixture Model:-

People sit on the table proportional to appreciation of dish/color and
number of people sitting on the table

00

© Eric Xing @ CMU, 2005-2015 54



Infinite Mixture Model:-

People sit on the table proportional to appreciation of dish/color and
number of people sitting on the table

00

9+a 9+a 9+a
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Turning the definitio

Proportional

to selectinga | | ]
table

Dish on the table J\/
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Step 1:-Take a stick of unit length

Proportional | |
to selecting a

table Step 2:- Break it into two parts

Step 3:- Choose a dish Step 4:- Go to step 2

Dish

© Eric Xing @ CMU, 2005-2015 57



Proportional

to selectinga |

table

Dish on the table

© Eric Xing @ CMU, 2005-2015
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000
'YX X
Y XX
| | ::.
Graphical Model Representation |
Which table_ each number of customer
customer sit at sitting on the table
1. Draw V;|a ~ Beta(l,a), i=1{1,2,...} V,I; ) 0
5 . : / \H——(
2. Draw n; |Go ~ Gog, i=1{12,...} X7 \__
3. For the nth data point: .
(a) Draw Zy, | {v1, 93, ...} ~ Mult(x(v)). 1 A
(b) Draw X, |z ~ p(zn | 75.). & —O
L oo
Dirichlet Process Mixture )
Model Which dish is
selected at each

table
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Inference

e Gibbs Sampling:-
e Sample each of the variable given the rest.

e Variables to sample are table proportion V, , table assignment to each
customer (Z) and dish at each table n

Z”f'\ Va—/\ u{
e '\/__\D
Xi n’b A

FIRNRS

- Finding scientific topics, Thomas L. Griffiths and Mark Steyvers PNAS 2004
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Inference

e Parallel Gibbs Sampling 1:-

Sample V, and " globally
Given V, and 0, Z are independent of each other

© Eric Xing @ CMU, 2005-2015
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Inference

e Parallel Gibbs Sampling:-

e Sample V, and " globally

Given V, and 0, Z are independent of each other

Poor mixing

© Eric Xing @ CMU, 2005-2015
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Inference

e Parallel Gibbs Sampling 2:-

e Sample V, and " globally

e Sample a noisy version of V, and n, for each processor

e Sample Z independently in each processor

000
09000
[ X X X
[ XK
o0
[ )
A ?”‘;\ K’f\, I
xi)“ " W
X, i i A
/2 2 I
\"* T.am,
N % %0

-Distributed Algorithms for Topic Models, David Newman, Arthur Asuncion,

Padhraic Smyth, Max Welling
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Inference

e Collapsed Gibbs Sampler:-

Integrate out V, and n,

Parallel inference: Hard
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Inference

e Collapsed Gibbs suffer from large computational cost

Running Example: 0
10 million data '
points to be

0.6
clustered. .

0.4 |

0.2 #Gibbs (1 processor) | |

0
4 16 64 256 1024 4096

Time (minutes)
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Inference

e Variational Inference

Approximate the posterior with a distribution belonging to a more
manageable family of distribution

Search within a restricted class of models, looses the expressiveness
Typically less accuracy than MCMC methods

1

0.8

0.6

i
(T8

0.4 -
. -+-VB

0.2 T
=Gibbs {1 processor)

0

4 16 64 256 1024 4096
Time (minutes)
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Inference

e Sequential Monte Carlo Method:-

Keep a pools of particles, approximate the distribution using weighted
combination of the pool

High variance for naive implementation, needs resampling (MCMC )

1

0.8
0.6
L
L
0.4 SMC (100 particle) ||
*
- SMC (10 particle)
0.2 —
- --VB
-m-Gibbs (1 processor)
0
4 16 64 256 1024 4096

Time (minutes)
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Parallel MCMC

e Naive
e Run collapsed sampler on individual core

e Combine the result approximately !!
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i

;; pg &0

Restaurant 1 © 0 0 Q
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I

@ - Asynchronous Distributed Learning of
Topic Models, Arthur Asuncion, Padhraic

Smyth, Max Welling, NIPS 2009
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Parallel MCMC

e Naive
e Run collapsed sampler on individual core
e Combine the result approximately !!

How
Why should two newly discovered clustered in two different processor be
the same?
0.8
0.6
o
0.4 +Synch
= -@ SMC (10 particle)
0.2 -2 SMC (100 particle) | |
B —--VB
-=-Gibbs (1 processor)
0
4 16 64 256 1024 4096

Time (minutes)
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Parallel MCMC

e Nailve

e Sample Hyper parameter for each

e Run collapsed sampler on individual core

e Combine the result aﬁ'proxm

(ﬁ‘ OOOQO

Restaurant 1

00 O
£ & & &

Restaurant P

htely !!

i
;

00060

- Asynchronous Distributed Learning of
Topic Models, Arthur Asuncion, Padhraic
Smyth, Max Welling, NIPS 2009
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Parallel MCMC

e lIdea: Dirichlet Mixture of Dirichlet processes are Dirichlet
processes
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Parallel MCMC

e lIdea: Dirichlet Mixture of Dirichlet processes are Dirichlet
processes

DJ,-NDP(E,H), Bt P

O

Restaurant P
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Parallel MCMC :
e lIdea: Dirichlet Mixture of Dirichlet processes are Dirichlet
processes
\
e
O ~ Dlrlchlet(P, MEs P)

T~ Q
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Parallel MCMC

e lIdea: Dirichlet Mixture of Dirichlet processes are Dirichlet

pProcesses

Restaurant P

HI- e Dﬂ',‘
X;Nf(ﬁ;): s 1.,...,N.

© Eric Xing @ CMU, 2005-2015 74



e The generative process is as follows :-

DJ,-NDP(%.H), j=1,...,P D s D H),
i Dmcmet(g.,,..,%) <:> 6i ~ D,
I 5 &~ Fldi)

g D

Koo T@r s d=15005 M.
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Inference

e Conditioned on the Restaurant allocation data are distributed
according to P independent Dirichlet process

e Perform local collapsed gibbs sampling on the independent
DPs

e For the global parameters perform MH
e Select a cluster ‘c’ and a processor ‘p’
e Propose: move ‘c’ to p’
e Acceptance ratio depends on cluster size

e (Can pass the indices of the cluster item.

e Can be done asynchronously without affecting the
performance.
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Result

F1

0.8

0.6

0.4

0.2

—+AVparallel

-e-Synch
- SMC (10 particle)

- SMC (100 particle)

e ~-VB
-=-Gibbs (1 processor)
16 64 256 1024 4096

Time (minutes)
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Extension to HDP

4000
-+AVparallel
-e-Synch
‘ -+-\VB
3000 #-Gibbs (1 Processor) ||

Perplexity
NI
-,
S
=

1000

0.25 1 4 16 64 256 1024 4096
Time (minutes)
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e Naive parallel inference scheme does not always work
e Utilize structure of the problem: Conditional independence
e Exact parallel inference or bound on error
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