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Recap: 
l  Defn: A DAG G is a perfect map (P-map) for a distribution P if 

I(P)=I(G). 

© Eric Xing @ CMU, 2005-2015 2 



Question: Is there a BN that is a 
perfect map for a given MN? 

l   The "diamond" MN 

A 
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C 
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l  This MN does not have a perfect I-map as BN! 

Question: Is there a BN that is a 
perfect map for a given MN? 

A ⊥ C | {B,D} 
 
B ⊥ D | {A,C} 

A ⊥ C | {B,D} 
 
B ⊥ D | A  

A ⊥ C | {B,D} 
 
B ⊥ D 

A 

B D 

C 

A 

B D 

C 

A 

B D 
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l  Investigated the relationship between BNs and MNs 
l  They represent different families of independence assumptions 

l  Not mentioned: Chain networks à superset of both BNs and 
MNs 

l  Why we care about this: 
l  BN and MN offer different semantics for designer to capture or expression 

(conditional) independences among variables 
l  Under certain condition BN can be represented as an MN and vice versa 

l  Trees, Trangulated graphs 

l  In the future, for certain operation (i.e., inference), we will be using a single 
representation as the “data structure” for which an algorithm can operate on. 

l  This makes algorithm design, and analysis of the algorithms simpler  

Summary 
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Probabilistic Inference and 
Learning 

l  We now have compact representations of probability distributions:  
Graphical Models 

l  A GM M describes a unique probability distribution P 

l  Typical tasks:  
l  Task 1: How do we answer queries about PM, e.g., PM(X|Y) ? 

l  We use inference as a name for the process of computing answers to such 
queries 

 
l  Task 2: How do we estimate a plausible model M from data D? 

i.  We use learning as a name for the process of obtaining point estimate of M. 

ii.  But for Bayesian, they seek p(M |D), which is actually an inference problem. 

iii.  When not all variables are observable, even computing point estimate of M 
need to do inference to impute the missing data. 
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Query 1: Likelihood 
l  Most of the queries one may ask involve evidence 

l  Evidence e is an assignment of values to a set E variables in the domain 
l  Without loss of generality E = { Xk+1, …, Xn } 

l  Simplest query: compute probability of evidence 

l  this is often referred to as computing the likelihood of  e 
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Query 2: Conditional Probability 
l  Often we are interested in the conditional probability 

distribution of a variable given the evidence 
 

l  this is the a posteriori belief in X, given evidence e 

l  We usually query a subset Y of all domain variables 
X={Y,Z} and "don't care" about the remaining, Z: 

l  the process of summing out the "don't care" variables z is called marginalization, 
and the resulting P(y|e) is called a marginal prob. 
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Applications of a posteriori Belief 
l  Prediction: what is the probability of an outcome given the starting 

condition 

l  the query node is a descendent of the evidence 

l  Diagnosis: what is the probability of disease/fault given symptoms 

l  the query node an ancestor of the evidence 

l  Learning under partial observation 
l  fill in the unobserved values under an "EM" setting (more later) 

l  The directionality of information flow between variables is not restricted 
by the directionality of the edges in a GM 
l  probabilistic inference can combine evidence form all parts of the network 
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Example: Deep Belief Network 
l  Deep Belief Network (DBN) [Hinton et al., 2006] 

l  Generative model or RBM with multiple hidden layers 
l  Successful applications 

l  Recognizing handwritten digits 
l  Learning motion capture data 
l  Collaborative filtering 
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l  In this query we want to find the most probable joint 
assignment (MPA) for some variables of interest 

l  Such reasoning is usually performed under some given 
evidence e, and ignoring (the values of) other variables 
z : 

l  this is the maximum a posteriori configuration of y. 

∑∈∈ ==
z
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Query 3: Most Probable 
Assignment 
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Applications of MPA 
l  Classification  

l  find most likely label, given the evidence 

l  Explanation  
l  what is the most likely scenario, given the evidence 

Cautionary note: 
 
l  The MPA of a variable depends on its "context"---the set 

of variables been jointly queried 
l  Example:   

l  MPA of Y1 ? 
l  MPA of (Y1, Y2) ? 

y 1 y 2 P(y 1 ,y 2 )
0 0 0.35
0 1 0.05
1 0 0.3
1 1 0.3
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Thm: 
 Computing P(X = x | e) in a GM is NP-hard 

 
 
l  Hardness does not mean we cannot solve inference 

l  It implies that we cannot find a general procedure that works efficiently 
for arbitrary GMs 

l  For particular families of GMs, we can have provably efficient 
procedures 

 

Complexity of Inference 
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Approaches to inference 
l  Exact inference algorithms 

l  The elimination algorithm	


l  Message-passing algorithm (sum-product, belief propagation) 
l  The junction tree algorithms       

l  Approximate inference techniques 

l  Stochastic simulation / sampling methods 
l  Markov chain Monte Carlo methods 
l  Variational algorithms 
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l  A signal transduction pathway: 

l  Query: P(e)  

l  By chain decomposition, we get 

A B C E D 
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)(
a naïve summation needs to 
enumerate over an 
exponential number of  terms 

What is the likelihood that protein E is active? 

Marginalization and Elimination 

© Eric Xing @ CMU, 2005-2015 15 



A B C E D 

∑∑∑ ∑

∑∑∑∑
=

=

d c b a

d c b a

abPaPdePcdPbcP

dePcdPbcPabPaPeP

)|()()|()|()|(

)|()|()|()|()()(

Elimination on Chains 

l  Rearranging terms ... 
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l  Now we can perform innermost summation 

l  This summation "eliminates" one variable from our 
summation argument at a "local cost". 

A B C E D X 
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Elimination on Chains 
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Elimination in Chains 

l  Rearranging and then summing again, we get 
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l  Eliminate nodes one by one all the way to the end, we get 

l  Complexity: 
l  Each step costs O(|Val(Xi)|*|Val(Xi+1)|) operations: O(nk2) 
l  Compare to naïve evaluation that sums over joint values of n-1 variables O(kn) 

A B C E D 
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X X X X 

Elimination in Chains 
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Hidden Markov Model 

 
 
 
p(x, y)  = p(x1……xT, y1, ……, yT)    

  = p(y1) p(x1 | y1) p(y2 | y1) p(x2 | y2) … p(yT | yT-1) p(xT | yT)  
    

Conditional probability: 
 

A A A A x2 x3 x1 xT 

y2 y3 y1 yT ...  

...  
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l  Rearranging terms ... 

A B C E D 

Undirected Chains 
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The Sum-Product Operation 
l  In general, we can view the task at hand as that of computing 

the value of an expression of the form: 

   
  where F  is a set of factors 

l  We call this task the sum-product inference task. 

∑∏
∈z Fφ

φ
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General idea: 
 

l  Write query in the form 

l  this suggests an "elimination order" of latent variables to be 
marginalized   

l  Iteratively 

l  Move all irrelevant terms outside of innermost sum 
l  Perform innermost sum, getting a new term 
l  Insert the new term into the product 

l  wrap-up 
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Inference on General GM via 
Variable Elimination 
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B A 

D C 

E F 

G H 

A food web 

What is the probability that hawks are leaving given that the grass condition is poor? 

A more complex network 
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l  Query: P(A |h) 
l  Need to eliminate: B,C,D,E,F,G,H 

l  Initial factors: 

l  Choose an elimination order: H,G,F,E,D,C,B 

l  Step 1:  
l  Conditioning (fix the evidence node (i.e., h) on its observed value (i.e.,   )): 

l  This step is isomorphic to a marginalization step: 

B A 

D C 

E F 

G H 

),|()|()|(),|()|()|()()( fehPegPafPdcePadPbcPbPaP

),|~(),( fehhpfemh ==

h~

∑ ==
h

h hhfehpfem )~(),|(),( δ

B A 

D C 

E F 

G 

Example: Variable Elimination 
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l  Query: P(B |h) 
l  Need to eliminate: B,C,D,E,F,G 

l  Initial factors: 

 
l  Step 2: Eliminate G 
l  compute 

 
l  Keep eliminating F,E,D,C,B in order 

B A 

D C 

E F 

G H 
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Example: Variable Elimination 
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l  Query: P(B |h) 
l  Need to eliminate: B 

l  Initial factors: 

l  Final Step: Wrap-up 

B A 

D C 

E F 

G H 

Example: Variable Elimination 
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l  Suppose in one elimination step we compute 

 

This requires  
l                                    multiplications 

l  For each value for x, y1, …, yk, we do k multiplications 

l                                additions 
l  For each value of y1, …, yk , we do |Val(X)| additions 

 

 Complexity is exponential in number of variables  
 in the intermediate factor 

Complexity of variable 
elimination 
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l  A graph elimination algorithm 

moralization 
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graph elimination 

Understanding Variable 
Elimination 
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l  Convert from a directed acyclic graph (DAG) to equivalent 
undirected graph 

l  Moralization procedure 
l  Starting from an input DAG 
l  Connect nodes if they share a common child 
l  Make directed edges to undirected edges 

Moralization 
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Graph elimination 
l  Begin with the undirected GM or moralized BN 

l  Graph G(V, E) and elimination ordering I 

l  Eliminate next node in the ordering I 
l  Removing the node from the graph 
l  Connecting the remaining neighbors of the nodes 

l  The reconstituted graph G'(V, E') 
l  Retain the edges that were created during the elimination procedure 
l  The graph-theoretic property: the factors resulted during variable elimination are 

captured by recording the elimination clique 
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l  A graph elimination algorithm 

l  Intermediate terms correspond to the cliques resulted from 
elimination 

moralization 
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graph elimination 

Understanding Variable 
Elimination 
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Elimination Cliques 
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Graph elimination and 
marginalization 

l  Induced dependency during marginalization vs. elimination 
clique 
l  Summation <-> elimination 
l  Intermediate term <-> elimination clique 
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A clique tree 
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Complexity 
l  The overall complexity is determined by the number of the 

largest elimination clique 

l  What is the largest elimination clique? – a pure graph theoretic question 

l  Tree-width k: one less than the smallest achievable value of the cardinality of the 
largest elimination clique, ranging over all possible elimination ordering 

l  “good” elimination orderings lead to small cliques and hence reduce complexity 
(what will happen if we eliminate "e" first in the above graph?) 

l  Find the best elimination ordering of a graph --- NP-hard 
à  Inference is NP-hard 

l  But there often exist "obvious" optimal or near-opt elimination ordering   
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Examples 
l  Star 

l  Tree 
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More example: Ising model 
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Summary 
l  The simple Eliminate algorithm captures the key algorithmic 

Operation underlying probabilistic inference: 
--- That of taking a sum over product of potential functions 

l  What can we say about the overall computational complexity of the 
algorithm? In particular, how can we control the "size" of the 
summands that appear in the sequence of summation operation.  

l  The computational complexity of the Eliminate algorithm can be 
reduced to purely graph-theoretic considerations.  

l  This graph interpretation will also provide hints about how to design 
improved inference algorithm that overcome the limitation of 
Eliminate.  
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Limitation of Procedure Elimination  

l  Limitation 
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l  Our algorithm so far answers only one query (e.g., on one node), do we 
need to do a complete elimination for every such query?  

l  Elimination ≡ message passing on a clique tree 

l  Messages can be reused 
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From Elimination to Message 
Passing 
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From Elimination to Message 
Passing 

l  Our algorithm so far answers only one query (e.g., on one node), do we 
need to do a complete elimination for every such query?  

l  Elimination ≡ message passing on a clique tree 
l  Another query ... 

l  Messages mf and mh are reused, others need to be recomputed 
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Undirected tree: a 
unique path between 
any pair of nodes 

Directed tree: all 
nodes except the root 
have exactly one 
parent 

Poly tree:  can have 
multiple parents 

We will come back to 
 this later 

Tree GMs 
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l  Any undirected tree can be converted to a directed tree by choosing a root 
node and directing all edges away from it 

l  A directed tree and the corresponding undirected tree make the same 
conditional independence assertions 

l  Parameterizations are essentially the same. 

l  Undirected tree: 

l  Directed tree:  

l  Equivalence:  

l  Evidence:? 

Equivalence of directed and 
undirected trees 
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From elimination to message 
passing 

l  Recall ELIMINATION algorithm: 
l  Choose an ordering Z  in which query node f is the final node 
l  Place all potentials on an active list 
l  Eliminate node i by removing all potentials containing i, take sum/product over xi. 
l  Place the resultant factor back on the list 
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i 

j 

k l 

Elimination on a tree 

Let mji(xi) denote the factor resulting from 
eliminating variables from bellow up to i, 
which is a function of xi: 

This is reminiscent of a message sent 
from j to i. 

mij(xi) represents a "belief" of xi from xj! 
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Message passing on a tree 
l  Elimination on trees is equivalent to message passing along 

tree branches! 
f 

i 

j 

k l 
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From elimination to message 
passing 

l  Recall ELIMINATION algorithm: 
l  Choose an ordering Z  in which query node f is the final node 
l  Place all potentials on an active list 
l  Eliminate node i by removing all potentials containing i, take sum/product over xi. 
l  Place the resultant factor back on the list 

l  For a TREE graph: 
l  Choose query node f as the root of the tree 
l  View tree as a directed tree with edges pointing towards leaves from f 
l  Elimination ordering based on depth-first traversal 
l  Elimination of each node can be considered as message-passing (or Belief 

Propagation) directly along tree branches, rather than on some transformed 
graphs 

à  thus, we can use the tree itself as a data-structure to do general inference!! 
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X1 

X4 X3 

X2 

Computing P(X1) 

m32(x2) m42(x2) 

m21(x1) 

The message passing protocol: 
l  A node can send a message to its neighbors when (and only when) 

it has received messages from all its other neighbors.  
l  Computing node marginals:  

l  Naïve approach: consider each node as the root and execute the message 
passing algorithm 
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X1 

X4 X3 

X2 

Computing P(X2) 

m32(x2) m42(x2) 

m12(x2) 

The message passing protocol: 
l  A node can send a message to its neighbors when (and only when) 

it has received messages from all its other neighbors.  
l  Computing node marginals:  

l  Naïve approach: consider each node as the root and execute the message 
passing algorithm 
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X1 

X4 X3 

X2 

Computing P(X3) 

m23(x3) m42(x2) 

m12(x2) 

The message passing protocol: 
l  A node can send a message to its neighbors when (and only when) 

it has received messages from all its other neighbors.  
l  Computing node marginals:  

l  Naïve approach: consider each node as the root and execute the message 
passing algorithm 
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Computing node marginals 
l  Naïve approach: 

l  Complexity: NC 
l  N is the number of nodes 
l  C is the complexity of a complete message passing 

l  Alternative dynamic programming approach 
l  2-Pass algorithm (next slide è) 
l  Complexity: 2C! 
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m24(X 4)

X1 

X2 

X3 
X4 

The message passing protocol: 
l  A two-pass algorithm: 

m21(X 1)

m32(X 2) m42(X 2)

m12(X 2)

m23(X 3)
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Belief Propagation (SP-algorithm): 
Parallel synchronous implementation 

l  For a node of degree d, whenever messages have arrived on any subset of d-1 
node, compute the message for the remaining edge and send! 
l  A pair of messages have been computed for each edge, one for each direction 
l  All incoming messages are eventually computed for each node 
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Correctness of BP on tree 

l  Collollary: the synchronous implementation is "non-blocking" 

l  Thm: The Message Passage Guarantees obtaining all 
marginals in the tree 

l  What about non-tree? 
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l  Example 1 

X1 

X2 

X3 

X5 

X4 

X1 

X2 

X3 

X5 

X4 

P(X1)  P(X2)  P(X3|X1,X2)   P(X5|X1,X3)   P(X4|X2,X3) 

fa(X1) fb(X2)  fc(X3,X1,X2)   fd(X5,X1,X3)   fe(X4,X2,X3) 

fa 

fb 

fc 

fd 

fe 

Another view of SP: Factor Graph 
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l  Example 2 

l  Example 3 

X1 

X2 

ψ(x1,x2,x3) = fa(x1,x2)fb(x2,x3)fc(x3,x1) 

ψ(x1,x2,x3) = fa(x1,x2,x3) 

X3 

fa fc 

fb 

X1 

X2 X3 

X1 

X2 X3 

fa 

X1 

X2 X3 

Factor Graphs 
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Factor Tree  
l  A Factor graph is a Factor Tree if the undirected graph 

obtained by ignoring the distinction between variable nodes 
and factor nodes is an undirected tree 

ψ(x1,x2,x3) = fa(x1,x2,x3) 

X1 

X2 X3 

fa 

X1 

X2 X3 
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xi 

f1 

fs 

f3 

xj 

xi 

xk 

fs 

Message Passing on a Factor 
Tree 

l  Two kinds of messages 
1.   ν: from variables to factors 
2.   µ: from factors to variables 
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Message Passing on a Factor 
Tree, con'd 

l  Message passing protocol: 
l  A node can send a message to a neighboring node only when it has received 

messages from all its other neighbors 

l  Marginal probability of nodes: 

xi 

f1 

fs 

f3 

xj 

xi 

xk 

fs 

P(xi) ∝ ∏s ∈ N(i) µsi(xi) 

        ∝ νis(xi)µsi(xi) 
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X1 X2 
X3 

X1 X2 X3 fd fe 

fa 
fc fb 

µa1 µb2 

µc3 

ν1d ν3e µd2 
µe2 

ν2d ν2e 

ν2b 

µd1 µe3 

ν1a 
ν3c 

BP on a Factor Tree 
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l  Tree-like graphs to Factor trees 

X1 

X2 

X3 
X4 

X5 X6 

X1 

X2 

X3 X4 

X5 
X6 

Why factor graph? 
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X1 X2 

X3 

X5 

X4 

X1 X2 

X3 

X5 

X4 

Poly-trees to Factor trees 
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Why factor graph? 
l  Because FG turns tree-like 

graphs to factor trees,  
l  and trees are a data-structure 

that guarantees correctness of 
BP ! 

X1 

X2 

X3 
X4 

X5 X6 

X1 

X2 

X3 X4 

X5 
X6 

X1 X2 

X3 

X5 

X4 

X1 X2 

X3 

X5 

X4 
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Max-product algorithm: 
computing MAP probabilities 

f 

i 

j 

k l 
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Max-product algorithm: 
computing MAP configurations using a final 
bookkeeping backward pass 

f 

i 

j 

k l 
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Inference on general GM 
l  Now, what if the GM is not a tree-like graph? 

l  Can we still directly run 
 message-passing protocol along its edges? 

l  For non-trees, we do not have the guarantee that message-passing 
will be consistent! 

l  Then what? 
l  Construct a graph data-structure from P that has a tree structure, and run 

message-passing on it! 

 
à Junction tree algorithm 
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l  Sum-Product algorithm computes singleton marginal 
probabilities on: 
l  Trees 
l  Tree-like graphs 
l  Poly-trees 

l  Maximum a posteriori configurations can be computed by 
replacing sum with max in the sum-product algorithm 
l  Extra bookkeeping required  

l  Junction tree data-structure for exact inference on general 
graphs 

Summary 
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