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Probabilistic Graphical Models 

Generalized linear models

Eric Xing
Lecture 5, January 27, 2015

Reading: KF-chap 17
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Parameterizing graphical models
 Bayesian network:
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Recall Linear Regression
 Let us assume that the target variable and the inputs are 

related by the equation:

where ε is an error term of unmodeled effects or random noise

 Now assume that ε follows a Gaussian N(0,σ), then we have:

 We can use LMS algorithm, which is a gradient 
ascent/descent approach, to estimate the parameter
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Recall: Logistic Regression 
(sigmoid classifier, perceptron, etc.)

 The condition distribution: a Bernoulli

where  is a logistic function

 We can used the brute-force gradient method as in LR

 But we can also apply generic laws by observing the p(y|x) is 
an exponential family function, more specifically, a 
generalized linear model!
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Parameterizing graphical models
 Markov random fields
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hidden units

visible units
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Conditional Random Fields
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X1 … Xn

 Discriminative

 Xi’s are assumed as features 
that are inter-dependent

 When labeling Xi future 
observations are taken into 
account
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Conditional Distribution
 If the graph G = (V, E) of Y is a tree, the conditional distribution over 

the label sequence Y = y, given X = x, by the Hammersley Clifford 
theorem of random fields is:

─ x is a data sequence
─ y is a label sequence 
─ v is a vertex from vertex set V = set of label random variables
─ e is an edge from edge set E over V
─ fk and gk are given and fixed. gk is a Boolean vertex feature; fk is a Boolean edge 

feature
─ k is the index number of the features
─ are parameters to be estimated
─ y|e is the set of components of y defined by edge e
─ y|v is the set of components of y defined by vertex v
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2-D Conditional Random Fields

 Allow arbitrary dependencies 
on input

 Clique dependencies on labels

 Use approximate inference for 
general graphs
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Exponential family, 
a basic building block
 For a numeric random variable X

is an exponential family distribution with natural (canonical) parameter 

 Function T(x) is a sufficient statistic.
 Function A() = log Z() is the log normalizer.
 Examples: Bernoulli, multinomial, Gaussian, Poisson, 

gamma,...
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Example: Multivariate Gaussian 
Distribution
 For a continuous vector random variable XRk:

 Exponential family representation

 Note: a k-dimensional Gaussian is a (d+d2)-parameter distribution with a (d+d2)-
element vector of sufficient statistics (but because of symmetry and positivity, 
parameters are constrained and have lower degree of freedom)
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Example: Multinomial distribution
 For a binary vector random variable 

 Exponential family representation
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Why exponential family?
 Moment generating property
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Moment estimation
 We can easily compute moments of any exponential family 

distribution by taking the derivatives of the log normalizer 
A().

 The qth derivative gives the qth centered moment.

 When the sufficient statistic is a stacked vector, partial 
derivatives need to be considered.
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Moment vs canonical parameters
 The moment parameter µ can be derived from the natural 

(canonical) parameter

 A() is convex since

 Hence we can invert the relationship and infer the canonical 
parameter from the moment parameter (1-to-1):

 A distribution in the exponential family can be parameterized not only by  the 
canonical parameterization, but also by  the moment parameterization.
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MLE for Exponential Family
 For iid data, the log-likelihood is

 Take derivatives and set to zero:

 This amounts to moment matching.
 We can infer the canonical parameters using
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Sufficiency
 For p(x|), T(x) is sufficient for  if there is no information in X

regarding  beyond that in T(x).
 We can throw away X for the purpose of inference w.r.t.  . 

 Bayesian view

 Frequentist view

 The Neyman factorization theorem
 T(x) is sufficient for  if  
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Examples
 Gaussian:

 Multinomial:

 Poisson:
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Bayesian est.
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Generalized Linear Models 
(GLIMs)
 The graphical model

 Linear regression
 Discriminative linear classification
 Commonality: 

model Ep(Y)==f(TX)
 What is p()? the cond. dist. of Y.
 What is f()? the response function.

 GLIM
 The observed input x is assumed to enter into the model via a linear 

combination of its elements
 The conditional mean  is represented as a function f() of , where f is 

known as the response function
 The observed output y is assumed to be characterized by an 

exponential family distribution with conditional mean . 
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GLIM, cont.

 The choice of exp family is constrained by the nature of the data Y
 Example: y is a continuous vector  multivariate Gaussian

y is a class label  Bernoulli or multinomial  

 The choice of the response function
 Following some mild constrains, e.g., [0,1]. Positivity …
 Canonical response function:                 

 In this case Tx directly corresponds to canonical parameter .
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Example canonical response 
functions 
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MLE for GLIMs with natural 
response
 Log-likelihood

 Derivative of Log-likelihood

 Online learning for canonical GLIMs
 Stochastic gradient ascent = least mean squares (LMS) algorithm:
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Batch learning for canonical 
GLIMs
 The Hessian matrix

where               is the design matrix and

which can be computed by calculating the 2nd derivative of A(n)
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Recall LMS
 Cost function in matrix form:

 To minimize J(θ), take derivative and set to zero:
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Iteratively Reweighted Least 
Squares (IRLS)
 Recall Newton-Raphson methods with cost function J

 We now have

 Now: 



where the adjusted response is

 This can be understood as solving the following " Iteratively 
reweighted least squares " problem
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Example 1: logistic regression 
(sigmoid classifier)
 The condition distribution: a Bernoulli 

where  is a logistic function

 p(y|x) is an exponential family function, with 
 mean:

 and canonical response function  

 IRLS
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Logistic regression: practical 
issues
 It is very common to use regularized maximum likelihood.

 IRLS takes O(Nd3) per iteration, where N = number of training cases and d = 
dimension of input x.

 Quasi-Newton methods, that approximate the Hessian, work faster.
 Conjugate gradient takes O(Nd) per iteration, and usually works best in practice.
 Stochastic gradient descent can also be used if N is large c.f. perceptron rule:
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Example 2: linear regression
 The condition distribution: a Gaussian 

where  is a linear function

 p(y|x) is an exponential family function, with 
 mean:

 and canonical response function  
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Classification
Generative and discriminative approach

Q

X

Q

X

Regression
Linear, conditional mixture, nonparametric

X Y

Density estimation
Parametric and nonparametric  methods

,

XX

Simple GMs are the building 
blocks of complex BNs

30© Eric Xing @ CMU, 2005-2015



School of Computer ScienceAn 
(incomplete) 

genealogy 
of graphical 

models

The structures of most GMs 
(e.g., all listed here), are not 
learned from data, but 
designed by human.

But such designs are useful 
and indeed favored because 
thereby human knowledge 
are put into good use …   
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MLE for general BNs
 If we assume the parameters for each CPD (a GLIM) are 

globally independent, and all nodes are fully observed, then 
the log-likelihood function decomposes into a sum of local 
terms, one per node:

 Therefore, MLE-based parameter estimation of GM reduces 
to local est. of each GLIM 
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Earthquake

Radio

Burglary

Alarm

Call
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Local Distributions 
defined by, e.g., multinomial parameters:

How to define parameter prior?

Assumptions (Geiger & Heckerman 97,99):

 Complete Model Equivalence
 Global Parameter Independence
 Local Parameter Independence
 Likelihood and Prior Modularity

? )|( Gp 
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 Global Parameter Independence
For every DAG model:

 Local Parameter Independence
For every node:
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Provided all variables are observed in all cases, we can perform 
Bayesian update each parameter independently !!!

sample 1

sample 2



2|11 2|1

X1 X2

X1 X2

Global Parameter
Independence

Local Parameter
Independence

Parameter Independence,
Graphical View
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Which PDFs Satisfy Our 
Assumptions? (Geiger & Heckerman 97,99)

 Discrete DAG Models:

Dirichlet prior:

 Gaussian DAG Models:

Normal prior:

Normal-Wishart prior:
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Summary: Parameterizing GM
 For exponential family dist., MLE amounts to moment 

matching

 GLIM: 
 Natural response
 Iteratively Reweighted Least Squares as a general algorithm

 GLIMs are building blocks of most GMs in practical use

 Parameter independence and appropriate priors
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