Probabilistic Graphical Models

Distributed ADMM for Gaussian Graphical Models

Yaoliang Yu
Lecture 29, April 29, 2015

Networks / Graphs

Social Network

Internet

Regulatory Network

Where do graphs come from?

- Prior knowledge
- Mom told me "A is connected to B"
- Estimate from data!
- We have seen this in previous classes
- Will see two more today
- Sometimes may also be interested in edge weights
- An easier problem
- Real networks are B1G
- Require distributed optimization

Structural Learning for

 completely observed MRF (Recall)
Gaussian Graphical Models

- Multivariate Gaussian density:

$$
p(\mathbf{x} \mid \mu, \Sigma)=\frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\mu)^{T} \Sigma^{-1}(\mathbf{x}-\mu)\right\}
$$

- WOLG: let $\mu=0 \quad Q=\Sigma^{-1}$

$$
p\left(x_{1}, x_{2}, \cdots, x_{p} \mid \mu=0, Q\right)=\frac{|Q|^{1 / 2}}{(2 \pi)^{n / 2}} \exp \left\{-\frac{1}{2} \sum_{i} q_{i i}\left(x_{i}\right)^{2}-\sum_{i<j} q_{i j} x_{i} x_{j}\right\}
$$

- We can view this as a continuous Markov Random Field with potentials defined on every node and edge:

The covariance and the precision matrices

- Covariance matrix Σ

$$
\Sigma_{i, j}=0 \quad \Rightarrow \quad X_{i} \perp X_{j} \quad \text { or } \quad p\left(X_{i}, X_{j}\right)=p\left(X_{i}\right) p\left(X_{j}\right)
$$

- Graphical model interpretation?
- Precision matrix $Q=\Sigma^{-1}$
$Q_{i, j}=0 \quad \Rightarrow \quad X_{i} \perp X_{j} \mid \mathbf{X}_{-i j} \quad$ or $\quad p\left(X_{i}, X_{j} \mid \mathbf{X}_{-i j}\right)=p\left(X_{i} \mid \mathbf{X}_{-i j}\right) p\left(X_{j} \mid \mathbf{X}_{-i j}\right)$
- Graphical model interpretation?

Sparse precision vs. sparse covariance in GGM

$$
\left.\left.\begin{array}{rl}
\Sigma^{-1}=\left(\begin{array}{lllll}
1 & 6 & 0 & 0 & 0 \\
6 & 2 & 7 & 0 & 0 \\
0 & 7 & 3 & 8 & 0 \\
0 & 0 & 8 & 4 & 9 \\
0 & 0 & 0 & 9 & 5
\end{array}\right) \quad \Sigma=\left(\begin{array}{ccccc}
0.10 & 0.15 & -0.13 & -0.08 & 0.15 \\
0.15 & -0.03 & 0.02 & 0.01 & -0.03 \\
-0.13 & 0.02 & 0.10 & 0.07 & -0.12 \\
-0.08 & 0.01 & 0.07 & -0.04 & 0.07 \\
0.15 & -0.03 & -0.12 & 0.07 & 0.08
\end{array}\right) \\
& \Sigma_{15}^{-1}=0
\end{array} \Leftrightarrow X_{1} \perp X_{5} \right\rvert\, X_{n b r s(1) \text { or } n b r s(5)}\right)
$$

Another example

$$
\mathrm{Q}=\left(\begin{array}{llllll}
* & * & * & * & * & 0 \\
* & * & * & * & * & 0 \\
* & * & * & 0 & 0 & 0 \\
* & * & 0 & * & 0 & 0 \\
* & * & 0 & 0 & * & 0 \\
0 & 0 & 0 & 0 & 0 & *
\end{array}\right)
$$

- How to estimate this MRF?
- What if $p \gg n$
- MLE does not exist in general!
- What about only learning a "sparse" graphical model?
- This is possible when $s=o(n)$
- Very often it is the structure of the GM that is more interesting ...

Recall lasso

$$
\hat{\theta}_{i}=\arg \min _{\theta_{i}} l\left(\theta_{i}\right)+\lambda_{1}\left\|\theta_{i}\right\|_{1}
$$

where $l\left(\theta_{i}\right)=\log P\left(y_{i} \mid \mathbf{x}_{i}, \theta_{i}\right)$.

Graph Regression mementanasen 8umumanmee

Neighborhood selection

Lasso:

$$
\hat{\theta}=\arg \min _{\theta} \sum_{t=1}^{T} l(\theta)+\lambda_{1}\|\theta\|_{1}
$$

Graph Regression

Graph Regression

Pros:

- Computationally convenient
- Strong theoretical guarantee ($\mathrm{p}<=\operatorname{pol}(\mathrm{n})$)

Cons:

- Asymmetry
- Not minimax optimal

The regularized MLE (ruan \& Linor)

$$
\min _{Q}-\log \operatorname{det} Q+\operatorname{tr}(Q S)+\lambda\|Q\|_{1}
$$

- S: sample covariance matrix, may be singular
- \|Q $\|_{1}$: may exclude the diagonal
- \log det Q: implicitly force Q to be PSD symmetric

Pros

- Single step for estimating graph and inverse covariance
- MLE!

Cons

- Computationally challenging, partly solved by Glasso (Banergee et al'08, Friedman et al'08)

Many many follow-ups

A closer look of RMLE

$$
\min _{Q}-\log \operatorname{det} Q+\operatorname{tr}(Q S)+\lambda\|Q\|_{1}^{1}
$$

- Set derivative to 0 :

$$
\begin{gathered}
-Q^{-1}+S+\lambda \cdot \operatorname{sign}(Q)=0 \\
\left\|Q^{-1}-S\right\|_{\infty} \leq \lambda
\end{gathered}
$$

- Can we (?!):

$$
\min _{Q}\|Q\|_{1} \text { s.t. }\left\|Q^{-1}-S\right\|_{\infty} \leq \lambda
$$

CLIME (ciriatarin)

- Further relaxation

$$
\min _{Q}\|Q\|_{1} \text { s.t. }\|S Q-I\|_{\infty} \leq \lambda
$$

- Constraint controls $Q \approx S^{-1}$
- Objective controls sparsity in Q
- Q is not required to be PSD or symmetric
- Separable! LP!!!
- Both objective and constraint are element-wise separable
- Can be reformulated as LP
- Strong theoretical guarantee
- Variations are minimax-optimal (Cai et al.'12, Liu \& Wang'12)

But for $B \mid G_{\text {problems }}$

$$
\min _{Q}\|Q\|_{1} \text { s.t. }\|S Q-I\|_{\infty} \leq \lambda
$$

- Standard solvers for LP can be slow
- Embarrassingly parallel:
- Solve each column of Q independently in each core/machine

$$
\min _{q_{i}}\left\|q_{i}\right\|_{1} \text { s.t. }\left\|S q_{i}-e_{i}\right\|_{\infty} \leq \lambda
$$

- Thanks for not having PSD constraint on Q
- Still troublesome if S is big
- Need to consider first-order methods

A gentle introduction to alternating direction method of multipliers (ADMM)

Optimization with coupling variables

Canonical form: $\min f(w)+g(z), \quad$ s.t. $A w+B z=c$, w, z

- Numerically challenging because
- Function f or g nonsmooth or constrained (i.e., can take value ∞)
- Linear constraint couples the variables w and z
- Large scale, interior point methods NA
- Naively alternating x and z does not work
- Min w^{2} s.t. $w+z=1$; optimum clearly is $w=0$
- Start with say $\mathrm{w}=1 \rightarrow \mathrm{z}=0 \rightarrow \mathrm{w}=1 \rightarrow \mathrm{z}=0 \ldots$
- However, without coupling, can solve separately wand z
- Idea: try to decouple vars in the constraint!

Example: Empirical Risk Minimization (ERM)

- Each i corresponds to a training point $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$
- Loss f_{i} measures the fitness of the model parameter w
- least squares: $f_{i}(w)=\left(y_{i}-w^{\top} x_{i}\right)^{2}$
- support vector machines: $f_{i}(w)=\left(1-y_{i} w^{\top} x_{i}\right)_{+}$
- boosting: $f_{i}(w)=\exp \left(-y_{i} w^{\top} x_{i}\right)$
- logistic regression: $f_{i}(w)=\log \left(1+\exp \left(-y_{i} w^{\top} x_{i}\right)\right)$
- g is the regularization function, e.g. $\lambda_{n}\|w\|_{2}^{2}$ or $\lambda_{n}\|w\|_{1}$
- Vars coupled in obj, but not in constraint (none)
- Reformulate: transfer coupling from obj to constraint
- Arrive at canonical form, allow unified treatment later

Why canonical form?

$$
\text { ERM: } \min _{w} g(w)+\sum_{i=1}^{n} f_{i}(w)
$$

Canonical form: $\min _{w, z} f(w)+g(z), \quad$ s.t. $A w+B z=c$,

$$
w, z \quad \text { where } w \in \mathbb{R}^{m}, z \in \mathbb{R}^{p}, A: \mathbb{R}^{m} \rightarrow \mathbb{R}^{q}, B: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}, c \in \mathbb{R}^{q}
$$

- ADMM algorithm (to be introduced shortly) excels at solving the canonical form
- Canonical form is a general "template" for constrained problems
- ERM (and many other problems) can be converted to canonical form through variable duplication (see next slide)

How to: variable duplication

- Duplicate variables to achieve canonical form

$$
\begin{gathered}
\min _{w} g(w)+\sum_{i=1}^{n} f_{i}(w) \\
\square{ }_{v}=\left[w_{1}, \ldots, w_{n}\right]^{\top} \\
\min _{v, z} g(z)+\underbrace{\sum_{i} f_{i}\left(w_{i}\right)}_{f(v)}, \quad \text { s.t. } \underbrace{w_{i}=z, \forall i}_{v-[I, \ldots, I]^{\top} z=0}
\end{gathered}
$$

- Global consensus constraint: $\forall i, w_{i}=z$
- All wi must (eventually) agree
- Downside: many extra variables, increase problem size
- Implicitly maintain duplicated variables

Augmented Lagrangian

Canonical form: $\min _{\mathbf{w}, \mathbf{z}} f(\mathbf{w})+g(\mathbf{z}), \quad$ s.t. $\quad A \mathbf{w}+B \mathbf{z}=\mathbf{c}$,
where $\quad \mathbf{w} \in \mathbb{R}^{m}, \mathbf{z} \in \mathbb{R}^{p}, A: \mathbb{R}^{m} \rightarrow \mathbb{R}^{q}, B: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}, \mathbf{c} \in \mathbb{R}^{q}$

- Intro Lagrangian multiplier $\boldsymbol{\lambda}$ to decouple variables

$$
\min _{\mathbf{w}, \mathbf{z}} \max _{\boldsymbol{\lambda}} \underbrace{f(\mathbf{w})+g(\mathbf{z})+\boldsymbol{\lambda}^{\top}(A \mathbf{w}+B \mathbf{z}-\mathbf{c})+\frac{\mu}{2}\|A \mathbf{w}+B \mathbf{z}-\mathbf{c}\|_{2}^{2}}_{L_{\mu}(\mathbf{w}, \mathbf{z} ; \boldsymbol{\lambda})}
$$

- L_{μ} : augmented Lagrangian
- More complicated min-max problem, but no coupling constraints

Why Augmented Lagrangian?

- Quadratic term gives numerical stability

$$
\min _{\mathbf{w}, \mathbf{z}} \max _{\boldsymbol{\lambda}} \underbrace{f(\mathbf{w})+g(\mathbf{z})+\boldsymbol{\lambda}^{\top}(A \mathbf{w}+B \mathbf{z}-\mathbf{c})+\frac{\mu}{2}\|A \mathbf{w}+B \mathbf{z}-\mathbf{c}\|_{2}^{2}}_{L_{\mu}(\mathbf{w}, \mathbf{z} ; \boldsymbol{\lambda})}
$$

- May lead to strong convexity in w or z
- Faster convergence when strongly convex
- Allows larger step size (due to higher stability)
- Prevents subproblems diverging to infinity (again, stability)
- But sometimes better to work with normal Lagrangian

ADMM Algorithm

$$
\min _{\mathbf{w}, \mathbf{z}} \max _{\boldsymbol{\lambda}} \underbrace{f(\mathbf{w})+g(\mathbf{z})+\boldsymbol{\lambda}^{\top}(A \mathbf{w}+B \mathbf{z}-\mathbf{c})+\frac{\mu}{2}\|A \mathbf{w}+B \mathbf{z}-\mathbf{c}\|_{2}^{2}}_{L_{\mu}(\mathbf{w}, \mathbf{z} ; \boldsymbol{\lambda})}
$$

- Fix dual $\boldsymbol{\lambda}$, block coordinate descent on primal w, z

$$
\begin{aligned}
& \mathbf{w}^{t+1} \leftarrow \arg \min _{\mathbf{w}} L_{\mu}\left(\mathbf{w}, \mathbf{z}^{t} ; \boldsymbol{\lambda}^{t}\right) \equiv f(\mathbf{w})+\frac{\mu}{2}\left\|A \mathbf{w}+B \mathbf{z}^{t}-\mathbf{c}+\boldsymbol{\lambda}^{t} / \mu\right\|^{2} \\
& \mathbf{z}^{t+1} \leftarrow \arg \min _{\mathbf{z}} L_{\mu}\left(\mathbf{w}^{t+1}, \mathbf{z} ; \boldsymbol{\lambda}^{t}\right) \equiv g(\mathbf{z})+\frac{\mu}{2}\left\|A \mathbf{w}^{t+1}+B \mathbf{z}-\mathbf{c}+\boldsymbol{\lambda}^{t} / \mu\right\|^{2}
\end{aligned}
$$

- Fix primal w, z, gradient ascent on dual $\boldsymbol{\lambda}$

$$
\boldsymbol{\lambda}^{t+1} \leftarrow \boldsymbol{\lambda}^{t}+\eta\left(A \mathbf{w}^{t+1}+B \mathbf{z}^{t+1}-\mathbf{c}\right)
$$

- Step size η can be large, e.g. $\eta=\mu$
- Usually rescale $\boldsymbol{\lambda} \leftarrow \boldsymbol{\lambda} / \eta$ to remove η

ERM revisited

- Reformulate by duplicating variables

$$
\min _{\mathbf{v}, \mathbf{z}} g(\mathbf{z})+\underbrace{\sum_{i} f_{i}\left(\mathbf{w}_{i}\right)}_{f(\mathbf{v})}, \quad \text { s.t. } \underbrace{\mathbf{w}_{i}=\mathbf{z}, \forall i}_{\mathbf{v}-[I, \ldots, I]^{\top} \mathbf{z}=0}
$$

- ADMM x-step:

$$
\begin{aligned}
\mathbf{w}^{t+1} \leftarrow \arg \min _{\mathbf{w}} L_{\mu}\left(\mathbf{w}, \mathbf{z}^{t} ; \boldsymbol{\lambda}^{t}\right) & \equiv f(\mathbf{w})+\frac{\mu}{2}\left\|A \mathbf{w}+B \mathbf{z}^{t}-\mathbf{c}+\boldsymbol{\lambda}^{t} / \mu\right\|^{2} \\
& =\sum_{i} \underbrace{f_{i}\left(\mathbf{w}_{i}\right)+\frac{\mu}{2}\left\|\mathbf{w}_{i}-\mathbf{z}^{t}+\boldsymbol{\lambda}_{i}^{t}\right\|^{2}}
\end{aligned}
$$

- Thanks to duplicating

- Completely decoupled
- Parallelizable
- Closed-form if f_{i} is "simple"

ADMM: History and Related

- Augmented Lagrangian Method (ALM): solve w, z jointly even though coupled
- (Bertsekas'82) and refs therein
- Alternating Direction of Multiplier Method (ADMM): alternate w and z as previous slide
- (Boyd et al.'10) and refs therein
- Operator splitting for PDEs: Douglas, Peaceman, and Rachford (50s-70s)
- Glowinsky et al.'80s, Gabay'83; Spingarn'85
- (Eckstein \& Bertsekas'92; He et al.'02) in variational inequality
- Lots of recent work.

ADMM: Linearization

- Demanding step in each iteration of ADMM (similar for z):
$x_{t+1} \leftarrow \arg \min _{x} L_{\mu}\left(x, z_{t} ; y_{t}\right)=f(x)+g\left(z_{t}\right)+y_{t}^{\top}\left(A x+B z_{t}-c\right)+\frac{\mu}{2}\left\|A x+B z_{t}-c\right\|_{2}^{2}$
- Diagonal A: reduce to proximal map (more later) of f
- $f(x)=\|x\|_{1}$, soft-shrinkage: $\operatorname{sign}(x) \cdot(|x|-\mu)_{+}$
- Non-diagonal A: no closed-form, messy inner loop
- Instead, reduce to diagonal A by
- A single gradient step: $x_{t+1} \leftarrow x_{t}-\eta \partial f\left(x_{t}\right)+A^{\top} y_{t}+\mu A^{\top}\left(A x_{t}+B z_{t}-c\right)$
- Or, linearize the quadratic at x_{t} :

$$
x_{t+1} \leftarrow \arg \min _{x} \underbrace{f(x)+y_{t}^{\top} A x+\left(x-x_{t}\right)^{\top} \mu A^{\top}\left(A x_{t}+B z_{t}-c\right)+\frac{\mu}{2}\left\|x-x_{t}\right\|_{2}^{2}}_{f(x)+\frac{\mu}{2}\left\|x-x_{t}+A^{\top}\left(A x_{t}+B z_{t}-c+y_{t} / \mu\right)\right\|_{2}^{2}}
$$

- Intuition: x re-computed in the next iteration anyways
- No need for "perfect" x

Convergence Guarantees: Fixedpoint theory

- Recall some definitions

$$
\begin{aligned}
\text { proximal } \operatorname{map} \mathrm{P}_{f}^{\mu}(w) & :=\arg \min _{z} \frac{1}{2 \mu}\|z-w\|_{2}^{2}+f(z) \\
\text { reflection map } \mathrm{R}_{f}^{\mu}(w) & :=2 \mathrm{P}_{f}^{\mu}(w)-w
\end{aligned}
$$

- well-defined for convex f, non-expansive: $\quad\|T(x)-T(y)\|_{2} \leq\|x-y\|_{2}$
- proximal map generalizes the Euclidean projection
- Lagrangian: $L_{0}(x, z ; y)=\underbrace{\min _{x}\left(f(x)+y^{\top} A x\right)}_{d_{1}(y)}+\underbrace{\min _{z}\left(g(z)+y^{\top}(B z-c)\right)}_{d_{2}(y)}$
- ADMM = Douglas-Rachford splitting

$$
w \leftarrow \frac{1}{2}\left(w+\mathrm{R}_{d_{2}}^{\mu}\left(\mathrm{R}_{d_{1}}^{\mu}(w)\right)\right) ; \quad y \leftarrow \mathrm{P}_{d_{2}}^{\mu}(w)
$$

- Fixed-point iteration!
- convergence follows, e.g. (Bauschke \& Combettes'13)
- explains why dual y, not primal x or z, always converges

ADMM for CLIME

Apply ADMM to CLIME

$$
\min _{Q}\|Q\|_{1} \text { s.t. }\|S Q-E\|_{\infty} \leq \lambda
$$

- Solve a block of columns of Q in each core/machine
- E is the corresponding block in I
- Step 1: reduce to ADMM canonical form
- Use variable duplicating

$$
\begin{aligned}
& \min _{Q, Z}\|Q\|_{1} \text { s.t. }\|Z-E\|_{\infty} \leq \lambda, \quad Z=S Q \\
& \text { 『 } \\
& \min _{Q, Z} \underbrace{\|Q\|_{1}}+\underbrace{\left[\|Z-E\|_{\infty} \leq \lambda\right]} \text { s.t. } \underbrace{Z=S Q}
\end{aligned}
$$

Apply ADMM to CLIME (cont')

- Step 2: Write out augmented Lagrangian
$L(Q, Z ; Y)=\|Q\|_{1}+\left[\|Z-E\|_{\infty} \leq \lambda\right]+\rho \operatorname{tr}[(S Q-Z) Y]+\frac{\rho}{2}\|S Q-Z\|_{F}^{2}$
- Step 3: Perform primal-dual updates

$$
\begin{aligned}
& Q \\
& \begin{aligned}
Z & \leftarrow \arg \min _{Q}\|Q\|_{1}+\frac{\rho}{2}\|S Q-Z+Y\|_{F}^{2} \\
& \left.=\arg \min _{\|Z-E\|_{\infty} \leq \lambda} \frac{\rho}{2}\|S Q-Z+Y\|_{\infty} \leq \lambda\right]+\frac{\rho}{2}\|S Q-Z+Y\|_{F}^{2} \\
Y & \leftarrow Y+S Q-Z
\end{aligned}
\end{aligned}
$$

Apply ADMM to CLIME (cont'")

- Step 4: Solve the subproblems
- Lagrangian dual Y: trivial
- Primal Z: projection to I_inf ball, separable, easy
- Primal Q: easy if S is orthogonal, in general a lasso problem
- Bypass double loop by linearization
- Intuition: wasteful to solve Q to death

$$
\min _{Q}\|Q\|_{1}+\rho \operatorname{tr}\left(Q^{\top} S\left(Y+S Q_{t}-Z\right)\right)+\frac{\eta}{2}\left\|Q-Q_{t}\right\|_{F}^{2}
$$

- Soft-thresholding
- Putting things together

$$
\begin{aligned}
Q & \leftarrow \arg \min _{Q}\|Q\|_{1}+\frac{\rho}{2}\|S Q-Z+Y\|_{F}^{2} \\
Z & \leftarrow \arg \min _{Z}\left[\|Z-E\|_{\infty} \leq \lambda\right]+\frac{\rho}{2}\|S Q-Z+Y\|_{F}^{2} \\
& =\arg \min _{\|Z-E\|_{\infty} \leq \lambda} \frac{\rho}{2}\|S Q-Z+Y\|_{F}^{2} \\
Y & \leftarrow Y+S Q-Z
\end{aligned}
$$

Exploring structure

- Expensive step in ADMM-CLIME:
- Matrix-matrix multiplication: SQ and alike
- If $\mathrm{p} \gg \mathrm{n}, \mathrm{S}$ is size $\mathrm{p} \times \mathrm{p}$ but of rank at most n
- Write $\mathrm{S}=\mathrm{AA}^{\prime}$, and do $\mathrm{A}\left(\mathrm{A}^{\prime} \mathrm{Q}\right) \quad A=\left[X_{1}, \ldots, X_{n}\right] \in \mathbb{R}^{p \times n}$
- Matrix * matrix >> for loop of matrix * vector
- Preferable to solve a balanced block of columns

Parallelization (wangetar'13)

- Embarrassingly parallel
- If A fits into memory
- Chop A into small blocks and distribute
- Communication may be high

(a) Shared-Memory

(b) Distributed-Memory

(c) Block Cyclic

Numerical results (wangetari(3)

(a) Speedup $S_{k}^{\text {col }}$

(b) Speedup $S_{q}^{\text {core }}$

Numerical results cont' ${ }^{\text {(Wangetari3) }}$

node \times core	$\mathrm{k}=1$	$\mathrm{k}=5$	$\mathrm{k}=10$	$\mathrm{k}=50$	$\mathrm{k}=100$	$\mathrm{k}=500$	$\mathrm{k}=1000$
100×1	0.56	1.26	2.59	6.98	13.97	62.35	136.96
25×4	1.02	2.40	3.42	8.25	16.44	84.08	180.89
200×1	0.37	0.68	1.12	3.48	6.76	33.95	70.59
50×4	0.74	1.44	2.33	4.49	8.33	48.20	103.87

Nonparanormal extensions

Nonparanormal (Luetal:09)

$$
\begin{aligned}
& Z_{i}=f_{i}\left(X_{i}\right), \quad i=1, \ldots, p \\
& \left(Z_{1}, \ldots, Z_{p}\right) \sim \mathcal{N}(0, \Sigma)
\end{aligned}
$$

- $f_{i:}$ unknown monotonic functions
- Observe X, but not Z
- Independence preserved under transformations

$$
X_{i} \perp X_{j}\left|X_{r e s t} \Longleftrightarrow Z_{i} \perp Z_{j}\right| Z_{r e s t} \Longleftrightarrow Q_{i j}=0
$$

- Can estimate f_{i} first, then apply glasso on $f_{i}\left(X_{i}\right)$
- Estimating functions can be slow, nonparametric rate

A neat observation

- Since f_{i} is monotonic
- $\mathrm{Z}_{\mathrm{i}, \mathrm{i}}$ comonotone / concordant with $\mathrm{X}_{\mathrm{i},:}$
- Use rank estimator!

$$
\begin{aligned}
& Z_{i}=f_{i}\left(X_{i}\right), \quad i=1, \ldots, p \\
& \left(Z_{1}, \ldots, Z_{p}\right) \sim \mathcal{N}(0, \Sigma)
\end{aligned}
$$

$$
\begin{gathered}
Z_{i, 1}, Z_{i, 2}, \ldots, Z_{i, n} \\
R_{i, 1}, R_{i, 2}, \ldots, R_{i, n} \\
X_{i, 1}, X_{i, 2}, \ldots, X_{i, n}
\end{gathered}
$$

- Want \sum, but do not observe Z
- Maybe ???

$$
\Sigma_{i j}=\frac{1}{n} \sum_{k=1}^{n} Z_{i, k} Z_{j, k} \stackrel{?}{=} \frac{1}{n} \sum_{k=1}^{n} R_{i, k} R_{j, k}
$$

Kendall's tau

- Assuming no ties:

$$
\tau_{i j}=\frac{1}{n(n-1)} \sum_{k, \ell} \operatorname{sign}\left[\left(R_{i, k}-R_{i, \ell}\right)\left(R_{j, k}-R_{j, \ell}\right)\right]
$$

- Complexity of computing Kendall's tau?
- Key: $\quad \Sigma_{i j}=2 \sin \left(\frac{\pi}{6} \mathbb{E}\left(\tau_{i j}\right)\right)$
- Genuine, asymptotically unbiased estimate of Σ
- $t \mapsto 2 \sin \left(\frac{\pi}{6} t\right)$ is a contraction, preserving concentration
- After having \sum, use whatever glasso, e.g., CLIME
- Can also use other rank estimator, e.g., Spearman's rho

Summary

- Gaussian graphical model selection
- Neighborhood selection, Regularized MLE, CLIME
- Implicit PSD vs. Explicit PSD
- Distributed ADMM
- Generic procedure
- Can distribute matrix product
- Nonparanormal Gaussian graphical model
- Rank statistics
- Plug-in estimator

References

- Graph Lasso
- High-Dimensional Graphs and Variable Selection with the LASSO, Meinshausen and Buhlmann, Annals of Statistics, vol. 34, 2006
- Model Selection and Estimation in the Gaussian Graphical Model, Yuan and Lin, Biometrika, vol. 94, 2007
- A Constrained I_1 minimization Approach for Sparse Precision Matrix Estimation, Cai et al., Journal of the American Statistical Association, 2011
- Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data, Banerjee et al, Journal of Machine Learning Research, 2008
- Sparse Inverse Covariance Estimation with the Graphical Lasso, Friedman et al., Biostatistics, 2008
- Nonparanormal
- The Nonparanormal: Semiparametric Estimation of High Dimensional Undirected Graphs, Han Liu et al., Journal of Machine Learning Research, 2009
- Regularized Rank-based Estimation of High-Dimensional Nonparanormal Graphical Models, Lingzhou Xue and Hui Zou, Annals of Statistics, vol. 40, 2012
- High-Dimensional Semiparametric Gaussian Copula Graphical Models, Han Liu et al., Annals of Statistics, vol. 40, 2012
- ADMM
- Large Scale Distributed Sparse Precision Estimation, Wang et al., NIPS 2013
- Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers, Boyd et al., Foundation and Trends in Machine Learning, 2011

