

Probabilistic Graphical Models

Representation of undirected GM

Eric Xing Lecture 3, January 21, 2015

W

Reading: KF-chap4

Two types of GMs

 Directed edges give causality relationships (Bayesian Network or Directed Graphical Model):

$$P(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}, X_{8})$$

$$= P(X_{1}) P(X_{2}) P(X_{3} | X_{1}) P(X_{4} | X_{2}) P(X_{5} | X_{2})$$

$$P(X_{6} | X_{3}, X_{4}) P(X_{7} | X_{6}) P(X_{8} | X_{5}, X_{6})$$

 Undirected edges simply give correlations between variables (Markov Random Field or Undirected Graphical model):

$$P(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}, X_{8})$$

$$= \frac{1/Z} \exp\{E(X_{1}) + E(X_{2}) + E(X_{3}, X_{1}) + E(X_{4}, X_{2}) + E(X_{5}, X_{2}) + E(X_{6}, X_{3}, X_{4}) + E(X_{7}, X_{6}) + E(X_{8}, X_{5}, X_{6})\}$$

Review: independence properties of DAGs

Defn: let *I_l(G)* be the set of local independence properties encoded by DAG *G*, namely:

$$I(G) = \{X \perp Z | Y : dsep_G(X; Z | Y)\}$$

- Defn: A DAG G is an I-map (independence-map) of P if $I_l(G) \subseteq I(P)$
- A fully connected DAG G is an I-map for any distribution, since $I_{I}(G) = \emptyset \subseteq I(P)$ for any P.
- Defn: A DAG G is a minimal I-map for P if it is an I-map for P, and if the removal of even a single edge from G renders it not an I-map.
- A distribution may have several minimal I-maps
 - Each corresponding to a specific node-ordering

P-maps

- Defn: A DAG G is a **perfect map** (P-map) for a distribution P if I(P)=I(G).
- Thm: not every distribution has a perfect map as DAG.
 - Pf by counterexample. Suppose we have a model where $A \perp C \mid \{B,D\}$, and $B \perp D \mid \{A,C\}$. This cannot be represented by any Bayes net.
 - e.g., BN1 wrongly says $B \perp D \mid A$, BN2 wrongly says $B \perp D$.

P-maps

- Defn: A DAG G is a **perfect map** (P-map) for a distribution P if I(P)=I(G).
- Thm: not every distribution has a perfect map as DAG.
 - Pf by counterexample. Suppose we have a model where A ⊥C | {B,D}, and B ⊥D | {A,C}.
 This cannot be represented by any Bayes net.
 - e.g., BN1 wrongly says $B \perp D \mid A$, BN2 wrongly says $B \perp D$.
 - The fact that G is a minimal I-map for P is far from a guarantee that G captures the independence structure in P
 - The P-map of a distribution is unique up to I-equivalence between networks. That
 is, a distribution P can have many P-maps, but all of them are I-equivalent.

Undirected graphical models (UGM)

- Pairwise (non-causal) relationships
- Can write down model, and score specific configurations of the graph, but no explicit way to generate samples
- Contingency constrains on node configurations

A Canonical Example: understanding complex scene ...

air or water?

A Canonical Example

The grid model

- Naturally arises in image processing, lattice physics, etc.
- Each node may represent a single "pixel", or an atom
 - The states of adjacent or nearby nodes are "coupled" due to pattern continuity or electro-magnetic force, etc.
 - Most likely joint-configurations usually correspond to a "low-energy" state

Social networks

The New Testament Social Networks

Protein interaction networks

This is the middle position of a Go game. Overlaid is the estimate for the probability of becoming black or white for every intersection. Large squares mean the probability is higher.

Representation

Defn: an undirected graphical model represents a distribution P(X₁,...,X_n) defined by an undirected graph H, and a set of positive potential functions y_c associated with the cliques of H, s.t.

$$P(x_1, \dots, x_n) = \frac{1}{Z} \prod_{c \in C} \psi_c(\mathbf{x}_c)$$

where *Z* is known as the partition function:

$$Z = \sum_{x_1, \dots, x_n} \prod_{c \in C} \psi_c(\mathbf{x}_c)$$

- Also known as Markov Random Fields, Markov networks ...
- The **potential function** can be understood as an contingency function of its arguments assigning "pre-probabilistic" score of their joint configuration.

I. Quantitative Specification: Cliques

- For G={V,E}, a complete subgraph (clique) is a subgraph
 G'={V'⊆V,E'⊆E} such that nodes in V' are fully interconnected
- A (maximal) clique is a complete subgraph s.t. any superset
 V"⊃V' is not complete.
- A sub-clique is a not-necessarily-maximal clique.

- Example:
 - max-cliques = {A,B,D}, {B,C,D},
 - sub-cliques = $\{A,B\}$, $\{C,D\}$, ... \rightarrow all edges and singletons

Gibbs Distribution and Clique Potential

• Defn: an undirected graphical model represents a distribution $P(X_1,...,X_n)$ defined by an undirected graph H, and **a set** of positive **potential functions** ψ_c associated with cliques of H, s.t.

$$P(x_1, \dots, x_n) = \frac{1}{Z} \prod_{c \in C} \psi_c(\mathbf{x}_c)$$
 (A Gibbs distribution)

where *Z* is known as the partition function:

$$Z = \sum_{x_1, \dots, x_n} \prod_{c \in C} \psi_c(\mathbf{x}_c)$$

- Also known as Markov Random Fields, Markov networks ...
- The *potential function* can be understood as an contingency function of its arguments assigning "pre-probabilistic" score of their joint configuration.

Interpretation of Clique Potentials

• The model implies $X \perp Z \mid Y$. This independence statement implies (by definition) that the joint must factorize as:

$$p(x,y,z) = p(y)p(x|y)p(z|y)$$

- We can write this as: $p(x,y,z) = p(x,y)p(z|y) \\ p(x,y,z) = p(x|y)p(z,y)$, but
 - cannot have all potentials be marginals
 - cannot have all potentials be conditionals
- The positive clique potentials can only be thought of as general "compatibility", "goodness" or "happiness" functions over their variables, but not as probability distributions.

Example UGM – using max cliques

$$P'(x_1, x_2, x_3, x_4) = \frac{1}{Z} \psi_c(\mathbf{x}_{124}) \times \psi_c(\mathbf{x}_{234})$$
$$Z = \sum_{x_1, x_2, x_3, x_4} \psi_c(\mathbf{x}_{124}) \times \psi_c(\mathbf{x}_{234})$$

• For discrete nodes, we can represent $P(X_{1:4})$ as two 3D tables instead of one 4D table

es

Example UGM – using subcliques

- We can represent $P(X_{1:4})$ as 5 2D tables instead of one 4D table
- Pair MRFs, a popular and simple special case
- I(P') 7 D(P') vs. D(P")

Example UGM – canonical representation

$$P(x_{1}, x_{2}, x_{3}, x_{4})$$

$$= \frac{1}{Z} \psi_{c}(\mathbf{x}_{124}) \times \psi_{c}(\mathbf{x}_{234})$$

$$\times \psi_{12}(\mathbf{x}_{12}) \psi_{14}(\mathbf{x}_{14}) \psi_{23}(\mathbf{x}_{23}) \psi_{24}(\mathbf{x}_{24}) \psi_{34}(\mathbf{x}_{34})$$

$$\times \psi_{1}(x_{1}) \psi_{2}(x_{2}) \psi_{3}(x_{3}) \psi_{4}(x_{4})$$

$$Z = \sum_{x_1, x_2, x_3, x_4} \psi_c(\mathbf{x}_{124}) \times \psi_c(\mathbf{x}_{234}) \times \psi_{12}(\mathbf{x}_{12}) \psi_{14}(\mathbf{x}_{14}) \psi_{23}(\mathbf{x}_{23}) \psi_{24}(\mathbf{x}_{24}) \psi_{34}(\mathbf{x}_{34}) \times \psi_1(x_1) \psi_2(x_2) \psi_3(x_3) \psi_4(x_4)$$

- Most general, subsume P' and P" as special cases
- I(P) \$\forall S\$. I(P')
 D(P) vs. D(P') vs. D(P")

II: Independence properties:

- Now let us ask what kinds of distributions can be represented by undirected graphs (ignoring the details of the particular parameterization).
- Defn: the global Markov properties of a UG H are

$$I(H) = \{X \perp Z | Y) : sep_H(X; Z | Y)\}$$

Global Markov Independencies

Let H be an undirected graph:

- B separates A and C if every path from a node in A to a node in C passes through a node in B: $sep_H(A;C|B)$
- A probability distribution satisfies the **global Markov property** if for any disjoint A, B, C, such that B separates A and C, A is independent of C given B: $\{A \perp C \mid B : \text{sep}_H(A; C \mid B)\}$

Local Markov independencies

• For each node $X_i \in V$, there is unique Markov blanket of X_i , denoted MB_{X_i} , which is the set of neighbors of X_i in the graph (those that share an edge with X_i)

Defn:

The local Markov independencies associated with H is:

$$I_{\ell}(H)$$
: $\{X_i \perp \mathbf{V} - \{X_i\} - MB_{Xi} \mid MB_{Xi} : \forall i\}$,

In other words, X_i is independent of the rest of the nodes in the graph given its immediate neighbors

Soundness and completeness of global Markov property

- Defn: An UG H is an I-map for a distribution P if $I(H) \subseteq I(P)$, i.e., P entails I(H).
- Defn: P is a Gibbs distribution over H if it can be represented as

$$P(x_1,...,x_n) = \frac{1}{Z} \prod_{c \in C} \psi_c(\mathbf{x}_c)$$

- Thm (soundness): If *P* is a Gibbs distribution over *H*, then *H* is an I-map of *P*.
- Thm (completeness): If $\neg sep_H(X; Z | Y)$, then $X \not\perp_P Z | Y$ in **some** P that factorizes over H.

Other Markov properties

- For directed graphs, we defined I-maps in terms of local Markov properties, and derived global independence.
- For undirected graphs, we defined I-maps in terms of global Markov properties, and will now derive local independence.
- Defn: The pairwise Markov independencies associated with UG H = (V;E) are

$$I_{p}(H) = \left\{ X \perp Y \middle| V \setminus \{X,Y\} : \{X,Y\} \notin E \right\}$$

• e.g., $X_1 \perp X_5 | \{X_2, X_3, X_4\}$

Relationship between local and global Markov properties

- Thm 5.5.5. If $P = I_{f}(H)$ then $P = I_{p}(H)$.
- Thm 5.5.6. If P = I(H) then $P = I_1(H)$.
- Thm 5.5.7. If P > 0 and $P = I_p(H)$, then P = I(H).
- Corollary (5.5.8): The following three statements are equivalent for a positive distribution P:

$$P \mid= I_{l}(H)$$

$$P \mid= I_{p}(H)$$

$$P \mid= I(H)$$

- This equivalence relies on the positivity assumption.
- We can design a distribution locally

Hammersley-Clifford Theorem

 If arbitrary potentials are utilized in the following product formula for probabilities,

$$P(x_1, \dots, x_n) = \frac{1}{Z} \prod_{c \in C} \psi_c(\mathbf{x}_c)$$
$$Z = \sum_{x_1, \dots, x_n} \prod_{c \in C} \psi_c(\mathbf{x}_c)$$

then the family of probability distributions obtained is exactly that set which **respects** the *qualitative specification* (the conditional independence relations) described earlier

 Thm: Let P be a positive distribution over V, and H a Markov network graph over V. If H is an I-map for P, then P is a Gibbs distribution over H.

Perfect maps

Defn: A Markov network H is a perfect map for P if for any X;
 Y; Z we have that

$$\operatorname{sep}_{H}(X; Z | Y) \Leftrightarrow P \models (X \perp Z | Y)$$

- Thm: not every distribution has a perfect map as UGM.
 - Pf by counterexample. No undirected network can capture all and only the independencies encoded in a v-structure $X \rightarrow Z \leftarrow Y$.

 $\mbox{@}$ Eric Xing $\mbox{@}$ CMU, 2005-2015

4(xc)

Exponential Form

• Constraining clique potentials to be positive could be inconvenient (e.g., the interactions between a pair of atoms can be either attractive or repulsive). We represent a clique potential $\psi_c(\mathbf{x}_c)$ in an unconstrained form using a real-value "energy" function $\phi_c(\mathbf{x}_c)$:

$$\psi_c(\mathbf{x}_c) = \exp\{-\phi_c(\mathbf{x}_c)\}$$

For convenience, we will call $\phi_c(x_c)$ a potential when no confusion arises from the context.

This gives the joint a nice additive strcuture

The joint a nice additive structure
$$p(\mathbf{x}) = \frac{1}{Z} \exp\left\{-\sum_{c \in C} \phi_c(\mathbf{x}_c)\right\} = \frac{1}{Z} \exp\left\{-H(\mathbf{x})\right\}$$

where the sum in the exponent is called the "free energy":

$$H(\mathbf{x}) = \sum_{c \in C} \phi_c(\mathbf{x}_c)$$

- In physics, this is called the "Boltzmann distribution".
- In statistics, this is called a log-linear model.

Example: Boltzmann machines

• A fully connected graph with pairwise (edge) potentials on binary-valued nodes (for $x_i \in \{-1,+1\}$ or $x_i \in \{0,1\}$) is called a Boltzmann machine

$$P(x_1, x_2, x_3, x_4) = \frac{1}{Z} \exp\left\{\sum_{ij} \phi_{ij}(x_i, x_j)\right\}$$

$$= \frac{1}{Z} \exp\left\{\sum_{ij} \theta_{ij} x_i x_j + \sum_{i} \alpha_i x_i + C\right\}$$

$$= \frac{1}{Z} \exp\left\{\sum_{ij} \theta_{ij} x_i x_j + \sum_{i} \alpha_i x_i + C\right\}$$

Hence the overall energy function has the form:

$$H(x) = \sum_{ij} (x_i - \mu)\Theta_{ij}(x_j - \mu) = (x - \mu)^T \Theta(x - \mu)$$

Ising models

 Nodes are arranged in a regular topology (often a regular packing grid) and connected only to their geometric

neighbors.

$$p(X) = \frac{1}{Z} \exp \left\{ \sum_{i,j \in N_i} \theta_{ij} X_i X_j + \sum_i \theta_{i0} X_i \right\}$$

$$XVG \left\{ -1 + 1 \right\}$$

$$X1G \left\{ -1 - b \right\}$$

- Same as sparse Boltzmann machine, where $\theta_{ij}\neq 0$ iff i,j are neighbors.
 - e.g., nodes are pixels, potential function encourages nearby pixels to have similar intensities.
- Potts model: multi-state Ising model.

Restricted Boltzmann Machines

hidden units

visible units

$$p(x, h \mid \theta) = \exp \left\{ \sum_{i} \theta_{i} \phi_{i}(x_{i}) + \sum_{j} \theta_{j} \phi_{j}(h_{j}) + \sum_{i,j} \theta_{i,j} \phi_{i,j}(x_{i}, h_{j}) - A(\mathbf{\theta}) \right\}$$

Restricted Boltzmann Machines

The Harmonium (Smolensky -'86)

hidden units

visible units

History:

Smolensky ('86), Proposed the architechture.

Freund & Haussler ('92), The "Combination Machine" (binary), learning with projection pursuit. Hinton ('02), The "Restricted Boltzman Machine" (binary), learning with contrastive divergence. Marks & Movellan ('02), Diffusion Networks (Gaussian).

Welling, Hinton, Osindero ('02), "Product of Student-T Distributions" (super-Gaussian)

Properties of RBM

- Factors are marginally dependent.
- Factors are conditionally independent given observations on the visible nodes.

$$P(\ell \mid \mathbf{w}) = \prod_{i} P(\ell_i \mid \mathbf{w})$$

Learning with contrastive divergence

A Constructive Definition

$$p_{\text{ind}}(\mathbf{h}) \propto \prod_{j} \exp \{ \theta_{j} g_{j}(h_{j}) \}$$

how do we couple them?

$$\begin{split} p_{\text{ind}}\left(\mathbf{x}\right) &\propto \prod_{i} \exp \left\{ \begin{array}{l} \theta_{i} f_{i}(x_{i}) \end{array} \right\} \\ p(x, h \mid \theta) &= \exp \left\{ \begin{array}{l} \sum \vec{\theta}_{i} \vec{f}_{i}(x_{i}) + \sum \vec{\lambda}_{j} \vec{g}_{j}(h_{j}) + \sum \vec{f}_{i}^{T}(x_{i}) \mathbf{W}_{i, j} \vec{g}_{j}(h_{j}) \end{array} \right\} \\ &= \sup_{i} \left\{ \begin{array}{l} \sum \vec{\theta}_{i} \vec{f}_{i}(x_{i}) + \sum \vec{\lambda}_{j} \vec{g}_{j}(h_{j}) + \sum \vec{f}_{i}^{T}(x_{i}) \mathbf{W}_{i, j} \vec{g}_{j}(h_{j}) \end{array} \right\} \\ &= \sup_{i} \left\{ \begin{array}{l} \sum \vec{\theta}_{i} \vec{f}_{i}(x_{i}) + \sum \vec{\lambda}_{j} \vec{g}_{j}(h_{j}) + \sum \vec{f}_{i}^{T}(x_{i}) \mathbf{W}_{i, j} \vec{g}_{j}(h_{j}) \end{array} \right\} \end{split}$$

A Constructive Definition

vector of local

(features)

sufficient statistics

shifted parameters

$$p(\mathbf{x} \mid \mathbf{h}) = \prod_{i} p(x_{i} \mid \mathbf{h}),$$

$$p(x_{i} \mid \mathbf{h}) = \exp\left\{ \sum_{a} \hat{\theta}_{ia} f_{ia}(x_{i}) + A_{i}(\{\hat{\theta}_{ia}\}) \right\}$$

$$\hat{\theta}_{ia} = \theta_{ia} + \sum_{jb} W_{ia}^{jb} g_{jb}(h_{j}) = \theta_{ia} + \sum_{j} \vec{W}_{ia}^{j} \vec{g}_{j}(h_{j})$$

$$p(\mathbf{h} \mid \mathbf{x}) = \prod_{j} p(h_{j} \mid \mathbf{x})$$

$$p(h_{j} \mid \mathbf{x}) = \exp\left\{ \sum_{b} \hat{\lambda}_{jb} g_{jb}(h_{j}) + B_{j}(\{\hat{\lambda}_{jb}\}) \right\}$$

 $\hat{\lambda}_{jb} = \lambda_{jb} + \sum W_{ia}^{jb} f_{ia}(x_i) = \lambda_{jb} + \sum \vec{W}_i^{jb} \vec{f}_i(x_i)$

They map to the RBM random field:

$$p(x, h \mid \theta) = \exp \left\{ \sum_{i} \vec{\theta}_{i} \vec{f}_{i}(x_{i}) + \sum_{i} \vec{\lambda}_{j} \vec{g}_{j}(h_{j}) + \sum_{i,j} \vec{f}_{i}^{T}(x_{i}) \mathbf{W}_{i,j} \vec{g}_{j}(h_{j}) \right\}$$
© Eric Xing j © CMU, 2005-2015

An RBM for Text Modeling

topics

 $h_i = 3$: topic j has strength 3

$$h_j \subseteq \mathbf{R}, \qquad \langle h_j \rangle = \sum_i W_{i,j} x_i$$

 $x_i = \mathbf{n}$: word i has count n

$$\chi_i \in \mathbf{I}$$

words counts

$$p(\mathbf{h} \mid \mathbf{x}) = \prod_{j} \text{Normal}_{h_j} \left[\sum_{i} \vec{W}_{ij} \vec{x}_i, 1 \right]$$

$$p(\mathbf{x} \mid \mathbf{h}) = \prod_{i} \operatorname{Bi}_{x_{i}} \left[N, \frac{\exp(\alpha_{j} + \Sigma_{j} W_{ij} h_{j})}{1 + \exp(\alpha_{j} + \Sigma_{j} W_{ij} h_{j})} \right]$$

$$\Rightarrow p(\mathbf{x}) \propto \exp\left\{\left(\sum_{i} \alpha_{i} x_{i} - \log \Gamma(x_{i}) - \log \Gamma(N - x_{i})\right) + \frac{1}{2} \sum_{j} \left(\sum_{i} W_{i,j} x_{i}\right)^{2}\right\}$$
© Eric Xing @ CMU, 2005-2015

Conditional Random Fields

 $X_1 \dots X_n$

 Y_2

Discriminative

$$p_{\theta}(y \mid x) = \frac{1}{Z(\theta, x)} \exp \left\{ \sum_{c} \theta_{c} f_{c}(x, y_{c}) \right\}$$

 Doesn't assume that features are independent

© Eric Xing @ CMU, 2005-2015

Conditional Models

- Conditional probability $P(\text{label sequence } y \mid \text{observation sequence } x)$ rather than joint probability P(y, x)
 - Specify the probability of possible label sequences given an observation sequence
- Allow arbitrary, non-independent features on the observation sequence X
- The probability of a transition between labels may depend on past and future observations
- Relax strong independence assumptions in generative models

Conditional Distribution

• If the graph G = (V, E) of Y is a tree, the conditional distribution over the label sequence Y = y, given X = x, by the Hammersley Clifford theorem of random fields is:

$$p_{\theta}(\mathbf{y} | \mathbf{x}) \propto \exp \left(\sum_{e \in E, k} \lambda_k f_k(e, \mathbf{y} |_e, \mathbf{x}) + \sum_{v \in V, k} \mu_k g_k(v, \mathbf{y} |_v, \mathbf{x}) \right)$$

- x is a data sequence
- y is a label sequence
- v is a vertex from vertex set V = set of label random variables

- e is an edge from edge set E over V
- f_k and g_k are given and fixed. g_k is a Boolean vertex feature; f_k is a Boolean edge feature
- k is the number of features
- $\theta = (\lambda_1, \lambda_2, \cdots, \lambda_n; \mu_1, \mu_2, \cdots, \mu_n); \lambda_k$ and μ_k are parameters to be estimated
- y_e is the set of components of y defined by edge e
- $-y|_{v}$ is the set of components of y defined by vertex v

Conditional Distribution (cont'd)

• CRFs use the observation-dependent normalization $Z(\mathbf{x})$ for the conditional distributions:

$$p_{\theta}(\mathbf{y} | \mathbf{x}) = \frac{1}{\mathbf{Z}(\mathbf{x})} \exp \left(\sum_{e \in E, k} \lambda_k f_k(e, \mathbf{y} |_e, \mathbf{x}) + \sum_{v \in V, k} \mu_k g_k(v, \mathbf{y} |_v, \mathbf{x}) \right)$$

Z(x) is a normalization over the data sequence x

$$p_{\theta}(\mathbf{y} \mid \mathbf{x}) = \frac{1}{Z(\theta, \mathbf{x})} \exp \left\{ \sum_{c} \theta_{c} f_{c}(\mathbf{x}, \mathbf{y}_{c}) \right\}$$

- Allow arbitrary dependencies on input
- Clique dependencies on labels
- Use approximate inference for general graphs

© Eric Xing @ CMU, 2005-2015

Summary: Conditional Independence Semantics in an MRF

Structure: an *undirected* graph

- Meaning: a node is conditionally independent of every other node in the network given its Directed neighbors
- Local contingency functions (potentials) and the cliques in the graph completely determine the joint dist.
- Give correlations between variables, but no explicit way to generate samples

Where is the graph structure come from?

The goal:

 Given set of independent samples (assignments of random) variables), find the **best** (the most likely?) graphical model topology

ML Structural Learning for completely observed GMs

Information Theoretic Interpretation of ML

$$\begin{split} \ell(\theta_{G}, G; D) &= \log p(D \mid \theta_{G}, G) \\ &= \log \prod_{n} \left(\prod_{i} p(x_{n,i} \mid \mathbf{X}_{n,\pi_{i}(G)}, \theta_{i \mid \pi_{i}(G)}) \right) \\ &= \sum_{i} \left(\sum_{n} \log p(x_{n,i} \mid \mathbf{X}_{n,\pi_{i}(G)}, \theta_{i \mid \pi_{i}(G)}) \right) \\ &= M \sum_{i} \left(\sum_{x_{i}, \mathbf{X}_{\pi_{i}(G)}} \frac{count(x_{i}, \mathbf{X}_{\pi_{i}(G)})}{M} \log p(x_{i} \mid \mathbf{X}_{\pi_{i}(G)}, \theta_{i \mid \pi_{i}(G)}) \right) \\ &= M \sum_{i} \left(\sum_{x_{i}, \mathbf{X}_{\pi_{i}(G)}} \hat{p}(x_{i}, \mathbf{X}_{\pi_{i}(G)}) \log p(x_{i} \mid \mathbf{X}_{\pi_{i}(G)}, \theta_{i \mid \pi_{i}(G)}) \right) \end{split}$$

From sum over data points to sum over count of variable states

Information Theoretic Interpretation of ML (con'd)

$$\begin{split} \boldsymbol{\ell}(\boldsymbol{\theta}_{G},G;D) &= \log \hat{p}(D \mid \boldsymbol{\theta}_{G},G) \\ &= M \sum_{i} \left(\sum_{x_{i},\mathbf{x}_{\pi_{i}(G)}} \hat{p}(x_{i},\mathbf{x}_{\pi_{i}(G)}) \log \hat{p}(x_{i} \mid \mathbf{x}_{\pi_{i}(G)},\boldsymbol{\theta}_{i \mid \pi_{i}(G)}) \right) \\ &= M \sum_{i} \left(\sum_{x_{i},\mathbf{x}_{\pi_{i}(G)}} \hat{p}(x_{i},\mathbf{x}_{\pi_{i}(G)}) \log \frac{\hat{p}(x_{i},\mathbf{x}_{\pi_{i}(G)},\boldsymbol{\theta}_{i \mid \pi_{i}(G)})}{\hat{p}(\mathbf{x}_{\pi_{i}(G)})} \frac{\hat{p}(x_{i})}{\hat{p}(x_{i})} \right) \\ &= M \sum_{i} \left(\sum_{x_{i},\mathbf{x}_{\pi_{i}(G)}} \hat{p}(x_{i},\mathbf{x}_{\pi_{i}(G)}) \log \frac{\hat{p}(x_{i},\mathbf{x}_{\pi_{i}(G)},\boldsymbol{\theta}_{i \mid \pi_{i}(G)})}{\hat{p}(\mathbf{x}_{\pi_{i}(G)})\hat{p}(x_{i})} \right) - M \sum_{i} \left(\sum_{x_{i}} \hat{p}(x_{i}) \log \hat{p}(x_{i}) \right) \\ &= M \sum_{i} \hat{I}(x_{i},\mathbf{x}_{\pi_{i}(G)}) - M \sum_{i} \hat{H}(x_{i}) \end{split}$$

Decomposable score and a function of the graph structure

Structural Search

- How many graphs over n nodes? $O(2^{n^2})$
- How many trees over n nodes? O(n!)
- But it turns out that we can find exact solution of an optimal tree (under MLE)!
 - Trick: in a tree each node has only one parent!
 - Chow-liu algorithm

Objection function:

$$\ell(\theta_G, G; D) = \log \hat{p}(D \mid \theta_G, G)$$

$$= M \sum_{i} \hat{I}(x_i, \mathbf{x}_{\pi_i(G)}) - M \sum_{i} \hat{H}(x_i)$$

$$\Rightarrow C(G) = M \sum_{i} \hat{I}(x_i, \mathbf{x}_{\pi_i(G)})$$

- Chow-Liu:
 - For each pair of variable x_i and x_i
 - Compute empirical distribution: $\hat{p}(X_i, X_j) = \frac{count(x_i, x_j)}{M}$
 - $\hat{I}(X_i, X_j) = \sum_{x_i, x_j} \hat{p}(x_i, x_j) \log \frac{\hat{p}(x_i, x_j)}{\hat{p}(x_i) \hat{p}(x_j)}$ Compute mutual information:
 - Define a graph with node $x_1, ..., x_n$
 - Edge (I,j) gets weight $\hat{I}(X_i, X_j)$

Chow-Liu algorithm (con'd)

Objection function:

$$\ell(\theta_G, G; D) = \log \hat{p}(D \mid \theta_G, G)$$

$$= M \sum_{i} \hat{I}(x_i, \mathbf{x}_{\pi_i(G)}) - M \sum_{i} \hat{H}(x_i)$$

$$\Rightarrow C(G) = M \sum_{i} \hat{I}(x_i, \mathbf{x}_{\pi_i(G)})$$

Chow-Liu:

Optimal tree BN

- Compute maximum weight spanning tree
- Direction in BN: pick any node as root, do breadth-first-search to define directions
- I-equivalence:

Structure Learning for general graphs

- Theorem:
 - The problem of learning a BN structure with at most d parents is
 NP-hard for any (fixed) d≥2
- Most structure learning approaches use heuristics
 - Exploit score decomposition
 - Two heuristics that exploit decomposition in different ways
 - Greedy search through space of node-orders
 - Local search of graph structures

Summary

- Undirected graphical models capture "relatedness", "coupling", "co-occurrence", "synergism", etc. between entities
 - Local and global independence properties identifiable via graph separation criteria
 - Defined on clique potentials
- Can be used to define either joint or conditional distributions
- Generally intractable to compute likelihood due to presence of "partition function"
 - Therefore not only inference, but also likelihood-based learning is difficult in general
- Important special cases:
 - Ising models
 - RBM
 - CRF
- Learning GM structures:
 - the Chow-Liu Algorithm