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Hidden Markov Model revisit 

 Transition probabilities between  

 any two states 

         

   

 or 

 

 Start probabilities  

 

 

 Emission probabilities associated with each state 

   

  

 or in general: 
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Inference (review) 
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 Forward algorithm 

 

 

 

 Backward algorithm 
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Learning HMM 

 Supervised learning: estimation when the “right answer” is known 

 Examples:  

 GIVEN: a genomic region x = x1…x1,000,000 where we have good 
  (experimental) annotations of the CpG islands 

 GIVEN: the casino player allows us to observe him one evening,  
  as he changes dice and produces 10,000 rolls 

 

 Unsupervised learning: estimation when the “right answer” is 

unknown 

 Examples: 

 GIVEN: the porcupine genome; we don’t know how frequent are the  
  CpG islands there, neither do we know their composition 

 GIVEN:  10,000 rolls of the casino player, but we don’t see when he  
  changes dice 

 

 QUESTION: Update the parameters  of the model to maximize P(x|) -

-- Maximal likelihood (ML) estimation  
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Learning HMM: two scenarios 

 Supervised learning: if only we knew the true state path then 

ML parameter estimation would be trivial 

 E.g., recall that for complete observed tabular BN: 

 

 

 

 

 

 What if y is continuous? We can treat                                       as NT 

observations of, e.g., a GLIM, and apply learning rules for GLIM … 
 

 Unsupervised learning: when the true state path is unknown, 

we can fill in the missing values using inference recursions. 

 The Baum Welch algorithm (i.e., EM) 

 Guaranteed to increase the log likelihood of the model after each iteration 

 Converges to local optimum, depending on initial conditions 
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The Baum Welch algorithm 

 The complete log likelihood 

 
 

 The expected complete log likelihood 

 
 

 EM 

 The E step 

 

 

 

 The M step ("symbolically" identical to MLE) 
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Shortcomings of Hidden Markov 

Model (1): locality of features 

 

 

 

 

 HMM models capture dependences between each state and only its 

corresponding observation   

 NLP example: In a sentence segmentation task, each segmental state may 

depend not just on a single word (and the adjacent segmental stages), but also 

on the (non-local) features of the whole line such as line length, indentation, 

amount of white space, etc. 

 Mismatch between learning objective function and prediction 

objective function 

 HMM learns a joint distribution of states and observations P(Y, X), but in a 

prediction task, we need the conditional probability P(Y|X) 

Y1 Y2 … … … Yn 

X1 X2 … … … Xn 
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Solution: 
Maximum Entropy Markov Model (MEMM) 

 

 

 

 

 

 

 Models dependence between each state and the full 

observation sequence explicitly 

 More expressive than HMMs  

 Discriminative model 

 Completely ignores modeling P(X): saves modeling effort 

 Learning objective function consistent with predictive function: P(Y|X) 

 

Y1 Y2 … … … Yn 

X1:n 
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Then, shortcomings of MEMM (and 

HMM) (2): the Label bias problem 

State 1 

State 2 

State 3 

State 4 

State 5 

Observation 1 Observation 2 Observation 3 Observation 4 
0.4 

0.6 
0.2 

0.2 

0.2 

0.2 

0.2 

0.45 

0.55 
0.2 

0.3 

0.1 

0.1 

0.3 

0.5 

0.5 
0.1 

0.3 

0.2 

0.2 

0.2 

What the local transition probabilities say: 

• State 1 almost always prefers to go to state 2 

• State 2 almost always prefer to stay in state 2 
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MEMM: the Label bias problem 

State 1 

State 2 

State 3 

State 4 

State 5 

Observation 1 Observation 2 Observation 3 Observation 4 

0.4 

0.6 
0.2 

0.2 

0.2 

0.2 

0.2 

0.45 

0.55 
0.2 

0.3 

0.1 

0.1 

0.3 

0.5 

0.5 
0.1 

0.3 

0.2 

0.2 

0.2 

Probability of path 1-> 1-> 1-> 1: 

•  0.4 x 0.45 x 0.5 = 0.09  

10 © Eric Xing @ CMU, 2005-2015 



 

MEMM: the Label bias problem 

State 1 

State 2 

State 3 

State 4 

State 5 

Observation 1 Observation 2 Observation 3 Observation 4 

0.4 

0.6 
0.2 

0.2 

0.2 

0.2 

0.2 

0.45 

0.55 
0.2 

0.3 

0.1 

0.1 

0.3 

0.5 

0.5 
0.1 

0.3 

0.2 

0.2 

0.2 

Probability of path 2->2->2->2 : 

• 0.2 X 0.3 X 0.3 = 0.018  
Other paths: 

1-> 1-> 1-> 1: 0.09  
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MEMM: the Label bias problem 

State 1 

State 2 

State 3 

State 4 

State 5 

Observation 1 Observation 2 Observation 3 Observation 4 

0.4 

0.6 
0.2 

0.2 

0.2 

0.2 

0.2 

0.45 

0.55 
0.2 

0.3 

0.1 

0.1 

0.3 

0.5 

0.5 
0.1 

0.3 

0.2 

0.2 

0.2 

Probability of path 1->2->1->2: 

•  0.6 X 0.2 X 0.5 = 0.06 
Other paths: 

1->1->1->1: 0.09  

2->2->2->2: 0.018  
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MEMM: the Label bias problem 

State 1 

State 2 

State 3 

State 4 

State 5 

Observation 1 Observation 2 Observation 3 Observation 4 

0.4 

0.6 
0.2 

0.2 

0.2 

0.2 

0.2 

0.45 

0.55 
0.2 

0.3 

0.1 

0.1 

0.3 

0.5 

0.5 
0.1 

0.3 

0.2 

0.2 

0.2 

Probability of path 1->1->2->2: 

• 0.4 X 0.55 X 0.3 = 0.066 
Other paths: 

1->1->1->1: 0.09  

2->2->2->2: 0.018 

1->2->1->2: 0.06 
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MEMM: the Label bias problem 

State 1 

State 2 

State 3 

State 4 

State 5 

Observation 1 Observation 2 Observation 3 Observation 4 

0.4 

0.6 
0.2 

0.2 

0.2 

0.2 

0.2 

0.45 

0.55 
0.2 

0.3 

0.1 

0.1 

0.3 

0.5 

0.5 
0.1 

0.3 

0.2 

0.2 

0.2 

Most Likely Path:  1-> 1-> 1-> 1 

• Although locally it seems state 1 wants to go to state 2 and state 2 wants to remain in state 2. 

• why? 
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MEMM: the Label bias problem 

State 1 

State 2 

State 3 

State 4 

State 5 

Observation 1 Observation 2 Observation 3 Observation 4 

0.4 

0.6 
0.2 

0.2 

0.2 

0.2 

0.2 

0.45 

0.55 
0.2 

0.3 

0.1 

0.1 

0.3 

0.5 

0.5 
0.1 

0.3 

0.2 

0.2 

0.2 

Most Likely Path:  1-> 1-> 1-> 1 

• State 1 has only two transitions but state 2 has 5: 

• Average transition probability from state 2 is lower 
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MEMM: the Label bias problem 

State 1 

State 2 

State 3 

State 4 

State 5 

Observation 1 Observation 2 Observation 3 Observation 4 

0.4 

0.6 
0.2 

0.2 

0.2 

0.2 

0.2 

0.45 

0.55 
0.2 

0.3 

0.1 

0.1 

0.3 

0.5 

0.5 
0.1 

0.3 

0.2 

0.2 

0.2 

Label bias problem in MEMM: 

• Preference of states with lower number of transitions over others 
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Solution:  

Do not normalize probabilities locally 

State 1 

State 2 

State 3 

State 4 

State 5 

Observation 1 Observation 2 Observation 3 Observation 4 
0.4 

0.6 
0.2 

0.2 

0.2 

0.2 

0.2 

0.45 

0.55 
0.2 

0.3 

0.1 

0.1 

0.3 

0.5 

0.5 
0.1 

0.3 

0.2 

0.2 

0.2 

From local probabilities …. 
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Solution:  

Do not normalize probabilities locally 

State 1 

State 2 

State 3 

State 4 

State 5 

Observation 1 Observation 2 Observation 3 Observation 4 
20 

30 
10 

20 

10 

20 

20 

30 

20 
20 

30 

10 

10 

30 

5 

5 
10 

30 

20 

20 

20 

From local probabilities to local potentials 

• States with lower transitions do not have an unfair advantage! 
18 © Eric Xing @ CMU, 2005-2015 



From MEMM …. 

Y1 Y2 … … … Yn 

X1:n 
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 CRF is a partially directed model 

 Discriminative model like MEMM 

 Usage of global normalizer Z(x) overcomes the label bias problem of MEMM 

 Models the dependence between each state and the entire observation sequence 

(like MEMM) 

 

From MEMM to CRF 

Y1 Y2 … … … Yn 

x1:n 
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Conditional Random Fields 

 General parametric form: 

Y1 Y2 … … … Yn 

x1:n 
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CRFs: Inference 

 Given CRF parameters  and , find the y* that maximizes P(y|x) 

 

 

 Can ignore Z(x) because it is not a function of y 

 Run the max-product algorithm on the junction-tree of CRF: 

Y1 Y2 … … … Yn 

x1:n 

Y1,Y2 Y2,Y3 ……. Yn-2,Yn-1 
Yn-1,Yn 

Y2 Y3 
Yn-2 Yn-1 

Same as Viterbi decoding 

used in HMMs! 
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CRF learning 

 Given {(xd, yd)}d=1
N, find *, * such that 

 

 

 

 

 

 

 

 Computing the gradient w.r.t :  

 

 

 

Gradient of the log-partition function in an 

exponential family is the expectation of the 

sufficient statistics. 
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CRF learning 

 

 

 

 Computing the model expectations: 
 

 Requires exponentially large number of summations: Is it intractable? 

 

 

 

 

 

 

 

 

 Tractable! 

 Can compute marginals using the sum-product algorithm on the chain 

 

 

 

 

Expectation of f over the corresponding marginal 

probability of neighboring nodes!! 
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CRF learning 

 Computing marginals using junction-tree calibration: 

 

 

 

 Junction Tree Initialization:  

 

 

 

 After calibration:  

Y1 Y2 … … … Yn 

x1:n 

Y1,Y2 Y2,Y3 ……. Yn-2,Yn-1 
Yn-1,Yn 

Y2 Y3 
Yn-2 Yn-1 

Also called  

forward-backward algorithm 
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CRF learning 

 Computing feature expectations using calibrated potentials: 

 

 

 Now we know how to compute rL(,): 

 

 

 

 

 Learning can now be done using gradient ascent:  

26 © Eric Xing @ CMU, 2005-2015 



CRF learning 

 In practice, we use a Gaussian Regularizer for the parameter 

vector to improve generalizability 

 

 

 

 In practice, gradient ascent has very slow convergence 

 Alternatives: 

 Conjugate Gradient method 

 Limited Memory Quasi-Newton Methods  
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CRFs: some empirical results 

 Comparison of error rates on synthetic data 

CRF error HMM error 

HMM error 

M
E

M
M

 e
rr

o
r 

M
E

M
M

 e
rr

o
r 

C
R

F
 e

rr
o
r 

Data is increasingly higher 

order in the direction of arrow 

CRFs achieve the lowest 

error rate for higher order 

data 
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CRFs: some empirical results 

 Parts of Speech tagging 

 

 

 

 

 

 

 
 

 

 Using same set of features: HMM >=< CRF > MEMM 

 Using additional overlapping features: CRF+ > MEMM+ >> HMM 
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Other CRFs 

 So far we have discussed only 1-

dimensional chain CRFs 

 Inference and learning: exact 

 We could also have CRFs for 

arbitrary graph structure 

 E.g: Grid CRFs 

 Inference and learning no longer tractable 

 Approximate techniques used 

 MCMC Sampling 

 Variational Inference 

 Loopy Belief Propagation 

 We will discuss these techniques soon 
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Image Segmentation 

 Image segmentation (FG/BG) by modeling of interactions btw RVs  

 Images are noisy.  

 Objects occupy continuous regions in an image. 

 

 

 

 

 

 

 
Input image  Pixel-wise separate 

optimal labeling 
Locally-consistent  

joint optimal labeling 

[Nowozin,Lampert 2012] 

Y* = argmax
yÎ{0,1}n

Vi (yi,X)+ Vi, j (yi, y j )
jÎNi

å
iÎS

å
iÎS

å
é

ë

ê
ê

ù

û

ú
ú
.

Y: labels 

X: data (features) 

S: pixels 

Ni: neighbors of pixel i 

Unary Term Pairwise Term 
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Undirected Graphical Models 

(with an Image Labeling Example) 

 Image can be represented by 4-connected 

2D grid.  

 

 MRF / CRF with image labeling problem 

 X={xi}iS: observed data of an image.  

 xi: data at i-th site (pixel or block) of the image set S 

 Y={yi}iS: (hidden) labels at i-th site. yi  {1,…, L}.  

 

 Object: maximize the conditional probability  Y*=argmaxY P(Y|X) 

xi 

si 

xj 

sj 

yi= 0 (BG) 
si 

yi= 1 (FG) 
sj 

Y* 
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MRF (Markov Random Field) 

 Definition: Y={yi}iS is called Markov Random Field on the set S, with 

respect to neighborhood system N, iff for all i  S, 

 

 

 The posterior probability is 

 

 

 

 (1) Very strict independence assumptions  

for tractability: Label of each site is a  

function of data only at that site.  

 (2) P(Y) is modeled as a MRF    

P(yi|yS-{i}) = P(yi|yNi).  

yj yi 

xi 

P(Y | X) =
P(X,Y )

P(X)
µP(X |Y )P(Y ) = P(xi | yi )

iÎS

Õ ×P(Y )

(1) (2) 

P(Y ) =
1

Z
yc (yc )

cÎC

Õ
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CRF 

 Definition: Let G = (S, E), then (X, Y) is said to be a Conditional 

Random Field (CRF) if, when conditioned on X, the random 

variables yi obey the Markov property with respect to the graph 

 

 

 Globally conditioned on the observation X 

 

yj yi 

xi 

P(yi|yS-{i}) = P(yi|yNi) MRF: P(yi|X,yS-{i}) = P(yi|X,yNi) 

CRF 

yj yi 

xi 

MRF 
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CRF vs MRF 

 MRF: two-step generative model 

 Infer likelihood P(X|Y) and prior P(Y) 

 Use Bayes theorem to determine posterior P(Y|X) 

 

 

 CRF: one-step discriminative model 

 Directly Infer posterior P(Y|X) 

 

 Popular Formulation 

P(Y | X) =
P(X,Y )

P(X)
µP(X |Y )P(Y ) = P(xi | yi )

iÎS

Õ ×
1

Z
yc(yc )

cÎC

Õ

P(Y | X) =
1

Z
exp( log p(xi | yi )+ V2 (yi, yi ' )

i 'ÎNi

å
iÎS

å
iÎS

å )MRF 

P(Y | X) =
1

Z
exp(- V1(yi | X)+ V2(yi, yi ' | X)

i 'ÎNi

å
iÎS

å
iÎS

å )CRF 

Potts model for P(Y) with 

only pairwise potential  

Only up to pairwise clique 

potentials 

Assumption 
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Example of CRF – DRF 

 A special type of CRF 

 The unary and pairwise potentials are designed using local discriminative 

classifiers. 

 Posterior 

 

 Association Potential  

 Local discriminative model for site i: using logistic link with GLM. 

 
 

 Interaction Potential 

 Measure of how likely site i and j have the same label given X 

Ai(yi,X) = logP(yi | fi(X))

P(Y | X) =
1

Z
exp( Ai(yi,X)+ Iij (yi, y j,X)

jÎNi

å
iÎS

å
iÎS

å )

S. Kumar and M. Hebert. Discriminative Random Fields. IJCV, 2006. 

Association Interaction 

P(yi =1| fi (X)) =
1

1+exp(-(wT fi(X)))
=s (wT fi(X))

Iij (yi, y j,X) = kyiy j + (1-k)(2s (yiy jmij (X))-1))

(1) Data-independent smoothing term (2) Data-dependent pairwise logistic function   
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Example of CRF – DRF Results 

 Task: Detecting man-made structure in natural scenes.  

 Each image is divided in non-overlapping 16x16 tile blocks.  

 

 An example 

 

 

 

 

 

 

 Logistic: No smoothness in the labels 

 MRF: Smoothed False positive. Lack of neighborhood interaction of the data 

 

S. Kumar and M. Hebert. Discriminative Random Fields. IJCV, 2006. 

Input image Logistic MRF DRF 
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Example of CRF –Body Pose 

Estimation 

 Task: Estimate a body pose. 

 Need to detect parts of human body 

 Appearance + Geometric configuration.  

 A large number of DOFs 

 

 Use CRF to model a human body 

 Nodes: Parts (head, torso, upper/ 

lower left/right arms). 

L=(l1,…, l6), li = [xi, yi, θi]. 

 Edges: Pairwise linkage between 

parts 

 Tree vs. Graph 

 

V. Ferrari et al. Progressive search space reduction for human pose estimation. CVPR 2008. 

D. Ramanan. Learning to Parse Images of Articulated Bodies." NIPS 2006.  

[Zisserman 2010] 
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Example of CRF –Body Pose 

Estimation 

 Posterior of configuration 

 

 

 ψ(li,lj): relative position with geometric constraints 

 ϕ(li): local image evidence for a part in a particular location 

 If E is a tree, exact inference is efficiently performed by BP. 

 Example of unary and pairwise terms  

 Unary term: appearance feature 

P(L | I )µexp( F(li )+ Y(li, l j
(i, j )ÎE

å
i

å ))

HOG of lower arm 

template (learned) 

HOG of image L2 Distance 

 Pairwise term: kinematic layout 

li 

lj 

Truncated 

quadratic 

[Zisserman 2010] 
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Example of CRF – Results of 

Body Pose Estimation 

 Examples of results 

 

 

 

 

 

 

 

 

 Datasets and codes are available. 

 http://www.ics.uci.edu/~dramanan/papers/parse/ 

 http://www.robots.ox.ac.uk/~vgg/research/pose_estimation/ 

[Ferrari et al. 2008] 

[Ramanan 2006]  
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Summary 

 Conditional Random Fields are partially directed discriminative 
models 

 They overcome the label bias problem of MEMMs by using a global 
normalizer 

 Inference for 1-D chain CRFs is exact 
 Same as Max-product or Viterbi decoding 

 Learning also is exact 
 globally optimum parameters can be learned 

 Requires using sum-product or forward-backward algorithm 

 CRFs involving arbitrary graph structure are intractable in general 
 E.g.: Grid CRFs 

 Inference and learning require approximation techniques 

 MCMC sampling 

 Variational methods 

 Loopy BP  
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