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Networks / Graphs 

© Eric Xing @ CMU, 2005-2015 2 



l  Prior knowledge 
l  Mom told me “A is connected to B” 

l  Estimate from data! 
l  We have seen this in previous classes 
l  Will see two more today 

l  Sometimes may also be interested in edge weights 
l  An easier problem 
 

l  Real networks are BIG 
l  Require distributed optimization 
 

Where do graphs come from? 
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Structural Learning for 
completely observed  

MRF (Recall)  Data 
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Gaussian Graphical Models 
l  Multivariate Gaussian density: 

l  WOLG:  let 

l  We can view this as a continuous Markov Random Field with 
potentials defined on every node and edge: 
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The covariance and the precision 
matrices   

l  Covariance matrix 

l  Graphical model interpretation? 

l  Precision matrix 

l  Graphical model interpretation? 
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Sparse precision vs. sparse 
covariance in GGM 
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Another example 

l  How to estimate this MRF? 
l  What if p >> n 

l  MLE does not exist in general! 
l  What about only learning a “sparse” graphical model? 

l  This is possible when s=o(n) 
l  Very often it is the structure of the GM that is more interesting … 
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Recall lasso  
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Graph Regression (Meinshausen & Buhlmann’06) 

Lasso: Neighborhood selection 
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Graph Regression 
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Graph Regression 

Pros:  
•  Computationally convenient 
•  Strong theoretical guarantee  

( p <= pol(n) ) 

Cons: 
•  Asymmetry 
•  Not minimax optimal 
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The regularized MLE (Yuan & Lin’07) 

l  S: sample covariance matrix, may be singular 
l  ||Q||1: may exclude the diagonal  
l  log det Q: implicitly force Q to be PSD symmetric  

 
Pros 

l  Single step for estimating graph and inverse covariance 
l  MLE! 

Cons 
l  Computationally challenging, partly solved by Glasso (Banergee et al’08, 

Friedman et al’08) 
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min

Q
� log detQ+ tr(QS) + �kQk1



Many many follow-ups 
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A closer look of RMLE 

l  Set derivative to 0: 

l  Can we (?!):  
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min

Q
� log detQ+ tr(QS) + �kQk1

�Q�1 + S + � · sign(Q) = 0

kQ�1 � Sk1  �

min
Q

kQk1 s.t. kQ�1 � Sk1  �



CLIME (Cai et al.’11) 

l  Further relaxation 

l  Constraint controls  
l  Objective controls sparsity in Q 
l  Q is not required to be PSD or symmetric 

l  Separable!  LP!!! 
l  Both objective and constraint are element-wise separable 
l  Can be reformulated as LP 

l  Strong theoretical guarantee  
l  Variations are minimax-optimal (Cai et al.’12, Liu & Wang’12) 
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min
Q

kQk1 s.t. kSQ� Ik1  �

Q ⇡ S�1



But for BIG problems 

l  Standard solvers for LP can be slow 
l  Embarrassingly parallel: 

l  Solve each column of Q independently in each core/machine 

l  Thanks for not having PSD constraint on Q 
l  Still troublesome if S is big 
l  Need to consider first-order methods 
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min
Q

kQk1 s.t. kSQ� Ik1  �

min
qi

kqik1 s.t. kSqi � eik1  �
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A gentle introduction to 
alternating direction method of 

multipliers (ADMM) 



Optimization with coupling 
variables 

l  Numerically challenging because 
l  Function f or g nonsmooth or constrained (i.e., can take value     ) 
l  Linear constraint couples the variables w and z 
l  Large scale, interior point methods NA 

l  Naively alternating x and z does not work 
l  Min w2  s.t.  w + z = 1;    optimum clearly is w = 0 
l  Start with say w = 1 à z = 0 à w = 1 à z = 0 …  

l  However, without coupling, can solve separately w and z 
l  Idea: try to decouple vars in the constraint! 
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1

J uncoupled  L coupled 

where 

Canonical form: min
w,z

f(w) + g(z), s.t. Aw +Bz = c,
w 2 Rm, z 2 Rp, A : Rm ! Rq, B : Rp ! Rq, c 2 Rq



Example: Empirical Risk 
Minimization (ERM) 

l  Each i corresponds to a training point (xi, yi) 
l  Loss fi measures the fitness of the model parameter w 

l  least squares:                                    
l  support vector machines:                                       
l  boosting:   
l  logistic regression:  

l  g is the regularization function, e.g.            or  
l  Vars coupled in obj, but not in constraint (none) 

l  Reformulate: transfer coupling from obj to constraint 
l  Arrive at canonical form, allow unified treatment later 
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min
w

g(w) +
nX

i=1

fi(w)

�nkwk22 �nkwk1

fi(w) = (yi � w

>
xi)

2

fi(w) = (1� yiw
>
xi)+

fi(w) = exp(�yiw
>
xi)

fi(w) = log(1 + exp(�yiw
>
xi))

L coupled 



Why canonical form? 

l  ADMM algorithm (to be introduced shortly) excels at solving 
the canonical form 
l  Canonical form is a general “template” for constrained problems 

l  ERM (and many other problems) can be converted to 
canonical form through variable duplication (see next slide) 
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min
w

g(w) +
nX

i=1

fi(w)ERM: 

where 

Canonical form: min
w,z

f(w) + g(z), s.t. Aw +Bz = c,
w 2 Rm, z 2 Rp, A : Rm ! Rq, B : Rp ! Rq, c 2 Rq



How to: variable duplication 
l  Duplicate variables to achieve canonical form 

 
l  Global consensus constraint:  

l  All wi must (eventually) agree 

l  Downside: many extra variables, increase problem size 
l  Implicitly maintain duplicated variables 
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min
w

g(w) +
nX

i=1

fi(w)

8i, wi = z
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min
v,z

g(z) +
X

i
fi(wi)

| {z }
f(v)

, s.t. wi = z, 8i| {z }
v�[I,...,I]>z=0

v = [w1, . . . , wn]
>



Augmented Lagrangian 

l  Intro Lagrangian multiplier     to decouple variables 

l      : augmented Lagrangian 
l  More complicated min-max problem, but no coupling constraints 
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Lµ

min

w,z
max

�
f(w) + g(z) + �>

(Aw +Bz� c) + µ
2 kAw +Bz� ck22| {z }

Lµ(w,z;�)

�

where 

Canonical form: min
w,z

f(w) + g(z), s.t. Aw +Bz = c,
w 2 Rm, z 2 Rp, A : Rm ! Rq, B : Rp ! Rq, c 2 Rq



Why Augmented Lagrangian? 
l  Quadratic term gives numerical stability 

l  May lead to strong convexity in w or z 
l  Faster convergence when strongly convex 

l  Allows larger step size (due to higher stability) 
l  Prevents subproblems diverging to infinity (again, stability) 

l  But sometimes better to work with normal Lagrangian 
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min

w,z
max

�
f(w) + g(z) + �>

(Aw +Bz� c) + µ
2 kAw +Bz� ck22| {z }

Lµ(w,z;�)



ADMM Algorithm 
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l  Fix dual     , block coordinate descent on primal w, z 

l  Fix primal w, z, gradient ascent on dual  

l  Step size     can be large, e.g.  
l  Usually rescale                    to remove 

⌘ ⌘ = µ
⌘

min

w,z
max

�
f(w) + g(z) + �>

(Aw +Bz� c) + µ
2 kAw +Bz� ck22| {z }

Lµ(w,z;�)

�t+1  �t + ⌘(Awt+1 +Bzt+1 � c)

wt+1  argmin
w

Lµ(w, zt;�t)

zt+1  argmin
z

Lµ(w
t+1, z;�t)

⌘ f(w) + µ
2 kAw +Bzt � c+ �t/µk2

⌘ g(z) + µ
2 kAwt+1 +Bz� c+ �t/µk2

�

�

� �/⌘



ERM revisited 
l  Reformulate by duplicating variables 

 
l  ADMM x-step: 

l  Thanks to duplicating  
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•  Completely decoupled 
•  Parallelizable 
•  Closed-form if fi is “simple” 

min
v,z

g(z) +
X

i
fi(wi)

| {z }
f(v)

, s.t. wi = z, 8i| {z }
v�[I,...,I]>z=0

wt+1  argmin
w

Lµ(w, zt;�t) ⌘ f(w) + µ
2 kAw +Bzt � c+ �t/µk2

=
X

i

fi(wi) +
µ
2 kwi � zt + �t

ik2



ADMM: History and Related 
l  Augmented Lagrangian Method (ALM): solve w, z jointly even 

though coupled 
l  (Bertsekas'82) and refs therein 

l  Alternating Direction of Multiplier Method (ADMM): alternate w 
and z as previous slide 
l  (Boyd et al.'10) and refs therein 
l  Operator splitting for PDEs: Douglas, Peaceman, and Rachford (50s-70s)  
l  Glowinsky et al.'80s, Gabay'83; Spingarn'85 
l  (Eckstein & Bertsekas'92; He et al.'02) in variational inequality 
l  Lots of recent work. 
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ADMM: Linearization 
l  Demanding step in each iteration of ADMM (similar for z): 
 
l  Diagonal A: reduce to proximal map (more later) of f 

l                  , soft-shrinkage:  

l  Non-diagonal A: no closed-form, messy inner loop 
l  Instead, reduce to diagonal A by 

l  A single gradient step: 
l  Or, linearize the quadratic at     : 

l  Intuition: x re-computed in the next iteration anyways 
l  No need for “perfect” x 
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x

t+1  argmin
x

L

µ

(x, z
t

; y
t

) = f(x) + g(zt) + y

>
t (Ax+Bzt � c) + µ

2 kAx+Bzt � ck22

f(x) = kxk1 sign(x) · (|x|� µ)+

xt+1  xt � ⌘@f(xt) +A

>
yt + µA

>(Axt +Bzt � c)

xt

x

t+1  argmin
x

f(x) + y

>
t

Ax+ (x� x

t

)>µA>(Ax

t

+Bz

t

� c) + µ

2 kx� x

t

k22| {z }
f(x)+

µ

2 kx�xt+A

>(Axt+Bzt�c+yt/µ)k2
2



Convergence Guarantees: Fixed-
point theory 

l  Recall some definitions 

l  well-defined for convex f, non-expansive:  
l  proximal map generalizes the Euclidean projection 

l  Lagrangian:  

l  ADMM = Douglas-Rachford splitting 

l  Fixed-point iteration!  
l  convergence follows, e.g. (Bauschke & Combettes'13) 
l  explains why dual y, not primal x or z, always converges 
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proximal map Pµ
f (w) := argmin

z

1
2µkz � wk22 + f(z)

reflection map Rµ
f (w) := 2Pµ

f (w)� w

kT (x)� T (y)k2  kx� yk2

L0(x, z; y) = min
x

⇣
f(x) + y

>
Ax

⌘

| {z }
d1(y)

+min
z

⇣
g(z) + y

>(Bz � c)
⌘

| {z }
d2(y)

w  1
2 (w + Rµ

d2
(Rµ

d1
(w))); y  Pµ

d2
(w)
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ADMM for CLIME 



Apply ADMM to CLIME 

l  Solve a block of columns of Q in each core/machine 
l  E is the corresponding block in I 

l  Step 1: reduce to ADMM canonical form 
l  Use variable duplicating 
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min
Q

kQk1 s.t. kSQ� Ek1  �

min
Q,Z

kQk1 s.t. kZ � Ek1  �, Z = SQ

min
Q,Z

kQk1 + [kZ � Ek1  �] s.t. Z = SQ



Apply ADMM to CLIME (cont’) 

l  Step 2: Write out augmented Lagrangian 

l  Step 3: Perform primal-dual updates 
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Q argmin
Q
kQk1 +

⇢

2
kSQ� Z + Y k2F

L(Q,Z;Y ) = kQk1 + [kZ � Ek1  �] + ⇢tr[(SQ� Z)Y ] +
⇢

2
kSQ� Zk2F

Z  argmin
Z

[kZ � Ek1  �] +
⇢

2
kSQ� Z + Y k2F

= arg min
kZ�Ek1�

⇢

2
kSQ� Z + Y k2F

Y  Y + SQ� Z



Apply ADMM to CLIME (cont’’) 

l  Step 4: Solve the subproblems 
l  Lagrangian dual Y: trivial 
l  Primal Z: projection to l_inf ball, separable, easy 
l  Primal Q: easy if S is orthogonal, in general a lasso problem 

l  Bypass double loop by linearization 
l  Intuition: wasteful to solve Q to death 

l  Soft-thresholding 

l  Putting things together 

© Eric Xing @ CMU, 2005-2015 33 

Q argmin
Q
kQk1 +

⇢

2
kSQ� Z + Y k2F

Z  argmin
Z

[kZ � Ek1  �] +
⇢

2
kSQ� Z + Y k2F

= arg min
kZ�Ek1�

⇢

2
kSQ� Z + Y k2F

Y  Y + SQ� Z

min
Q

kQk1 + ⇢tr(Q>S(Y + SQt � Z)) +
⌘

2
kQ�Qtk2F



Exploring structure 
l  Expensive step in ADMM-CLIME: 

l  Matrix-matrix multiplication: SQ and alike 

l  If p >> n, S is size p x p but of rank at most n 
l  Write S = AA’, and do A(A’Q) 

l  Matrix * matrix >> for loop of matrix * vector  
l  Preferable to solve a balanced block of columns 
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A = [X1, . . . , Xn] 2 Rp⇥n



Parallelization (Wang et al’13) 
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l  Embarrassingly parallel 
l  If A fits into memory 

l  Chop A into small blocks and distribute 
l  Communication may be high 



Numerical results (Wang et al’13) 
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Numerical results cont’ (Wang et al’13) 
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Nonparanormal extensions 



Nonparanormal (Liu et al.’09) 

l  fi:  unknown monotonic functions 
l  Observe X, but not Z 
l  Independence preserved under transformations 

l  Can estimate fi first, then apply glasso on fi(Xi) 
l  Estimating functions can be slow, nonparametric rate 
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Zi = fi(Xi), i = 1, . . . , p

(Z1, . . . , Zp) ⇠ N (0,⌃)

Xi ? Xj |Xrest () Zi ? Zj |Zrest () Qij = 0



A neat observation 
l  Since fi is monotonic 

l  Zi,: comonotone / concordant with Xi,: 

l  Use rank estimator ! 

l  Want       ,  but do not observe Z 
l  Maybe ??? 
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Zi,1, Zi,2, . . . , Zi,n

Ri,1, Ri,2, . . . , Ri,n

Xi,1, Xi,2, . . . , Xi,n

⌃ij =
1

n

nX

k=1

Zi,kZj,k
?
=

1

n

nX

k=1

Ri,kRj,k

⌃

Zi = fi(Xi), i = 1, . . . , p

(Z1, . . . , Zp) ⇠ N (0,⌃)



Kendall’s tau 
l  Assuming no ties: 

l  Complexity of computing Kendall’s tau? 

l  Key: 

l  Genuine, asymptotically unbiased estimate of  
l                                is a contraction, preserving concentration 

l  After having      , use whatever glasso, e.g., CLIME 
l  Can also use other rank estimator, e.g., Spearman’s rho 
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⌧ij =
1

n(n� 1)

X

k,`

sign[(Ri,k �Ri,`)(Rj,k �Rj,`)]

⌃ij = 2 sin(
⇡

6
E(⌧ij))
⌃

t 7! 2 sin(
⇡

6
t)

⌃



Summary 
l  Gaussian graphical model selection 

l  Neighborhood selection, Regularized MLE, CLIME 
l  Implicit PSD vs. Explicit PSD 

l  Distributed ADMM 
l  Generic procedure 
l  Can distribute matrix product 

l  Nonparanormal Gaussian graphical model 
l  Rank statistics 
l  Plug-in estimator 
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