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Two types of GMs oo

e Directed edges give causality relationships (Bayesian
Network or Directed Graphical Model):

P(Xy, Xo, Xz, X4 Xe, Xer X1 Xg)

= P(Xp) P(Xy) P(X5| Xp) PCX,| Xp) P(Xs| X,)
P(Xel X3 X,) POX7| Xg) P(Xg| X5, X¢)

e Undirected edges simply give correlations between
variables (Markov Random Field or Undirected Graphical

model):
POK,, Xy Xg1 Xy Xes Xey Xy Xo)
Cama)x |
= UZ exp{E(X)+EX)+E(X5, XDHE(X,, X)+E(Xs, X)) (™ )~
+ E(Xe: X3, X)FE(X7, XF+E(Xg, X5, X¢)} T e

© Eric Xing @ CMU, 2005-2015 2



Review: independence properties | ss2:

of DAGS ot

e Defn: let I,(&) be the set of local independence properties
encoded by DAG 6, namely:

v,
|(G):{X LZ‘Y:dsepG(X;Z\Y)} (‘L/
il
J

e Defn: A DAG G is an I-map (independence-map) of P
if I,(6)< I(P)

e A fully connected DAG 6 is an I-map for any distribution,
since I,(6)=9c I(P)for any P.

e Defn: A DAG G is a minimal I-map for P if it is an I-map for P,
and if the removal of even a single edge from & renders it not
an |-map.

e A distribution may have several minimal I-maps

e Each corresponding to a specific node-ordering
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P-maps ® 0 :::

e Defn: ADAG G is a perfect map (P-map) for a distribution P if
I(P)=I(6).

e Thm: not every distribution has a perfect map as DAG.

e Pf by counterexampl ose we have a model where
ALC|{B,D}, and B1D |{A,C}.

This cannot be represented by any Bayes net.

e.g., BN1 wrongly says B1D | A, BN2 wrongly says B LD.
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P-maps

e Defn: ADAG G is a perfect map (P-map) for a distribution P if
I(P)=I(6).

e Thm: not every distribution has a perfect map as DAG.
e Pf by counterexample. Suppose we have a model where
ALC|{B,D}, and BL1D |{A,C}.
This cannot be represented by any Bayes net.

e.g., BN1 wrongly says B1D | A, BN2 wrongly says B LD.

e The fact that G is a minimal I-map for P is far from a guarantee that G captures
the independence structure in P

e The P-map of a distribution is unique up to l-equivalence between networks. That
is, a distribution P can have many P-maps, but all of them are I-equivalent.
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Undirected graphical models cece
(UGM) os

X, @

e Pairwise (non-causal) relationships

e (Can write down model, and score specific configurations of
the graph, but no explicit way to generate samples

e Contingency constrains on node configurations
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A Canonical Example: i
understanding complex scene ... | s

© Eric Xing @ CMU, 2005-2015 air or water ? .
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A Canonical Example os

e The grid model

o000
0000
00010
0000
00000

o000

e Naturally arises in image processing, lattice physics, etc.

e Each node may represent a single "pixel", or an atom

The states of adjacent or nearby nodes are "coupled" due to pattern continuity or
electro-magnetic force, etc.

Most likely joint-configurations usually correspond to a "low-energy" state
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Social networks
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The New Testament Social Networks
© Eric Xing @ CMU, 2005-2015 9



Protein interaction networks
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Modeling Go
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This is the middle position of a Go game.
Overlaid is the estimate for the probability of
becoming black or white for every intersection.
Large squares mean the probability is higher.
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Information retrieval o2
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0—0 . . |Ss8e

v Teee
Representation f s

e Defn: an undirected graphical model represents a distribution
P(X,,...,X,) defined by an irected graph H, and a set of
positive potential functions y. agsociated with the cligues of)
H, s.t. 1

P(Xl,...,Xn) _- —

ceC
where Z is known as the partition function:

Z=> []v.(x)

.. Xy CeC

e Also known as Markov Random Fields, Markov networks ...

o Thepotmcan be understood as an contingency
function of its arguments assigning "pre-probabilistic" score of

their joint configuration.
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|. Quantitative Specification:
Cliques oo

e For G={V,E}, a complete subgraph (clique) is a subgraph
G={V'cV,E'cE} such that nodes in V'are fully interconnected

e A (maximal) clique is a complete subgraph s.t. any superset
"S5V'is not complete.

e A sub-clique is a not-necessarily-maximal clique.

e Example:
e max-cliques = {A,B,D}, {B,C,D},
e sub-cliques = {A,B}, {C,D}, ...~ all edges and singletons
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Gibbs Distribution and Cligue T
Potential .o

e Defn: an undirected graphical model represents a distribution
P(X,,...,X,) defined by an undirected graph H, and a set of
positive potential functions i, associated with cliques of H,
s.t.

P(X;,...,X )= HWC (x,) (A Gibbs distribution)

ceC
where Z is known as the partition function:

Z = Z [ [w.(x)

X, ceC

e Also known as Markov Random Fields, Markov networks ...

e The potential function can be understood as an contingency
function of its arguments assigning "pre-probabilistic" score of
their joint configuration.

© Eric Xing @ CMU, 2005-2015 15



Interpretation of Cligue Potentials |2

G- e

e The model implieswws independence statement
implies (by definition) that the joint must factorize as:

px.y,.Z)ply)px|y)p(zly)

e We can write this as:  PX:V:2)=pXx.y)p(Z1y)  pyt
p(x,y.z)=p(x|y)p(z,y)

e cannot have all potentials be marginals
e cannot have all potentials be conditionals

e The positive clique potentials can only be thought of as

general "compatibility”, "goodness" or "happiness” functions
over their variables, but not as probability distributions.

© Eric Xing @ CMU, 2005-2015
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Example UGM — using max
cliques V2 (Xony 't

e W (Xi24) Ve (Xp34) X

, 1
P* (X, X2, X3, X4) :?WC(X124)XWC(X234)

/ = Z W (X124) X W (Xp34)

X1,X2,X3,X4

e For discrete nodes, we can represent P(X,.,) as two 3D tables
iInstead of one 4D table

© Eric Xing @ CMU, 2005-2015 17



Example UGM — using subcliques

mn 1
P (Xl’X21X3’X4):i| |Wij(xij)
ij

1

N ?%2 (X12)W 14 (X14)W 23 (X23)W 24 (X204 )W 34 (X34)

L= Z Hl//ij(xij)

X1:X2,X3,X4 |]

e We can represent P(X,.,) as 5 2D tables instead of one 4D table
e Pair MRFs, a popular and simple special case

o I(P) == I(P") ? D(P’) /\} D(P")

© Eric Xing @ CMU, 2005-2015
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Example UGM - canonical
representation oo

e P (X, X2, X3, X4)

1
Q.e :ch(X124)X‘//c(X234)

e XW 1o (X12 W14 (X1 W23 (X23)W 24 (X24 )W 34 (X34)
X W (X)W (X)ws (X3)w 4 (X4)

W (X104) ¥ W (X534)

L= Z XW 1o (X12 )W 14 (X12 )W 23 (X23)W 24 (X4 )W 34 (X34)
S Xy (X)W 2 (X)W 3 (X3)w 4 (Xy)

e Most general, subsume P' and P" as special cases
o I(P) ¥. I(P) . I(P")
D(P) vs. D(P) vs. D(P")
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II: Independence properties: -

e Now let us ask what kinds of distributions can be represented
by undirected graphs (ignoring the details of the particular
parameterization).

e Defn: the global Markov properties of a UG H are
I(H)=1{X L Z[¥):sep,, (X;Z]Y)]

X

© Eric Xing @ CMU, 2005-2015
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Global Markov Independencies o°

e Let Hbe an undirected graph:

X4
X,

e B separates A and C if every path from a node in A to a node
in C passes through a node in B: sep,, (A;C|B)

e A probability distribution satisfies the global Markov property
if for any disjoint A, B, C, sumAB separates Aand C, A is
independent of C given B: =1A 1 C\B :Sepy, (A:C\B)}

© Eric Xing @ CMU, 2005-2015 21



Local Markov independencies -

e For each node X; € V, there is unique Markov blanket of X,
denoted MB,;, which is the set of neighbors of X in the graph
(those that share an edge with X;)

PO | X-4) =2 PO Xy

e Defn:
The local Markov independencies associated with H is:

I{H): {X;i LV —{X; } = MBy; | MBy; : V 1),

In other words, X; is independent of the rest of the nodes in the graph given
its immediate neighbors

© Eric Xing @ CMU, 2005-2015 22



Soundness and completeness of | s8¢

global Markov property -

e Defn: An UG H is an I-map for a distribution P if I(H) < I(P),
l.e., P entails I(H).

e Defn: Pis a Gibbs distribution over H if it can be represented
as

P(Xl""’xn):ZiHWc(Xc)

ceC

e Thm (soundness): If Pis a Gibbs distribution over H, then H
Is an I-map of P.

e Thm (completeness): If —sep,(X; Z|Y),then X £ Z |Yin
some P that factorizes over H.

© Eric Xing @ CMU, 2005-2015
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Other Markov properties S

e For directed graphs, we defined I-maps in terms of local
Markov properties, and derived global independence.

e For undirected graphs, we defined |-maps in terms of global
Markov properties, and will now derive local independence.

e Defn: The pairwise Markov independencies associated with
UG H=(V,E) are

L (H) = {X LYN\{X,Y}:{X,Y}2 E}
* €38, X1J—X5‘{X2’X3’X4}

0000

© Eric Xing @ CMU, 2005-2015
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Relationship between local and T
global Markov properties os

e Thm5.5.5.If P|=[(H) then P |= (H).
e Thm 5.5.6. If P = I(H) then P |= I(H).
e Thm5.5.7.1fP>0and P |= [,(H), then P |= I(H).

e Corollary (5.5.8): The following three statements are equivalent for
a positive distribution P:

P |=I{H)
P = 1,(H)
P = I(H)

e This equivalence relies on the positivity assumption.
e We can design a distribution locally

© Eric Xing @ CMU, 2005-2015 25



0000
0000
L N
Hammersley-Clifford Theorem 4
e If arbitrary potentials are utilized in the following product formula for
probabilities,
P (X100 %,) = wa )
L= Z HWC (X

then the family of probability distributions obtained is exactly that set
which respects the qualitative specification (the conditional
independence relations) described earlier

e Thm : Let P be a positive distribution over V, and H a Markov
network graph over V. If H is an I-map for P, then P is a Gibbs
distribution over H.
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& 0eco
Perfect maps 3\0—-0/) o

e Defn: A Markov network H is a perfect map for P if for any X;
Y;Z we have that

sepy (X;ZY) o PEX LZ|Y)

e Thm: not every distribution has a perfect map as UGM.

e Pf by counterexample. No undirected network can capture all and only the
independencies encoded in a v-structure X > Z < Y.

D U p

© Eric Xing @ CMU, 2005-2015 27



Exponential Form

Plre) | 352

e Constraining clique potentials to be positive could be inconvenient (e.g.,

the interactions between a pair of atoms can be either attractive or
repulsive). We represent a clique potential y(x.) in an unconstrained
form using a real-value "energy" function ¢.(x.):

V. (Xc) - eXp{— ¢c (Xc)}

For convenience, we will call ¢,(x.) a potential when no confusion arises from the context.
L . . ” R by 4
This gives the joint a nice additive strcuture 1 (N 1

p(x) = —exp{ P ACS } —exp{ H (x)} WCT)‘C‘/) -

ceC

where the sum in the exponent is called the "free energy":

H(x) =) ¢.(x,)

ceC

e In physics, this is called the "Boltzmann distribution”.

e |n statistics, this is called a log-linear model.
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Example: Boltzmann machines 4+

2NpS

e A fully connected graph with pairwise (edge) potentials on
binary-valued nodes (for x, € {~1,+1}or x, €{0,1}) is called a
Boltzmann machine

P(xl,xz,x3,X4)=%eXp<z d; (X X;) %5(&}4 ‘0)
:%exp ZQ,J , ,+Zaixi+c} ‘Mt)

e Hence the overall energy functlon has the form:
H(x) =D (X =)0 (x; — 1) = (x= 1) O(x ~ p)

© Eric Xing @ CMU, 2005-2015 29




Ising models 4+

e Nodes are arranged in a regular topology (often a regular
packing grid) and connected only to their geomeiric
neighbors. (ﬂ{’?(;}

= Ly
p(X):%eXp{i%fﬂinXj+Zﬁioxi}
& (- 4
X176 (- F)

e Same as sparse Boltzmann machine, where HU-;&O iff 1, are
neighbors.

e e.g., nodes are pixels, potential function encourages nearby pixels to have similar
intensities.

e Potts model: multi-state Ising model.

© Eric Xing @ CMU, 2005-2015 30




Restricted Bo tzmann :

hidden units

visible units

p(x.h10) = expl 264, (x)+ 20,6,(h))+ 26, 4, (x.h))- A®) }
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Restricted Boltzmann Machines °f

The Harmonium (Smolensky —'86)

)") \ l\

hidden units

visible units

History:
Smolensky ('86), Proposed the architechture.

Freund & Haussler ('92), The “Combination Machine” (binary), learning with projection pursuit.
Hinton ('02), The “Restricted Boltzman Machine” (binary), learning with contrastive divergence.
Marks & Movellan ('02), Diffusion Networks (Gaussian).

Welling, Hinton, Osindero ('02), “Product of Student-T Distributions” (super-Gaussian)
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i)

Properties of RBM VX

e Factors are marginally dependent.

e Factors are conditionally
independent given observations on

the visible nodes.

P(Z|w) =11, P(¢;|w)

e lterative Gibbs sampling.

Wy U Dy O

\

X 0 0O Vuy &)
e Learning with contrastive \[/
divergence Q

X

el LX)

© Eric Xing @ CMU, 2005-2015



A Constructive Definition o2
h.

v J

X.

poa () <[] expi 0;9;(h;) ;
x how do we couple them?
Ding (X) Hexp{e (%) ]
p(xhw)-exp{Z fL(x)+ 24,9, (h)+ Ef (X)W, G, (h)}

© Eric XlngJ@ CMU, 2005-2015



000
0000
(X X X}
. L. 3
A Constructive Definition :
h.
I p(x|h>:H p(x, | h),
p(x, |h) = exp{ Ze.a fL () +A {6, }
0, =0,+ Zvvi;b p(n) =0, + 2W/g;(h))

X p(h|x) =[] ph, |x) vector of local
coupling in the i : sufficient statistics
log-domain with ~ ~ eatures
hified parameters n(hy %) =expl 27,0,,(n,) 8, (¢4, } fearres)

Ay =2, +ZWbe (%) =4, +ZWbe(x)

1a la
ia

They map to the RBM random field:

p(xhw)-exp{Z fix)+ Ezg(h) Zf (X)W, G, <h>}



An RBM for Text Modeling o°

h; = 3: topic ] has strength 3
hER, (h)= ZW, X

X; = n: word I has count n

X; €1

words counts

p(h|x) = H Normalhj[ ZVVU. X1 ]

p(x|h) =] Bi, [ N, SXaotn)

= p(x) exp{ % ax -log'(x)-log I'(N -x))+ 5 %, (5w, x P
© Eric Xing @ CMU, 2005-2015 36



Conditional Random Fields
G e Discriminative
) ) ) .. (9 pg(y|x)=Z(;’X)exp{gafc(x,yc)}
e Doesn’t assume that features
are independent
%) ) &) . &
4

e When labeling X; future

@{ @ observations are taken into

account

© Eric Xing @ CMU, 2005-2015
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Conditional Models .

e Conditional probability P(label sequence y | observation sequence x)
rather than joint probability P(y, x)

e Specify the probability of possible label sequences given an observation
sequence

e Allow arbitrary, non-independent features on the observation
sequence X

e The probability of a transition between labels may depend on past
and future observations

e Relax strong independence assumptions in generative models

© Eric Xing @ CMU, 2005-2015 38



Conditional Distribution o2

e Ifthe graph G =(V, E) of Y is a tree, the conditional distribution over
the label sequence Y =Yy, given X = x, by the Hammersley Clifford
theorem of random fields is:

P, (Y [X) ocexp Z A f (&Y, X) + Z 149 (v, Y, X)

ecEk veV k
— xis a data sequence Gl@\
— Yy is alabel sequence $
— vis avertex from vertex set V = set of label random variables Xy o X,

— eis an edge from edge set E over V

— f.and g, are given and fixed. g, is a Boolean vertex feature; f, is a Boolean edge
feature

— ks the number of features

- O=(A, Ay A iy, 1) A, and g, are parameters to be estimated
— Y|, is the set of components of y defined by edge e

— Y|, is the set of components of y defined by vertex v

© Eric Xing @ CMU, 2005-2015
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Conditional Distribution (cont’d) | s¢

e CRFs use the observation-dependent normalization Z(x) for
the conditional distributions:

P, (Y[ X) :ieXp(Z Af (&Y, X)+ Z /ngk(V,YL/’X)j

Z (X) ecEk veV k

e Z(x)is a normalization over the data sequence x

© Eric Xing @ CMU, 2005-2015 40



Conditional Random Fields ot

1
Z 0.5 exp{ch 0.1, (x,yc)}

Pe()’|x):

e Allow arbitrary dependencies
on input

e Clique dependencies on labels

e Use approximate inference for
general graphs

© Eric Xing @ CMU, 2005-2015

41



Summary: Conditional Independence
Semantics in an MRF

Structure: an undirected
graph

« Meaning: a node is
conditionally independent of
every other node in the
network given its Directed
neighbors

* Local contingency functions
(potentials) and the cliques in
the graph completely
determine the joint dist.

 Glve correlations between
variables, but no explicit way
to generate samples

© Eric Xing @ CMU, 2005-2015
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Where Is the graph structure
come from? .o
The goal:

e Given set of independent samples (assignments of random
variables), find the best (the most likely?) graphical model
topology

ML Structural Learning for completely observed GMs

O & > O
O O >> RO Ca>
D) @@

(B,E,A,C,R)=(T,FFT,F)
(B,E,A,C,R)=(T,FT,T,F)

(B,E,A,C,R)=(FT,T,T,F)

© Eric Xing @ CMU, 2005-2015



Information Theoretic 444
Interpretation of ML .o

£(8,,G;D)=1log p(D |6,,G)

= |09H(H P(X,; |Xn,ﬁ|(G)’€iﬁl(G))j
= Z(Z log p(X,; |Xn,ﬁ|(G)’€iﬁl(G))j
- M Z Z

i Xzi(6)

count(Xx;, X, )

log p(x, |Xﬁ(G)"9|7r(G))J

=M Z > (XX, 6y) 100 P(X, |Xﬂ(e)’9m(e))}

Xi Xz (G)

From sum over data points to sum over count of variable states

© Eric Xing @ CMU, 2005-2015 44



Information Theoretic
Interpretation of ML (con'd) o°

£(0,,G;D) =log p(D |4,,G)

=M Z 2 B(Xi.x, o)) 10g P(x |Xn(e)"9l7r(e))}
i\ XX, )

Xi Xz (G

|'x7ri )

X (G

i X7 (G)

ﬁ(xi’xﬂ'i(G)) log

I’j(xi’xﬁi(G)) log

ﬁ(xi’xﬂi(e)"giwi(G)) ﬁ(x.)j

I’j(xﬁi (G))

ﬁ(xi’xﬁi(e)’enﬂi(G))

FA)(X;zi(G)) p(x)

=M YT (4,%,6) - M Y H (x)

Decomposable score and a function of the graph structure

© Eric Xing @ CMU, 2005-2015
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jMZ[XZ p(x;)log ﬁ(xi)J
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Structural Search :

e How many graphs over n nodes? 0(2")
e How many trees over n nodes? Oo(n!)

e But it turns out that we can find exact solution of an optimal
tree (under MLE)!

e Trick: in a tree each node has only one parent!
e Chow-liu algorithm

© Eric Xing @ CMU, 2005-2015 46



Chow-Liu tree learning algorithm | s¢

e Obijection function:

/(0,,G;D)=1log p(D|6;,G)

=M YT (4,%,6) - M Y H (x)

e Chow-Liu:

For each pair of variable x; and x;
Compute empirical distribution: ﬁ(Xi,

Compute mutual information: ~ 1(X;, X;) = Z f)(xi’xj) log —

Define a graph with node x,,..., X
Edge (l,j) gets weight f(Xi, X;)

© Eric Xing @ CMU, 2005-2015

j

C(G)=M Z IA(Xi’X;zi(G))

_count(x;, X;)
- M

p(X;, X;)
p(x) P(x;)
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Chow-Liu algorithm (con'd) o°

e Obijection function:

/(0,,G;D)=logp(D|6;,G)
=M Z I’\(Xi’xﬂi(G))_M Z I:I(Xi)

C(G) =MD (XX, (c))

e Chow-Liu:
Optimal tree BN
e Compute maximum weight spanning tree
e Direction in BN: pick any node as root, do breadth-first-search to define directions
e |-equivalence:

® O ®
® © oG &

D E (B) ® @6
C(G)=1(A.B)+I(AC)+1(C,D)+I(C,E)
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Structure Learning for general cece
graphs oo

e [heorem:

e The problem of learning a BN structure with at most d parents is
NP-hard for any (fixed) d=2

e Most structure learning approaches use heuristics
e Exploit score decomposition
e Two heuristics that exploit decomposition in different ways

Greedy search through space of node-orders

Local search of graph structures
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Summary 4

e Undirected graphical models capture “relatedness”, “coupling”,
“co-occurrence’, “synergism’, etc. between entities
e Local and global independence properties identifiable via graph separation criteria

e Defined on clique potentials
e Can be used to define either joint or conditional distributions

e Generally intractable to compute likelihood due to presence of
“partition function”
e Therefore not only inference, but also likelihood-based learning is difficult in general

e Important special cases:

e Ising models
e RBM
e CRF

e Learning GM structures:
e the Chow-Liu Algorithm
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