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Recall: 
Learning Graphical Models
 Scenarios:

 completely observed GMs
 directed
 undirected 

 partially or unobserved GMs
 directed
 undirected (an open research topic) 

 Estimation principles:
 Maximal likelihood estimation (MLE)
 Bayesian estimation
 Maximal conditional likelihood
 Maximal "Margin" 
 Maximum entropy

 We use learning as a name for the process of estimating the parameters, 
and in some cases, the topology of the network, from data.
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Recall: 
Approaches to inference
 Exact inference algorithms

 The elimination algorithm
 Message-passing algorithm (sum-product, belief propagation)
 The junction tree algorithms      

 Approximate inference techniques

 Stochastic simulation / sampling methods
 Markov chain Monte Carlo methods
 Variational algorithms
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Partially observed GMs
 Speech recognition

A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... 
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Partially observed GM
 Biological Evolution

AGAGAC
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Mixture Models
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Mixture Models, con'd
 A density model p(x) may be multi-modal.
 We may be able to model it as a mixture of uni-modal 

distributions (e.g., Gaussians).
 Each mode may correspond to a different sub-population 

(e.g., male and female).
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Unobserved Variables
 A variable can be unobserved (latent) because:

 it is an imaginary quantity meant to provide some simplified and abstractive view 
of the data generation process
 e.g., speech recognition models, mixture models …

 it is a real-world object and/or phenomena, but difficult or impossible to measure
 e.g., the temperature of a star, causes of a disease, evolutionary ancestors …

 it is a real-world object and/or phenomena, but sometimes wasn’t measured, 
because of faulty sensors, etc.

 Discrete latent variables can be used to partition/cluster data 
into sub-groups.

 Continuous latent variables (factors) can be used for 
dimensionality reduction (factor analysis, etc).
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Gaussian Mixture Models (GMMs)
 Consider a mixture of K Gaussian components:

 This model can be used for unsupervised clustering.
 This model (fit by AutoClass) has been used to discover new kinds of stars in 

astronomical data, etc.
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Gaussian Mixture Models (GMMs)
 Consider a mixture of K Gaussian components:

 Z is a latent class indicator vector:

 X is a conditional Gaussian variable with a class-specific mean/covariance

 The likelihood of a sample:
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Why is Learning Harder?
 In fully observed iid settings, the log likelihood decomposes 

into a sum of local terms (at least for directed models).

 With latent variables, all the parameters become coupled 
together via marginalization
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Gradient Learning for mixture 
models
 We can learn mixture densities using gradient descent on the 

log likelihood. The gradients are quite interesting:

 In other words, the gradient is the responsibility weighted sum 
of the individual log likelihood gradients.

 Can pass this to a conjugate gradient routine.
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Parameter Constraints
 Often we have constraints on the parameters, e.g. kk = 1, 

being symmetric positive definite (hence ii > 0).
 We can use constrained optimization, or we can 

reparameterize in terms of unconstrained values.
 For normalized weights, use the softmax transform: 

 For covariance matrices, use the Cholesky decomposition:

where A is upper diagonal with positive diagonal:

the parameters i, i, ij  R are unconstrained.

 Use chain rule to compute 
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Identifiability
 A mixture model induces a multi-modal likelihood.
 Hence gradient ascent can only find a local maximum.
 Mixture models are unidentifiable, since we can always switch 

the hidden labels without affecting the likelihood.
 Hence we should be careful in trying to interpret the 

“meaning” of latent variables.
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Identifiability
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 Recall MLE for completely observed data

 Data log-likelihood

 MLE

 What if we do not know zn?
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Question
 “ … We solve problem X using Expectation-Maximization …”

 What does it mean?

 E
 What do we take expectation with?
 What do we take expectation over?

 M
 What do we maximize?
 What do we maximize with respect to?
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Recall: K-means

)()(maxarg )()()()( t
kn

t
k

Tt
knk

t
n xxz   1




n
t

n

n n
t

nt
k kz

xkz
),(

),(
)(

)(
)(




 1

18© Eric Xing @ CMU, 2005-2015



Expectation-Maximization
 Start: 

 "Guess" the centroid k and coveriance k of each of the K clusters 

 Loop
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Example: Gaussian mixture 
model
 A mixture of K Gaussians:

 Z is a latent class indicator vector

 X is a conditional Gaussian variable with class-specific mean/covariance

 The likelihood of a sample:

 The expected complete log likelihood
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 We maximize           iteratively using the following               
iterative procedure:

─ Expectation step: computing the expected value of the sufficient 
statistics of the hidden variables (i.e., z) given current est. of the 
parameters (i.e.,  and ). 

 Here we are essentially doing inference
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 We maximize           iteratively using the following               
iterative procudure:

─ Maximization step: compute the parameters under               
current results of the expected value of the hidden variables

 This is isomorphic to MLE except that the variables that are hidden are replaced by their 
expectations (in general they will by replaced by their corresponding "sufficient 
statistics") 
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Compare: K-means and EM

 K-means
 In the K-means “E-step” we do hard 

assignment:

 In the K-means “M-step” we update the 
means as the weighted sum of the data, 
but now the weights are 0 or 1:

 EM
 E-step

 M-step
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The EM algorithm for mixtures of Gaussians is like a "soft 
version" of the K-means algorithm.
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Theory underlying EM
 What are we doing?

 Recall that according to MLE, we intend to learn the model 
parameter that would have maximize the likelihood of the 
data. 

 But we do not observe z, so computing 

is difficult!

 What shall we do?
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Complete & Incomplete Log 
Likelihoods
 Complete log likelihood

Let X denote the observable variable(s), and Z denote the latent variable(s). 
If Z could be observed, then

 Usually, optimizing lc() given both z and x is straightforward (c.f. MLE for fully 
observed models).

 Recalled that in this case the objective for, e.g., MLE, decomposes into a sum of 
factors, the parameter for each factor can be estimated separately.

 But given that Z is not observed, lc() is a random quantity, cannot be 
maximized directly.

 Incomplete log likelihood
With z unobserved, our objective becomes the log of a marginal probability:

 This objective won't decouple 
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Expected Complete Log 
Likelihood


z

qc zxpxzqzx )|,(log),|(),;(
def

l















z

z

z

xzq
zxpxzq

xzq
zxpxzq

zxp
xpx

)|(
)|,(log)|(

)|(
)|,()|(log

)|,(log

)|(log);(







l

qqc Hzxx  ),;();(      ll

 For any distribution q(z), define expected complete log likelihood:

 A deterministic function of 
 Linear in lc() --- inherit its factorizabiility
 Does maximizing this surrogate yield a maximizer of the likelihood?

 Jensen’s inequality
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Lower Bounds and Free Energy
 For fixed data x, define a functional called the free energy:

 The EM algorithm is coordinate-ascent on F :
 E-step:

 M-step:
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E-step: maximization of expected 
lc w.r.t. q
 Claim: 

 This is the posterior distribution over the latent variables given the data and the 
parameters. Often we need this at test time anyway (e.g. to perform 
classification).

 Proof (easy): this setting attains the bound l(;x)F(q, )

 Can also show this result using variational calculus or the fact 
that
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E-step  plug in posterior 
expectation of latent variables
 Without loss of generality: assume that p(x,z|) is a 

generalized exponential family distribution:

 Special cases: if p(X|Z) are GLIMs, then 

 The expected complete log likelihood under                            
is
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M-step: maximization of expected 
lc w.r.t. 
 Note that the free energy breaks into two terms:

 The first term is the expected complete log likelihood (energy) and the second 
term, which does not depend on , is the entropy.

 Thus, in the M-step, maximizing with respect to  for fixed q
we only need to consider the first term:

 Under optimal qt+1, this is equivalent to solving a standard MLE of fully observed 
model p(x,z|), with the sufficient statistics involving z replaced by their 
expectations w.r.t. p(z|x,).
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Example: HMM
 Supervised learning: estimation when the “right answer” is known

 Examples: 
GIVEN: a genomic region x = x1…x1,000,000 where we have good

(experimental) annotations of the CpG islands
GIVEN: the casino player allows us to observe him one evening, 

as he changes dice and produces 10,000 rolls

 Unsupervised learning: estimation when the “right answer” is 
unknown
 Examples:

GIVEN: the porcupine genome; we don’t know how frequent are the 
CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don’t see when he 
changes dice

 QUESTION: Update the parameters  of the model to maximize P(x|) -
-- Maximal likelihood (ML) estimation 
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Hidden Markov Model: 
from static to dynamic mixture models

Dynamic mixture

A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... 

Static mixture

AX1

Y1

N
The sequence:

The underlying 
source:

Phonemes,

Speech signal, 

sequence of rolls, 

dice,
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The Baum Welch algorithm
 The complete log likelihood

 The expected complete log likelihood

 EM
 The E step

 The M step ("symbolically" identical to MLE)
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Unsupervised ML estimation
 Given x = x1…xN for which the true state path y = y1…yN is 

unknown,

 EXPECTATION MAXIMIZATION

0. Starting with our best guess of a model M, parameters :

1. Estimate Aij , Bik in the training data 
 How?                             , ,

2. Update  according to Aij , Bik

 Now a "supervised learning" problem
3. Repeat 1 & 2, until convergence

This is called the Baum-Welch Algorithm

We can get to a provably more (or equally) likely parameter set  each iteration
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EM for general BNs
while not converged

% E-step
for each node i

ESSi = 0 % reset expected sufficient statistics
for each data sample n

do inference with Xn,H

for each node i

% M-step
for each node i

i := MLE(ESSi )
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Summary: EM Algorithm
 A way of maximizing likelihood function for latent variable models. 

Finds MLE of parameters when the original (hard) problem can be 
broken up into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed data and current 
parameters.

2. Using this “complete” data, find the maximum likelihood parameter estimates.

 Alternate between filling in the latent variables using the best guess 
(posterior) and updating the parameters based on this guess:

 E-step: 
 M-step: 

 In the M-step we optimize a lower bound on the likelihood. In the E-
step we close the gap, making bound=likelihood.
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Conditional mixture model: 
Mixture of experts

 We will model p(Y |X) using different experts, each responsible for 
different regions of the input space.
 Latent variable Z chooses expert using softmax gating function: 

 Each expert can be a linear regression model:
 The posterior expert responsibilities are
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EM for conditional mixture model
 Model:

 The objective function

 EM:

 E-step:

 M-step:  
 using the normal equation for standard LR                          , but with the data 

re-weighted by  (homework)
 IRLS and/or weighted IRLS algorithm to update {kkk} based on data pair 

(xn,yn), with weights           (homework?)
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Hierarchical mixture of experts

 This is like a soft version of a depth-2 classification/regression tree.
 P(Y |X,G1,G2) can be modeled as a GLIM, with parameters 

dependent on the values of G1 and G2 (which specify a "conditional 
path" to a given leaf in the tree).
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Mixture of overlapping experts

 By removing the X Z arc, we can make the partitions 
independent of the input, thus allowing overlap.

 This is a mixture of linear regressors; each subpopulation has 
a different conditional mean.
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Partially Hidden Data
 Of course, we can learn when there are missing (hidden) 

variables on some cases and not on others.
 In this case the cost function is:

 Note that Ym do not have to be the same in each case --- the data can have different 
missing values in each different sample

 Now you can think of this in a new way: in the E-step we 
estimate the hidden variables on the incomplete cases only.

 The M-step optimizes the log likelihood on the complete data 
plus the expected likelihood on the incomplete data using the 
E-step.
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EM Variants
 Sparse EM:

Do not re-compute exactly the posterior probability on each 
data point under all models, because it is almost zero. Instead 
keep an “active list” which you update every once in a while.

 Generalized (Incomplete) EM: 
It might be hard to find the ML parameters in the M-step, even 
given the completed data. We can still make progress by 
doing an M-step that improves the likelihood a bit (e.g. 
gradient step). Recall the IRLS step in the mixture of experts 
model.
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A Report Card for EM
 Some good things about EM:

 no learning rate (step-size) parameter
 automatically enforces parameter constraints
 very fast for low dimensions
 each iteration guaranteed to improve likelihood

 Some bad things about EM:
 can get stuck in local minima
 can be slower than conjugate gradient (especially near convergence)
 requires expensive inference step
 is a maximum likelihood/MAP method

 Some recent development: convex relaxation, direct non-
convex optimization …(see references) 
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