

Probabilistic Graphical Models

Generalized linear models

Eric Xing Lecture 5, January 27, 2015

Parameterizing graphical models

where $\boldsymbol{\varepsilon}$ is an error term of unmodeled effects or random r

• Now assume that ε follows a Gaussian $N(0,\sigma)$, then we have:

$$p(y_i | x_i; \theta) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(y_i - \theta^T \mathbf{x}_i)^2}{2\sigma^2}\right)$$

• We can use LMS algorithm, which is a gradient ascent/descent approach, to estimate the parameter

Recall Linear Regression

• Let us assume that the target variable and the inputs are related by the equation:

$$y_i = \boldsymbol{\theta}^T \mathbf{x}_i + \boldsymbol{\varepsilon}_i$$

Recall: Logistic Regression (sigmoid classifier, perceptron, etc.)

• The condition distribution: a Bernoulli

$$p(y | x) = \mu(x)^{y} (\mathbf{1} - \mu(x))^{1-y}$$

where μ is a logistic function

$$\mu(x) = \frac{1}{1 + e^{-\theta^T x}}$$

• We can used the brute-force gradient method as in LR

 But we can also apply generic laws by observing the p(y|x) is an exponential family function, more specifically, a generalized linear model!

Parameterizing graphical models

• Markov random fields

$$p(\mathbf{x}) = \frac{1}{Z} \exp\left\{-\sum_{c \in C} \phi_c(\mathbf{x}_c)\right\} = \frac{1}{Z} \exp\left\{-H(\mathbf{x})\right\}$$

Restricted Boltzmann Machines

 $p(x,h \mid \theta) = \exp \left\{ \sum_{i=1}^{n} \phi_{i}(x_{i}) + \sum_{i=1}^{n} \phi_{i}(h_{j}) + \sum_{i=1}^{n} \phi_{i,j}(x_{i},h_{j}) - A(\theta) \right\}$ i, j

Conditional Random Fields

• Discriminative

$$p_{\theta}(y \mid x) = \frac{1}{Z(\theta, x)} \exp\left\{\sum_{c} \theta_{c} f_{c}(x, y_{c})\right\}$$

• *X*_{*i*}'s are assumed as features that are inter-dependent

• When labeling *X_i* future observations are taken into account

Conditional Distribution

$$p_{\theta}(\mathbf{y} \mid \mathbf{x}) = \frac{1}{Z(\mathbf{x})} \exp\left(\sum_{e \in E,k} \lambda_k f_k(e, \mathbf{y} \mid_e, \mathbf{x}) + \sum_{v \in V,k} \mu_k g_k(v, \mathbf{y} \mid_v, \mathbf{x})\right)$$

- x is a data sequence
- y is a label sequence
- *v* is a vertex from vertex set V = set of label random variables
- e is an edge from edge set E over V
- f_k and g_k are given and fixed. g_k is a Boolean vertex feature; f_k is a Boolean edge feature
- k is the index number of the features
- $\theta = (\lambda_1, \lambda_2, \dots, \lambda_n; \mu_1, \mu_2, \dots, \mu_n); \lambda_k \text{ and } \mu_k$ are parameters to be estimated
- y|_e is the set of components of y defined by edge e
- y|_v is the set of components of y defined by vertex v

X₁ ... **X**_n

2-D Conditional Random Fields

$$\mathbf{p}_{\theta}(\mathbf{y} \mid \mathbf{x}) = \frac{1}{Z(\theta, \mathbf{x})} \exp\left\{\sum_{c} \theta_{c} \mathbf{f}_{c}(\mathbf{x}, \mathbf{y}_{c})\right\}$$

- Allow arbitrary dependencies on input
- Clique dependencies on labels
- Use approximate inference for general graphs

Exponential family, a basic building block

• For a numeric random variable X $p(x \mid \eta) = h(x) \exp(\eta^{T} f(x) \cdot A(\eta))$ $= \frac{1}{Z(n)} h(x) \exp\{\eta^{T} T(x)\}$

is an **exponential family distribution** with natural (canonical) parameter η

- Function T(x) is a sufficient statistic.
- Function $A(\eta) = \log Z(\eta)$ is the log normalizer.
- Examples: Bernoulli, multinomial, Gaussian, Poisson, gamma,...

Example: Multivariate Gaussian Distribution

• For a continuous vector random variable $X \in \mathbb{R}^k$:

$$p(x|\mu,\Sigma) = \frac{1}{(2\pi)^{k/2} |\Sigma|^{1/2}} \exp\left\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right\}$$

Moment parameter
$$P(\pi, \nabla, -\mu) = \frac{1}{(2\pi)^{k/2}} \exp\left\{-\frac{1}{2} \operatorname{tr}(\Sigma^{-1} x x^T) + \mu^T \Sigma^{-1} x - \frac{1}{2} \mu^T \Sigma^{-1} \mu - \log|\Sigma|\right\}$$

- Exponential family representation $\begin{array}{c}
 \eta \neq \left[\Sigma^{-1}\mu; -\frac{1}{2}\operatorname{vec}(\Sigma^{-1})\right] = \left[\eta_{1}, \operatorname{vec}(\eta_{2})\right], \quad \eta_{1} = \Sigma^{-1}\mu \text{ and } \eta_{2} = -\frac{1}{2}\Sigma^{-1} \\
 T(x) = \left[x; \operatorname{vec}(xx^{T})\right] \\
 A(\eta) = \frac{1}{2}\mu^{T}\Sigma^{-1}\mu + \log|\Sigma| = -\frac{1}{2}\operatorname{tr}(\eta_{2}\eta_{1}\eta_{1}^{T}) - \frac{1}{2}\log(-2\eta_{2}) \\
 h(x) = (2\pi)^{-k/2}
 \end{array}$ Natural parameter
 - Note: a *k*-dimensional Gaussian is a $(d+d^2)$ -parameter distribution with a $(d+d^2)$ element vector of sufficient statistics (but because of symmetry and positivity, parameters are constrained and have lower degree of freedom)

Example: Multinomial distribution

 $p(x|\pi) = \pi_1^{x_1} \pi_2^{x_1} \cdots \pi_k^{x_k} = \exp\left\{\sum_k x_k \ln \pi_k\right\}$ $= \exp\left\{\sum_{k=1}^{K-1} x_k \ln \pi_k + \left(1 - \sum_{k=1}^{K-1} x_K\right) \ln\left(1 - \sum_{k=1}^{K-1} \pi_k\right)\right\}$ $= \exp\left\{\sum_{k=1}^{K-1} x_k \ln\left(\frac{\pi_k}{1 - \sum_{k=1}^{K-1} \pi_k}\right) + \ln\left(1 - \sum_{k=1}^{K-1} \pi_k\right)\right\}$

• Exponential family representation

$$\eta = \left[\ln\left(\frac{\pi_k}{\pi_K}\right); \mathbf{0} \right]$$
$$T(x) = [x]$$
$$A(\eta) = -\ln\left(\mathbf{1} - \sum_{k=1}^{K-1} \pi_k\right) = \ln\left(\sum_{k=1}^{K} e^{\eta_k}\right)$$
$$h(x) = \mathbf{1}$$

Why exponential family?

• Moment generating property

$$\frac{dA}{d\eta} = \frac{d}{d\eta} \log Z(\eta) = \frac{1}{Z(\eta)} \frac{d}{d\eta} Z(\eta)$$
$$= \frac{1}{Z(\eta)} \frac{d}{d\eta} \int h(x) \exp\{\eta^T T(x)\} dx$$
$$= \int T(x) \frac{h(x) \exp\{\eta^T T(x)\}}{Z(\eta)} dx$$
$$= E[T(x)]$$

$$\frac{d^2 A}{d\eta^2} = \int T^2(x) \frac{h(x) \exp\{\eta^T T(x)\}}{Z(\eta)} dx - \int T(x) \frac{h(x) \exp\{\eta^T T(x)\}}{Z(\eta)} dx \frac{1}{Z(\eta)} \frac{d}{d\eta} Z(\eta)$$
$$= E[T^2(x)] - E^2[T(x)]$$
$$= Var[T(x)]$$

Moment estimation

- We can easily compute moments of any exponential family distribution by taking the derivatives of the log normalizer $A(\eta)$.
- The q^{th} derivative gives the q^{th} centered moment.

$$\frac{dA(\eta)}{d\eta} = \text{mean}$$
$$\frac{d^2A(\eta)}{d\eta^2} = \text{variance}$$

. . .

• When the sufficient statistic is a stacked vector, partial derivatives need to be considered.

• Hence we can invert the relationship and infer the canonical parameter from the moment parameter (1-to-1):

$$\eta \stackrel{\text{def}}{=} \psi(\mu)$$

• A distribution in the exponential family can be parameterized not only by η – the canonical parameterization, but also by μ – the moment parameterization.

Ν.

MLE for Exponential Family

• For *iid* data, the log-likelihood is

$$\ell(\eta; D) = \log \prod_{n} h(x_{n}) \exp\left\{\eta^{T} T(x_{n}) \right\}$$
$$= \sum_{n} \log h(x_{n}) + \left(\eta^{T} \sum_{n} T(x_{n})\right) - NA(\eta)$$

• Take derivatives and set to zero:

$$\frac{\partial \ell}{\partial \eta} = \sum_{n} T(x_{n}) - N \frac{\partial A(\eta)}{\partial \eta} = \mathbf{0}$$
$$\Rightarrow \frac{\partial A(\eta)}{\partial \eta} = \frac{1}{N} \sum_{n} T(x_{n})$$
$$\Rightarrow \mu_{MLE} = \frac{1}{N} \sum_{n} T(x_{n})$$

- This amounts to moment matching.
- We can infer the canonical parameters using $\hat{\eta}_{\text{MLE}} = \psi(\hat{\mu}_{\text{MLE}})$

• For $p(x|\theta)$, T(x) is sufficient for θ if there is no information in X regarding θ beyond that in T(x).

We can throw away X for the purpose of inference w.r.t. θ .

Sufficiency

Examples

• Gaussian:

$$\eta = \left[\Sigma^{-1}\mu; -\frac{1}{2}\operatorname{vec}(\Sigma^{-1})\right]$$
$$T(x) = \left[x; \operatorname{vec}(xx^{T})\right]$$
$$A(\eta) = \frac{1}{2}\mu^{T}\Sigma^{-1}\mu + \frac{1}{2}\log|\Sigma|$$
$$h(x) = (2\pi)^{-k/2}$$

$$\Rightarrow \mu_{MLE} = \frac{1}{N} \sum_{n} T_1(x_n) = \frac{1}{N} \sum_{n} x_n$$

Multinomial:

11.

$$\eta = \left[\ln\left(\frac{\pi_k}{\pi_K}\right); \mathbf{0} \right]$$

$$T(x) = [x] \qquad \implies \mu_{MLE} = A(\eta) = -\ln\left(1 - \sum_{k=1}^{K-1} \pi_k\right) = \ln\left(\sum_{k=1}^{K} e^{\eta_k}\right)$$

$$h(x) = \mathbf{1}$$

• Poisson:

$$\eta = \log \lambda$$
$$T(x) = x$$
$$A(\eta) = \lambda = e^{\eta}$$
$$h(x) = \frac{1}{x!}$$

$$\Rightarrow \mu_{MLE} = \frac{1}{N} \sum_{n} x_{n}$$

 $=\frac{1}{N}\sum_{n}x_{n}$

Generalized Linear Models (GLIMs)

- The graphical model
 - Linear regression
 - Discriminative linear classification
 - Commonality:
 - mode $E_p(Y) = \mu = f(\theta^T X)$
 - What is p()? the cond. dist. of Y.
 - What is f()? the response function.

- GLIM
 - The observed input x is assumed to enter into the model via a linear combination of its elements $\xi = \theta^T x$
 - The conditional mean μ is represented as a function f(ξ) of ξ, where f is known as the response function
 - The observed output y is assumed to be characterized by an exponential family distribution with conditional mean μ .

$\dot{\mathcal{O}}$ $\mathbf{GLIM}, \mathbf{Cont.} \mathcal{N} = f(\mathbf{x}) = f(\mathbf{x})$ $\overset{\mathbf{exp}}{\mathbf{f}} \stackrel{\mathbf{f}}{\mathbf{f}} \stackrel{\mathbf{f}}{\mathbf{f}$

$$\theta \longrightarrow \xi \xrightarrow{f=\psi'} \mu \xrightarrow{(\psi)} \eta \xrightarrow{EXP} y$$

$$y \longrightarrow \psi = h(y) \exp(\eta^{T}(x)y + A(\eta))$$

$$\Rightarrow p(y | \eta, \phi) = h(y, \phi) \exp\{\frac{1}{\phi}(\eta^{T}(x)y - A(\eta))\}$$

- The choice of exp family is constrained by the nature of the data Y
 - Example: y is a continuous vector → multivariate Gaussian
 y is a class label → Bernoulli or multinomial
- The choice of the response function
 - Following some mild constrains, e.g., [0,1]. Positivity ...
 - Canonical response function: $\underline{f} = \underline{\psi}^{-1}(\cdot)$
 - In this case $\theta^T x$ directly corresponds to canonical parameter η .

en lax't y t Au)

Example canonical response functions

Model	Canonical response function
Gaussian	$\mu=\eta$
Bernoulli	$\mu = 1/(1+e^{-\eta})$
$\operatorname{multinomial}$	$\mu_i = \eta_i / \sum_j e^{\eta_j}$
Poisson	$\mu=e^{\eta}$
gamma	$\mu = -\eta^{-1}$

MLE for GLIMs with natural response

• Log-likelihood

$$\boldsymbol{\ell} = \sum_{n} \log h(\boldsymbol{y}_{n}) + \sum_{n} \left(\boldsymbol{\theta}^{T} \boldsymbol{x}_{n} \boldsymbol{y}_{n} - A(\boldsymbol{\eta}_{n}) \right)$$

• Derivative of Log-likelihood

$$\frac{d\ell}{d\theta} = \sum_{n} \left(x_{n} y_{n} - \frac{dA(\eta_{n})}{d\eta_{n}} \frac{d\eta_{n}}{d\theta} \right)$$
$$= \sum_{n} \left(y_{n} - \mu_{n} \right) x_{n}$$
$$= X^{T} \left(y - \mu \right)$$

This is a fixed point function because μ is a function of θ

- Online learning for canonical GLIMs
 - Stochastic gradient ascent = least mean squares (LMS) algorithm:

$$\theta^{t+1} = \theta^t + \rho (y_n - \mu_n^t) x_n$$

where $\mu_n^t = (\theta^t)^T x_n$ and ρ is a step size

Batch learning for canonical GLIMs

• The Hessian matrix

$$H = \frac{d^2 \ell}{d\theta d\theta^T} = \frac{d}{d\theta^T} \sum_n (y_n - \mu_n) x_n = \sum_n x_n \frac{d\mu_n}{d\theta^T}$$
$$= -\sum_n x_n \frac{d\mu_n}{d\eta_n} \frac{d\eta_n}{d\theta^T}$$

$$= -\sum_{n} x_{n} \frac{d\mu_{n}}{d\eta_{n}} x_{n}^{T} \text{ since } \eta_{n} = \theta^{T} x_{n}$$
$$= -X^{T} W X$$

where $X = [x_n^T]$ is the design matrix and $W = \text{diag}\left(\frac{d\mu_1}{dn_1}, \dots, \frac{d\mu_N}{dn_N}\right)$

which can be computed by calculating the 2nd derivative of $A(\eta_n)$

Recall LMS

• Cost function in matrix form:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_{i}^{T} \theta - y_{i})^{2}$$
$$= \frac{1}{2} (\mathbf{X} \theta - \bar{y})^{T} (\mathbf{X} \theta - \bar{y})^{2}$$

• To minimize $J(\theta)$, take derivative and set to zero:

$$\nabla_{\theta}J = \frac{1}{2} \nabla_{\theta} \operatorname{tr} \left(\theta^{T} X^{T} X \theta - \theta^{T} X^{T} \overline{y} - \overline{y}^{T} X \theta + \overline{y}^{T} \overline{y} \right)$$

$$= \frac{1}{2} \left(\nabla_{\theta} \operatorname{tr} \theta^{T} X^{T} X \theta - 2 \nabla_{\theta} \operatorname{tr} \overline{y}^{T} X \theta + \nabla_{\theta} \operatorname{tr} \overline{y}^{T} \overline{y} \right)$$

$$= \frac{1}{2} \left(X^{T} X \theta + X^{T} X \theta - 2 X^{T} \overline{y} \right)$$

$$= X^{T} X \theta - X^{T} \overline{y} = 0$$

$$\sum_{i=1}^{N} \left(X^{T} X \theta - X^{T} \overline{y} \right)$$

$$= X^{T} X \theta - X^{T} \overline{y} = 0$$

$$\sum_{i=1}^{N} \left(X^{T} X \theta - X^{T} \overline{y} \right)$$

$$= \left(X^{T} X \theta - X^{T} \overline{y} \right)$$

$$= \left(X^{T} X \theta - X^{T} \overline{y} \right)$$

$$= \left(X^{T} X \theta - X^{T} \overline{y} \right)$$

Iteratively Reweighted Least Squares (IRLS)

• Recall Newton-Raphson methods with cost function J

$$\theta^{t+1} = \theta^t - H^{-1} \nabla_{\theta} J$$

 $\nabla_{\theta} J = X^T (y - \mu)$

• We now have

Now:

$$H = -X^{T}WX \qquad \qquad \theta^{*} = (X^{T}X)^{-1}X^{T}\overline{y}$$
$$\theta^{t+1} = \theta^{t} + H^{-1}\nabla_{\theta}\ell$$
$$= (X^{T}W^{t}X)^{-1}[X^{T}W^{t}X\theta^{t} + X^{T}(y - \mu^{t})]$$
$$= (X^{T}W^{t}X)^{-1}X^{T}W^{t}z^{t}$$

where the adjusted response is

$$z^{t} = X\theta^{t} + (W^{t})^{-1}(y - \mu^{t})$$

• This can be understood as solving the following " Iteratively reweighted least squares " problem

$$\theta^{t+1} = \arg\min_{\theta} (z - X\theta)^T W(z - X\theta)$$

Example 1: logistic regression (sigmoid classifier)

• The condition distribution: a Bernoulli

$$p(y | x) = \mu(x)^{y} (1 - \mu(x))^{1-y}$$

where μ is a logistic function

$$\mu(x) = \frac{1}{1 + e^{-\eta(x)}}$$

- p(y|x) is an exponential family function, with
 - mean: $E[y | x] = \mu = \frac{1}{1 + e^{-\eta(x)}}$
 - and canonical response function

$$\eta = \xi = \theta^T x$$

IRLS
$$\frac{d\mu}{d\eta} = \mu(1-\mu)$$
$$W = \begin{pmatrix} \mu_1(1-\mu_1) & & \\ & \ddots & \\ & & \mu_N(1-\mu_N) \\ & & & \text{@ Eric Xing @ CMU, 2005-2015} \end{pmatrix}$$

Logistic regression: practical issues

• It is very common to use *regularized* maximum likelihood.

$$p(y = \pm \mathbf{1} | x, \theta) = \frac{1}{\mathbf{1} + e^{-y\theta^T x}} = \sigma(y\theta^T x)$$
$$p(\theta) \sim \text{Normal}(\mathbf{0}, \lambda^{-1}I)$$
$$l(\theta) = \sum_n \log(\sigma(y_n\theta^T x_n)) - \frac{\lambda}{2}\theta^T \theta$$

- IRLS takes O(Nd³) per iteration, where N = number of training cases and d = dimension of input x.
- Quasi-Newton methods, that approximate the Hessian, work faster.
- Conjugate gradient takes O(Nd) per iteration, and usually works best in practice.
- Stochastic gradient descent can also be used if *N* is large c.f. perceptron rule:

 $\nabla_{\theta} \boldsymbol{\ell} = (\mathbf{1} - \boldsymbol{\sigma}(\boldsymbol{y}_{n} \boldsymbol{\theta}^{T} \boldsymbol{x}_{n})) \boldsymbol{y}_{n} \boldsymbol{x}_{n} - \lambda \boldsymbol{\theta}$

Example 2: linear regression

• The condition distribution: a Gaussian $p(y|x,\theta,\Sigma) = \frac{1}{(2\pi)^{k/2}|\Sigma|^{1/2}} \exp\left\{-\frac{1}{2}(y-\mu(x))^T \Sigma^{-1}(y-\mu(x))\right\}$ Rescale $\Rightarrow h(x) \exp\left\{-\frac{1}{2}\Sigma^{-1}(\eta^T(x)y - A(\eta))\right\}$ where μ is a linear function

$$\mu(x) = \theta^T x = \eta(x)$$

- p(y|x) is an exponential family function, with
 - mean:

$$E[y \mid x] = \mu = \theta^T x$$

and canonical response function

$$\eta_1 = \xi = \theta^T x$$

• IRLS $\frac{d\mu}{d\eta} = 1$ $= \begin{pmatrix} X^T W^T X \end{pmatrix}^{-1} X^T W^T z^T$ $\Rightarrow = \begin{pmatrix} X^T X \end{pmatrix}^{-1} X^T (X \theta^T + (y - \mu^T))$ W = I $= \theta^T + \begin{pmatrix} X^T X \end{pmatrix}^{-1} X^T (y - \mu^T)$

$$\stackrel{\rightarrow \infty}{\Rightarrow} \quad \theta = (X^T X)^{-1} X^T Y$$

Normal equation 29

Simple GMs are the building blocks of complex BNs

Density estimation

Parametric and nonparametric methods

Regression

Linear, conditional mixture, nonparametric

Classification

Generative and discriminative approach

MLE for general BNs

• If we assume the parameters for each CPD (a GLIM) are globally independent, and all nodes are fully observed, then the log-likelihood function decomposes into a sum of local terms, one per node:

$$\ell(\theta; D) = \log p(D \mid \theta) = \log \prod_{n} \left(\prod_{i} p(x_{n,i} \mid \mathbf{X}_{n,\pi_{i}}, \theta_{i}) \right) = \sum_{i} \left(\sum_{n} \log p(x_{n,i} \mid \mathbf{X}_{n,\pi_{i}}, \theta_{i}) \right)$$

• Therefore, MLE-based parameter estimation of GM reduces to local est. of each GLIM

How to define parameter prior?

Fac

ctorization:
$$p(\mathbf{X} = \mathbf{x}) = \prod_{i=1}^{M} p(x_i | \mathbf{x}_{\pi_i})$$

Local Distributions defined by, e.g., multinomial parameters:

 (x_i^{κ})

Assumptions (Geiger & Heckerman 97,99):

- **Complete Model Equivalence**
- **Global Parameter Independence**
- Local Parameter Independence
- Likelihood and Prior Modularity Eric Xing @ CMU, 2005-2015

Parameter Independence, Graphical View

Provided all variables are observed in all cases, we can perform Bayesian update each parameter independently !!!

Which PDFs Satisfy Our Assumptions? (Geiger & Heckerman 97,99)

• **Discrete DAG Models:** $x_i \mid \pi_{x_i}^j \sim \text{Multi}(\theta)$

Dirichlet prior:

$$P(\theta) = \frac{\Gamma(\sum_{k} \alpha_{k})}{\prod_{k} \Gamma(\alpha_{k})} \prod_{k} \theta_{k}^{\alpha_{k}-1} = C(\alpha) \prod_{k} \theta_{k}^{\alpha_{k}}$$

• Gaussian DAG Models: $x_i \mid \pi_{x_i}^j \sim \text{Normal}(\mu, \Sigma)$

Normal prior:
$$p(\mu | \nu, \Psi) = \frac{1}{(2\pi)^{n/2} |\Psi|^{1/2}} \exp\left\{-\frac{1}{2}(\mu - \nu)'\Psi^{-1}(\mu - \nu)\right\}$$

Normal-Wishart prior:

$$p(\mu | \nu, \alpha_{\mu}, \mathbf{W}) = \operatorname{Normal}(\nu, (\alpha_{\mu}\mathbf{W})^{-1}),$$

$$p(\mathbf{W} | \alpha_{w}, \mathbf{T}) = c(n, \alpha_{w}) |\mathbf{T}|^{\alpha_{w}/2} |\mathbf{W}|^{(\alpha_{w}-n-1)/2} \exp\left\{\frac{1}{2}\operatorname{tr}\left\{\mathbf{TW}\right\}\right\},$$

where $\mathbf{W} = \Sigma^{-1}$.

Summary: Parameterizing GM

- For exponential family dist., MLE amounts to moment matching
- GLIM:
 - Natural response
 - Iteratively Reweighted Least Squares as a general algorithm
- GLIMs are building blocks of most GMs in practical use
- Parameter independence and appropriate priors