Probabilistic Graphical Models

Conditional Random Fields

Case study I: image segmentation

Eric Xing
Lecture 9, February 11, 2015

Reading: See class website

Hidden Markov Model revisit

- Transition probabilities between any two states

$$
p\left(y_{t}^{j}=1 \mid y_{t-1}^{i}=1\right)=a_{i, j},
$$

or $p\left(y_{t} \mid y_{t-1}^{i}=1\right) \sim \operatorname{Multinomial}\left(a_{i, 1}, a_{i, 2}, \ldots, a_{i, M}\right), \forall i \in \mathrm{I}$.

- Start probabilities

$$
p\left(y_{1}\right) \sim \operatorname{Multinomial}\left(\pi_{1}, \pi_{2}, \ldots, \pi_{M}\right) .
$$

- Emission probabilities associated with each state

$$
p\left(x_{t} \mid y_{t}^{i}=1\right) \sim \operatorname{Multinomial}\left(b_{i, 1}, b_{i, 2}, \ldots, b_{i, K}\right), \forall i \in \mathbb{I} .
$$

or in general:

$$
p\left(x_{t} \mid y_{t}^{i}=1\right) \sim \mathrm{f}\left(\cdot \mid \theta_{i}\right), \forall i \in \mathrm{I} .
$$

Inference (review)

- Forward algorithm

$$
\begin{gathered}
\alpha_{t}^{k} \stackrel{\operatorname{def}}{=} \mu_{t-1 \rightarrow t}(k)=P\left(x_{1}, \ldots, x_{t-1}, x_{t}, y_{t}^{k}=1\right) \\
\alpha_{t}^{k}=p\left(x_{+} \mid y_{t}^{k}=1\right) \sum_{i} \alpha_{t-1}^{i} a_{i, k}
\end{gathered}
$$

- Backward algorithm

$$
\begin{aligned}
& \beta_{t}^{k}= \sum_{i} a_{k, i} p\left(x_{t+1} \mid y_{t+1}^{i}=1\right) \beta_{t+1}^{i} \\
& \beta_{t}^{k} \stackrel{\operatorname{def}}{=} \mu_{t-1 \leftarrow t}(k)=P\left(x_{t+1}, \ldots, x_{T} \mid y_{t}^{k}=1\right) \\
& \gamma_{t}^{i} \stackrel{\operatorname{def}}{=} p\left(y_{t}^{i}=1 \mid x_{1: T}\right) \propto \alpha_{t}^{i} \beta_{t}^{i}=\sum_{j} \xi_{t}^{i, j} \\
& \xi_{t}^{i, j} \stackrel{\operatorname{def}}{=} p\left(y_{t}^{i}=1, y_{t+1}^{j}=1, x_{1: T}\right) \\
& \propto \mu_{t-1 \rightarrow t}\left(y_{t}^{i}=1\right) \mu_{t \leftarrow t+1}\left(y_{t+1}^{j}=1\right) p\left(x_{t+1} \mid y_{t+1}\right) p\left(y_{t+1} \mid y_{t}\right) \\
& \quad \xi_{t}^{i, j}=\alpha_{t}^{i} \beta_{t+1}^{j} a_{i, j} p\left(x_{t+1} \mid y_{t+1}^{i}=1\right)
\end{aligned}
$$

The matrix-vector form:

$$
\begin{aligned}
& B_{+}(i) \stackrel{\operatorname{def}}{=} p\left(x_{+} \mid y_{+}^{i}=1\right) \\
& A(i, j) \stackrel{\operatorname{def}}{=} p\left(y_{++1}^{j}=1 \mid y_{+}^{i}=1\right) \\
& \alpha_{+}=\left(A^{T} \alpha_{t-1}\right) \cdot * B_{+} \\
& \beta_{+}=A\left(\beta_{t+1} * B_{t+1}\right) \\
& \xi_{+}=\left(\alpha_{t}\left(\beta_{t+1} * B_{t+1}\right)^{T}\right) \cdot * A \\
& \gamma_{t}=\alpha_{+} \cdot * \beta_{+}
\end{aligned}
$$

Learning HMM

- Supervised learning: estimation when the "right answer" is known
- Examples:

GIVEN: a genomic region $x=x_{1} \ldots x_{1,000,000}$ where we have good (experimental) annotations of the CpG islands
GIVEN: the casino player allows us to observe him one evening, as he changes dice and produces 10,000 rolls

- Unsupervised learning: estimation when the "right answer" is unknown
- Examples:

GIVEN: the porcupine genome; we don't know how frequent are the CpG islands there, neither do we know their composition
GIVEN: $\quad 10,000$ rolls of the casino player, but we don't see when he changes dice

- QUESTION: Update the parameters θ of the model to maximize $P(x \mid \theta)$ --- Maximal likelihood (ML) estimation

Learning HMM: two scenarios

- Supervised learning: if only we knew the true state path then ML parameter estimation would be trivial
- E.g., recall that for complete observed tabular BN:

$$
\begin{aligned}
& a_{i j}^{M L}=\frac{\#(i \rightarrow j)}{\#(i \rightarrow \bullet)}=\frac{\sum_{n} \sum_{t=2}^{T} y_{n, t-1}^{i} y_{n, t}^{j}}{\sum_{n} \sum_{t=2}^{T} y_{n, t-1}^{i}} \\
& b_{i k}^{M L}=\frac{\#(i \rightarrow k)}{\#(i \rightarrow \bullet)}=\frac{\sum_{n} \sum_{t=1}^{T} y_{n, t}^{i} x_{n, t}^{k}}{\sum_{n} \sum_{t=1}^{T} y_{n, t}^{i}}
\end{aligned}
$$

- What if y is continuous? We can treat $\left\{\left(x_{n, t}, Y_{n, t}\right): t=1: T, n=1: N\right\}$ as $N_{\times} T$ observations of, e.g., a GLIM, and apply learning rules for GLIM ...
- Unsupervised learning: when the true state path is unknown, we can fill in the missing values using inference recursions.
- The Baum Welch algorithm (i.e., EM)
- Guaranteed to increase the log likelihood of the model after each iteration
- Converges to local optimum, depending on initial conditions

The Baum Welch algorithm

- The complete log likelihood

$$
\boldsymbol{\ell}_{c}(\boldsymbol{\theta} ; \mathbf{x}, \mathbf{y})=\log p(\mathbf{x}, \mathbf{y})=\log \prod_{n}\left(p\left(y_{n, 1}\right) \prod_{t=2}^{T} p\left(y_{n, t} \mid y_{n, t-1}\right) \prod_{t=1}^{T} p\left(x_{n, t} \mid x_{n, t}\right)\right)
$$

- The expected complete log likelihood
- EM
- The E step

$$
\begin{aligned}
& \gamma_{n, t}^{i}=\left\langle y_{n, t}^{i}\right\rangle=p\left(y_{n, t}^{i}=1 \mid \mathbf{x}_{n}\right) \\
& \xi_{n, t}^{i, j}=\left\langle y_{n, t-1}^{i} y_{n, t}^{j}\right\rangle=p\left(y_{n, t-1}^{i}=1, y_{n, t}^{j}=1 \mid \mathbf{x}_{n}\right)
\end{aligned}
$$

- The M step ("symbolically" identical to MLE)

$$
\pi_{i}^{M L}=\frac{\sum_{n} \gamma_{n, 1}^{i}}{N} \quad a_{i j}^{M L}=\frac{\sum_{n} \sum_{t=2}^{T} \xi_{n, t}^{i, j}}{\sum_{n} \sum_{t=1}^{T-1} \gamma_{n, t}^{i}} \quad b_{i k}^{M L}=\frac{\sum_{n} \sum_{t=1}^{T} \gamma_{n, t}^{i} x_{n, t}^{k}}{\sum_{n} \sum_{t=1}^{T-1} \gamma_{n, t}^{i}}
$$

Shortcomings of Hidden Markov Model (1): locality of features

- HMM models capture dependences between each state and only its corresponding observation
- NLP example: In a sentence segmentation task, each segmental state may depend not just on a single word (and the adjacent segmental stages), but also on the (non-local) features of the whole line such as line length, indentation, amount of white space, etc.
- Mismatch between learning objective function and prediction objective function
- HMM learns a joint distribution of states and observations $\mathbf{P}(\mathbf{Y}, \mathbf{X})$, but in a prediction task, we need the conditional probability $\mathrm{P}(\mathbf{Y} \mid \mathbf{X})$

Solution:
 Maximum Entropy Markov Model (MEMM)

$$
P\left(\mathbf{y}_{1: n} \mid \mathbf{x}_{1: n}\right)=\prod_{i=1}^{n} P\left(y_{i} \mid y_{i-1}, \mathbf{x}_{1: n}\right)=\prod_{i=1}^{n} \frac{\exp \left(\mathbf{w}^{T} \mathbf{f}\left(y_{i}, y_{i-1}, \mathbf{x}_{1: n}\right)\right)}{Z\left(y_{i-1}, \mathbf{x}_{1: n}\right)}
$$

- Models dependence between each state and the full observation sequence explicitly
- More expressive than HMMs
- Discriminative model
- Completely ignores modeling $\mathrm{P}(\mathbf{X})$: saves modeling effort
- Learning objective function consistent with predictive function: $\mathbf{P}(\mathbf{Y} \mid \mathbf{X})$

Then, shortcomings of MEMM (and HMM) (2): the Label bias problem

Observation 1 Observation 2 Observation 3 Observation 4
State 1

State 2

State 3

State 4

State 5
What the local transition probabilities say:

- State 1 almost always prefers to go to state 2
- State 2 almost always prefer to stay in state 2

MEMM: the Label bias problem

Probability of path 1-> 1-> 1-> 1:

- $0.4 \times 0.45 \times 0.5=0.09$

MEMM: the Label bias problem

Observation 1 Observation 2 Observation 3 Observation 4
State 1
State 2
State 3
State 4

State 5

> Other paths:

- 0.2 X $0.3 \times 0.3=0.018$

MEMM: the Label bias problem

Probability of path $1->2->1->2$:
Other paths:

- $0.6 \times 0.2 \times 0.5=0.06$

$$
\begin{aligned}
& 1->1->1->1: 0.09 \\
& 2->2->2->2: 0.018
\end{aligned}
$$

MEMM: the Label bias problem

Observation 1 Observation 2 Observation 3 Observation 4
State 1
State 2
State 3
State 4

> Other paths:

$$
1->1->1->1: 0.09
$$

$$
2->2->2->2: 0.018
$$

MEMM: the Label bias problem

- Although locally it seems state 1 wants to go to state 2 and state 2 wants to remain in state 2 .
- why?

MEMM: the Label bias problem

Most Likely Path: 1-> 1-> 1-> 1

- State 1 has only two transitions but state 2 has 5:
- Average transition probability from state 2 is lower

MEMM: the Label bias problem

Label bias problem in MEMM:

- Preference of states with lower number of transitions over others

Solution:

Do not normalize probabilities locally

Observation 1 Observation 2 Observation 3 Observation 4
State 1

State 2

State 3

State 4

State 5

From local probabilities

Solution:

Do not normalize probabilities locally

From local probabilities to local potentials

- States with lower transitions do not have an unfair advantage!

From MEMM

$$
P\left(\mathbf{y}_{1: n} \mid \mathbf{x}_{1: n}\right)=\prod_{i=1}^{n} P\left(y_{i} \mid y_{i-1}, \mathbf{x}_{1: n}\right)=\prod_{i=1}^{n} \frac{\exp \left(\mathbf{w}^{T} \mathbf{f}\left(y_{i}, y_{i-1}, \mathbf{x}_{1: n}\right)\right)}{Z\left(y_{i-1}, \mathbf{x}_{1: n}\right)}
$$

From MEMM to CRF

$P\left(\mathbf{y}_{1: n} \mid \mathbf{x}_{1: n}\right)=\frac{1}{Z\left(\mathbf{x}_{1: n}\right)} \prod_{i=1}^{n} \phi\left(y_{i}, y_{i-1}, \mathbf{x}_{1: n}\right)=\frac{1}{Z\left(\mathbf{x}_{1: n}, \mathbf{w}\right)} \prod_{i=1}^{n} \exp \left(\mathbf{w}^{T} \mathbf{f}\left(y_{i}, y_{i-1}, \mathbf{x}_{1: n}\right)\right)$

- CRF is a partially directed model
- Discriminative model like MEMM
- Usage of global normalizer $\mathbf{Z}(\mathbf{x})$ overcomes the label bias problem of MEMM
- Models the dependence between each state and the entire observation sequence (like MEMM)

Conditional Random Fields

- General parametric form:

$$
\begin{aligned}
P(\mathbf{y} \mid \mathbf{x}) & =\frac{1}{Z(\mathbf{x}, \lambda, \mu)} \exp \left(\sum_{i=1}^{n}\left(\sum_{k} \lambda_{k} f_{k}\left(y_{i}, y_{i-1}, \mathbf{x}\right)+\sum_{l} \mu_{l} g_{l}\left(y_{i}, \mathbf{x}\right)\right)\right) \\
& =\frac{1}{Z(\mathbf{x}, \lambda, \mu)} \exp \left(\sum_{i=1}^{n}\left(\lambda^{T} \mathbf{f}\left(y_{i}, y_{i-1}, \mathbf{x}\right)+\mu^{T} \mathbf{g}\left(y_{i}, \mathbf{x}\right)\right)\right)
\end{aligned}
$$

where $Z(\mathbf{x}, \lambda, \mu)=\sum_{\mathbf{y}} \exp \left(\sum_{i=1}^{n}\left(\lambda^{T} \mathbf{f}\left(y_{i}, y_{i-1}, \mathbf{x}\right)+\mu^{T} \mathbf{g}\left(y_{i}, \mathbf{x}\right)\right)\right)$

CRFs: Inference

- Given CRF parameters λ and μ, find the \mathbf{y}^{*} that maximizes $\mathrm{P}(\mathbf{y} \mid \mathbf{x})$
- Can ignore $\mathbf{Z}(\mathbf{x})$ because it is not a function of \mathbf{y}
- Run the max-product algorithm on the junction-tree of CRF:

CRF learning

- Given $\left\{\left(\mathbf{x}_{\mathrm{d}}, \mathbf{y}_{\mathrm{d}}\right)\right\}_{\mathrm{d}=1}{ }^{N}$, find λ^{*}, μ^{*} such that

$$
\begin{aligned}
\lambda *, \mu * & =\arg \max _{\lambda, \mu} L(\lambda, \mu)=\arg \max _{\lambda, \mu} \prod_{d=1}^{N} P\left(\mathbf{y}_{d} \mid \mathbf{x}_{d}, \lambda, \mu\right) \\
& =\arg \max _{\lambda, \mu} \prod_{d=1}^{N} \frac{1}{Z\left(\mathbf{x}_{d}, \lambda, \mu\right)} \exp \left(\sum_{i=1}^{n}\left(\lambda^{T} \mathbf{f}\left(y_{d, i}, y_{d, i-1}, \mathbf{x}_{d}\right)+\mu^{T} \mathbf{g}\left(y_{d, i}, \mathbf{x}_{d}\right)\right)\right) \\
& =\arg \max _{\lambda, \mu} \sum_{d=1}^{N}\left(\sum_{i=1}^{n}\left(\lambda^{T} \mathbf{f}\left(y_{d, i}, y_{d, i-1}, \mathbf{x}_{d}\right)+\mu^{T} \mathbf{g}\left(y_{d, i}, \mathbf{x}_{d}\right)\right)-\log Z\left(\mathbf{x}_{d}, \lambda, \mu\right)\right)
\end{aligned}
$$

- Computing the gradient w.r.t λ :

Gradient of the log-partition function in an exponential family is the expectation of the sufficient statistics.

$$
\nabla_{\lambda} L(\lambda, \mu)=\sum_{d=1}^{N}\left(\sum_{i=1}^{n} \mathbf{f}\left(y_{d, i}, y_{d, i-1}, \mathbf{x}_{d}\right)-\sum_{\mathbf{y}}\left(P\left(\mathbf{y} \mid \mathbf{x}_{\mathbf{d}}\right) \sum_{i=1}^{n} \mathbf{f}\left(y_{d, i}, y_{d, i-1}, \mathbf{x}_{d}\right)\right)\right)
$$

CRF learning

$$
\begin{aligned}
& \nabla_{\lambda} L(\lambda, \mu)=\sum_{d=1}^{N}\left(\sum_{i=1}^{n} \mathbf{f}\left(y_{d, i}, y_{d, i-1}, \mathbf{x}_{d}\right)-\overleftarrow{\left.\sum_{\mathbf{y}}\left(P\left(\mathbf{y} \mid \mathbf{x}_{\mathbf{d}}\right) \sum_{i=1}^{n} \mathbf{f}\left(y_{i}, y_{i-1}, \mathbf{x}_{d}\right)\right)\right)}\right. \\
& \text { Computing the model expectations: }
\end{aligned}
$$

- Requires exponentially large number of summations: Is it intractable?

$$
\begin{aligned}
\sum_{\mathbf{y}}\left(P\left(\mathbf{y} \mid \mathbf{x}_{d}\right) \sum_{i=1}^{n} \mathbf{f}\left(y_{i}, y_{i-1}, \mathbf{x}_{d}\right)\right) & =\sum_{i=1}^{n}\left(\sum_{\mathbf{y}} \mathbf{f}\left(y_{i}, y_{i-1}, \mathbf{x}_{d}\right) P\left(\mathbf{y} \mid \mathbf{x}_{d}\right)\right) \\
& =\sum_{i=1}^{n} \sum_{y_{i}, y_{i-1}} \mathbf{f}\left(y_{i}, y_{i-1}, \mathbf{x}_{d}\right) P\left(y_{i}, y_{i-1} \mid \mathbf{x}_{d}\right) \\
& \text { Tractable! } \begin{array}{c}
\text { Expectation of } \mathbf{f} \text { over the corresponding marginal } \\
\text { probability of neighboring nodes!! }
\end{array}
\end{aligned}
$$

- Can compute marginals using the sum-product algorithm on the chain

CRF learning

- Computing marginals using junction-tree calibration:

- Junction Tree Initialization:

$$
\begin{aligned}
\alpha^{0}\left(y_{i}, y_{i-1}\right)= & \exp \left(\lambda^{T} \mathbf{f}\left(y_{i}, y_{i-1}, \mathbf{x}_{d}\right)\right. \\
& \left.+\mu^{T} \mathbf{g}\left(y_{i}, \mathbf{x}_{d}\right)\right)
\end{aligned}
$$

- After calibration:

$$
\begin{aligned}
& P\left(y_{i}, y_{i-1} \mid \mathbf{x}_{d}\right) \propto \alpha\left(y_{i}, y_{i-1}\right) \text { forward-backward algorithm } \\
\Rightarrow & P\left(y_{i}, y_{i-1} \mid \mathbf{x}_{d}\right)=\frac{\alpha\left(y_{i}, y_{i-1}\right)}{\sum_{y_{i}, y_{i-1}} \alpha\left(y_{i}, y_{i-1}\right)}=\alpha^{\prime}\left(y_{i}, y_{i-1}\right)
\end{aligned}
$$

CRF learning

- Computing feature expectations using calibrated potentials:

$$
\sum_{y_{i}, y_{i-1}} \mathbf{f}\left(y_{i}, y_{i-1}, \mathbf{x}_{d}\right) P\left(y_{i}, y_{i-1} \mid \mathbf{x}_{d}\right)=\sum_{y_{i}, y_{i-1}} \mathbf{f}\left(y_{i}, y_{i-1}, \mathbf{x}_{d}\right) \alpha^{\prime}\left(y_{i}, y_{i-1}\right)
$$

- Now we know how to compute $r_{\lambda} L(\lambda, \mu)$:

$$
\begin{aligned}
\nabla_{\lambda} L(\lambda, \mu) & =\sum_{d=1}^{N}\left(\sum_{i=1}^{n} \mathbf{f}\left(y_{d, i}, y_{d, i-1}, \mathbf{x}_{d}\right)-\sum_{\mathbf{y}}\left(P\left(\mathbf{y} \mid \mathbf{x}_{\mathbf{d}}\right) \sum_{i=1}^{n} \mathbf{f}\left(y_{i}, y_{i-1}, \mathbf{x}_{d}\right)\right)\right) \\
& =\sum_{d=1}^{N}\left(\sum_{i=1}^{n}\left(\mathbf{f}\left(y_{d, i}, y_{d, i-1}, \mathbf{x}_{d}\right)-\sum_{y_{i}, y_{i-1}} \alpha^{\prime}\left(y_{i}, y_{i-1}\right) \mathbf{f}\left(y_{i}, y_{i-1}, \mathbf{x}_{d}\right)\right)\right)
\end{aligned}
$$

- Learning can now be done using gradient ascent:

$$
\begin{aligned}
& \lambda^{(t+1)}=\lambda^{(t)}+\eta \nabla_{\lambda} L\left(\lambda^{(t)}, \mu^{(t)}\right) \\
& \mu^{(t+1)}=\mu^{(t)}+\eta \nabla_{\mu} L\left(\lambda^{(t)}, \mu^{(t)}\right)
\end{aligned}
$$

CRF learning

- In practice, we use a Gaussian Regularizer for the parameter vector to improve generalizability

$$
\lambda *, \mu *=\arg \max _{\lambda, \mu} \sum_{d=1}^{N} \log P\left(\mathbf{y}_{d} \mid \mathbf{x}_{d}, \lambda, \mu\right)-\frac{1}{2 \sigma^{2}}\left(\lambda^{T} \lambda+\mu^{T} \mu\right)
$$

- In practice, gradient ascent has very slow convergence
- Alternatives:
- Conjugate Gradient method
- Limited Memory Quasi-Newton Methods

CRFs: some empirical results

- Comparison of error rates on synthetic data

Data is increasingly higher order in the direction of arrow

CRFs achieve the lowest error rate for higher order data

CRFs: some empirical results

- Parts of Speech tagging

model	error	oov error
HMM	5.69%	45.99%
MEMM	6.37%	54.61%
CRF	5.55%	48.05%
MEMM $^{+}$	4.81%	26.99%
CRF $^{+}$	4.27%	23.76%
${ }^{+}$Using spelling features		

- Using same set of features: HMM >=< CRF $>$ MEMM
- Using additional overlapping features: $\mathrm{CRF}^{+}>\mathrm{MEMM}^{+} \gg$ HMM

Other CRFs

- So far we have discussed only 1dimensional chain CRFs
- Inference and learning: exact
- We could also have CRFs for arbitrary graph structure
- E.g: Grid CRFs
- Inference and learning no longer tractable
- Approximate techniques used
- MCMC Sampling
- Variational Inference

- Loopy Belief Propagation
- We will discuss these techniques soon

Image Segmentation

- Image segmentation (FG/BG) by modeling of interactions btw RVs
- Images are noisy.
- Objects occupy continuous regions in an image.
[Nowozin,Lampert 2012]

Input image

Pixel-wise separate optimal labeling

Locally-consistent joint optimal labeling
Y : labels
X : data (features)
S : pixels
N_{i} : neighbors of pixel i

Undirected Graphical Models (with an Image Labeling Example)

- Image can be represented by 4-connected 2D grid.
- MRF / CRF with image labeling problem
- $X=\left\{x_{\mathrm{i}}\right\}_{i \in S}$: observed data of an image.
- x_{i} : data at i-th site (pixel or block) of the image set S

- $Y=\left\{y_{\mathrm{i}}\right\}_{\mathrm{i} \in S}$: (hidden) labels at i-th site. $y_{\mathrm{i}} \in\{1, \ldots, L\}$.
- Object: maximize the conditional probability $Y^{*}=\operatorname{argmax}_{Y} \mathrm{P}(Y \mid X)$

MRF (Markov Random Field)

- Definition: $Y=\left\{y_{i}\right\}_{i \in S}$ is called Markov Random Field on the set S, with respect to neighborhood system N, iff for all $i \in S$,

$$
\mathrm{P}\left(y_{i} \mid y_{S-\{i\}}\right)=\mathrm{P}\left(y_{i} \mid y_{N i}\right) .
$$

- The posterior probability is

$$
P(Y \mid X)=\frac{P(X, Y)}{P(X)} \mu P(X \mid Y) P(Y)=\underbrace{P\left(x_{i} \mid y_{i}\right) \times P(Y)}_{i s}
$$

- (1) Very strict independence assumptions for tractability: Label of each site is a function of data only at that site.
- (2) $P(Y)$ is modeled as a MRF

$$
P(Y)=\frac{1}{Z_{c C}}{ }_{c}\left(y_{c}\right)
$$

CRF

- Definition: Let $G=(S, E)$, then (X, Y) is said to be a Conditional Random Field (CRF) if, when conditioned on X, the random variables y_{i} obey the Markov property with respect to the graph

$$
\mathrm{P}\left(y_{i} \mid X, y_{S-\{i\}}\right)=\mathrm{P}\left(y_{i} \mid X, y_{N i}\right) \quad \text { MRF: } \mathrm{P}\left(y_{i} \mid y_{S-\{i\}}\right)=\mathrm{P}\left(y_{i} \mid y_{N i}\right)
$$

- Globally conditioned on the observation X

CRF vs MRF

- MRF: two-step generative model
- Infer likelihood $\mathrm{P}(X \mid Y)$ and prior $\mathrm{P}(Y)$
- Use Bayes theorem to determine posterior $\mathrm{P}(Y \mid X)$

$$
P(Y \mid X)=\frac{P(X, Y)}{P(X)} \mu P(X \mid Y) P(Y)={ }_{i S} P\left(x_{i} \mid y_{i}\right) \times \frac{1}{Z_{c C}}{ }_{c}\left(y_{c}\right)
$$

- CRF: one-step discriminative model
- Directly Infer posterior P(Y|X)
- Popular Formulation

CRF $P(Y \mid X)=\frac{1}{Z} \exp \left(V_{i S}\left(y_{i} \backslash X\right)+{ }_{i S i^{i} N_{i}} V_{2}\left(y_{i}, y_{i} \backslash X\right)\right) \begin{aligned} & \text { Only up to pairwise clique } \\ & \text { potentials }\end{aligned}$

Example of CRF - DRF

- A special type of CRF
- The unary and pairwise potentials are designed using local discriminative classifiers.
- Posterior

$$
P(Y \mid X)=\frac{1}{Z} \exp \left(\underset{i s}{A_{i}\left(y_{i}, X\right)}+\underset{i s_{j} N_{i}}{I_{i j}\left(y_{i}, y_{j}, X\right)}\right)
$$

- Association Potential
- Local discriminative model for site i : using logistic link with GLM.

$$
A_{i}\left(y_{i}, X\right)=\log P\left(y_{i} \mid f_{i}(X)\right) \quad P\left(y_{i}=1 \mid f_{i}(X)\right)=\frac{1}{1+\exp \left(\left(w^{T} f_{i}(X)\right)\right)}=\quad\left(w^{T} f_{i}(X)\right)
$$

- Interaction Potential
- Measure of how likely site i and j have the same label given X

$$
I_{i j}\left(y_{i}, y_{j}, X\right)=\underbrace{k y_{i} y_{j}}+\underbrace{\left(\begin{array}{lll}
1 & k
\end{array}\right)\left(2 \quad\left(y_{i} y_{j}(X)\right)\right.} 1))
$$

(1) Data-independent smoothing term
(2) Data-dependent pairwise logistic function
S. Kumar and M. Hebert. Discriminative Random Fields. IJCV, 2006.

Example of CRF - DRF Results

- Task: Detecting man-made structure in natural scenes.
- Each image is divided in non-overlapping 16×16 tile blocks.
- An example

- MRF: Smoothed False positive. Lack of neighborhood interaction of the data
S. Kumar and M. Hebert. Discriminative Random Fields. IJCV, 2006.

Example of CRF -Body Pose Estimation

- Task: Estimate a body pose.
- Need to detect parts of human body
- Appearance + Geometric configuration.
- A large number of DOFs
- Use CRF to model a human body
- Nodes: Parts (head, torso, upper/ lower left/right arms). $L=\left(l_{1}, \ldots, l_{6}\right), l_{i}=\left[x_{i}, y_{i}, \theta_{i}\right]$.
- Edges: Pairwise linkage between parts
- Tree vs. Graph

[Zisserman 2010]

V. Ferrari et al. Progressive search space reduction for human pose estimation. CVPR 2008.
D. Ramanan. Learning to Parse Images of Articulated Bodies." NIPS 2006.

Example of CRF -Body Pose Estimation

- Posterior of configuration

$$
P(L \mid I) \mu \exp \left(\quad\left(l_{i}\right)+\quad\left(l_{i}, l_{j}\right)\right)
$$

- $\psi\left(l_{i} l_{j}\right)$: relative position with geometric constraints
- $\phi\left(l_{i}\right)$: local image evidence for a part in a particular location
- If E is a tree, exact inference is efficiently performed by BP.
- Example of unary and pairwise terms
- Unary term: appearance feature
- Pairwise term: kinematic layout

$\begin{aligned} & \text { HOG of image } \text { HOG of lower arm } \\ & \text { template (learned) }\end{aligned}$
L2 Distance
[Zisserman 2010]

Example of CRF - Results of Body Pose Estimation

- Examples of results

[Ferrari et al. 2008]
- Datasets and codes are available.
- http://www.ics.uci.edu/~dramanan/papers/parse/
- http://www.robots.ox.ac.uk/~vgg/research/pose_estimation/

Summary

- Conditional Random Fields are partially directed discriminative models
- They overcome the label bias problem of MEMMs by using a global normalizer
- Inference for 1-D chain CRFs is exact
- Same as Max-product or Viterbi decoding
- Learning also is exact
- globally optimum parameters can be learned
- Requires using sum-product or forward-backward algorithm
- CRFs involving arbitrary graph structure are intractable in general
- E.g.: Grid CRFs
- Inference and learning require approximation techniques
- MCMC sampling
- Variational methods
- Loopy BP

