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 Class webpage:
 http://www.cs.cmu.edu/~epxing/Class/10708-17/

Logistics
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Logistics
 Text books:

 Daphne Koller and Nir Friedman, Probabilistic Graphical Models
 M. I. Jordan, An Introduction to Probabilistic Graphical Models

 Mailing Lists: 
 To contact the instructors: 10708-instructor@cs.cmu.edu 
 Class announcements list: 10708-students@cs.cmu.edu. 

 TA:
 Maruan Al-Shedivat, GHC 8223, Office Hour: Wednesday, 4:30 - 5:30pm 
 Haohan Wang, GHC 5507, Office Hour: Friday, 6:00pm - 7:00pm
 David Dai, GHC 8116, Office hours: TBA

 Lecturers: Eric Xing
 Assistant Instructor: Sarah Schultz
 Class Assistant:

 Amy Protos, GHC 8221

 Instruction aids: Piazza
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Logistics
 4 homework assignments: 40% of grade

 Theory exercises, Implementation exercises 

 Scribe duties: 10% (~once to twice for the whole semester)
 Short reading summary: 10%  (due at the beginning of every lecture) 
 Final project: 40% of grade

 Applying PGM to the development of a real, substantial ML system
 Design and Implement a (record-breaking) distributed Logistic Regression, Gradient Boosted Tree, 

Deep Network, or  Topic model on Petuum and apply to ImageNet, Wikipedia, and/or other data  
 Build a web-scale topic or story line tracking system for news media, or a paper recommendation 

system for conference review matching
 An online car or people or event detector for web-images and webcam 
 An automatic “what’s up here?” or “photo album” service on iPhone

 Theoretical and/or algorithmic work 
 a more efficient approximate inference or optimization algorithm, e.g., based on stochastic 

approximation, proximal average, or other new techniques 
 a distributed sampling scheme with convergence guarantee

 3-member team to be formed in the first three weeks, proposal, mid-way report, 
oral presentation & demo, final report, peer review   possibly conference 
submission !
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Past projects:

 We will have a prize for the 
best project(s) …

 Award Winning Projects:
J. Yang, Y. Liu, E. P. Xing and A. Hauptmann,
Harmonium-Based Models for Semantic Video 
Representation and Classification , Proceedings of 
The Seventh SIAM International Conference on Data 
Mining (SDM 2007 best paper)
Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar, 
Chris Dyer, Eduard Hovy, Noah A. Smith, Retrofitting 
Word Vectors to Semantic Lexicons, NAACL 2015 
best paper

Others … such as KDD 2014 best paper 

 Other projects:
Andreas Krause, Jure Leskovec and Carlos Guestrin, 
Data Association for Topic Intensity Tracking, 23rd 
International Conference on Machine Learning (ICML 
2006).

M. Sachan, A. Dubey, S. Srivastava, E. P. Xing and 
Eduard Hovy, Spatial Compactness meets Topical 
Consistency: Jointly modeling Links and Content 
for Community Detection , Proceedings of The 7th 
ACM International Conference on Web Search and Data 
Mining (WSDM 2014).
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What Are Graphical Models?
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Reasoning under uncertainty!
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The Fundamental Questions
 Representation

 How to capture/model uncertainties in possible worlds?
 How to encode our domain knowledge/assumptions/constraints?

 Inference
 How do I answers questions/queries 

according to my model and/or based 
given data?

 Learning
 What model is "right" 

for my data?
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 Representation: what is the joint probability dist. on multiple 
variables?

 How many state configurations in total? --- 28

 Are they all needed to be represented?
 Do we get any scientific/medical insight?

 Learning: where do we get all this probabilities? 
 Maximal-likelihood estimation? but how many data do we need?
 Are there other est. principles?
 Where do we put domain knowledge in terms of plausible relationships between variables, and 

plausible values of the probabilities?

 Inference: If not all variables are observable, how to compute the 
conditional distribution of latent variables given evidence?
 Computing p(H|A) would require summing over all 26 configurations of the 

unobserved variables

),,,,,,,(  87654321 XXXXXXXXP

Recap of Basic Prob. Concepts
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What is a Graphical Model?
--- Multivariate Distribution in High-D Space

 A possible world for cellular signal transduction: 

© Eric Xing @ CMU, 2005-2017 10



Receptor A

Kinase C

TF F

Gene G Gene H

Kinase EKinase D

Receptor B

Membrane

Cytosol

X1 X2

X3 X4 X5

X6

X7 X8

GM: Structure Simplifies 
Representation

 Dependencies among variables
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 If Xi's are conditionally independent (as described by a PGM), the 
joint can be factored to a product of simpler terms, e.g.,

 Why we may favor a PGM?
 Incorporation of domain knowledge and causal (logical) structures

P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)

Probabilistic Graphical Models
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1+1+2+2+2+4+2+4=18, a 16-fold reduction from 28 in representation cost ! 

Stay tune for what are these independencies!
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GM: Data Integration
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More Data Integration
 Text + Image + Network   Holistic Social Media

 Genome + Proteome + Transcritome + Phenome + … 
PanOmic Biology
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 If Xi's are conditionally independent (as described by a PGM), the 
joint can be factored to a product of simpler terms, e.g., 

 Why we may favor a PGM?
 Incorporation of domain knowledge and causal (logical) structures

 Modular combination of heterogeneous parts – data fusion

Probabilistic Graphical Models
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P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X2) P(X4| X2) P(X5| X2) P(X1) P(X3| X1) 
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)
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Rational Statistical Inference

 This allows us to capture uncertainty about the model in a principled way

 But how can we specify and represent a complicated model?
 Typically the number of genes need to be modeled are in the order of thousands!
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GM: MLE and Bayesian Learning
 Probabilistic statements of  is conditioned on the values of the 

observed variables Aobs and prior p( |)
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 If Xi's are conditionally independent (as described by a PGM), the 
joint can be factored to a product of simpler terms, e.g., 

 Why we may favor a PGM?
 Incorporation of domain knowledge and causal (logical) structures

 Modular combination of heterogeneous parts – data fusion

 Bayesian Philosophy
 Knowledge meets data

Probabilistic Graphical Models
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So What Is a PGM After All?
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In a nutshell: 

PGM   =   Multivariate Statistics + Structure
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GM   =   Multivariate Obj. Func. + Structure



So What Is a PGM After All?
 The informal blurb:

 It is a smart way to write/specify/compose/design exponentially-large probability 
distributions without paying an exponential cost, and at the same time endow the 
distributions with structured semantics

 A more formal description:
 It refers to a family of distributions on a set of random variables that are 

compatible with all the probabilistic independence propositions encoded by a 
graph that connects these variables
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 Directed edges give causality relationships (Bayesian 
Network or Directed Graphical Model):

 Undirected edges simply give correlations between variables 
(Markov Random Field or Undirected Graphical model):

Two types of GMs
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= 1/Z exp{E(X1)+E(X2)+E(X3, X1)+E(X4, X2)+E(X5, X2)
+ E(X6, X3, X4)+E(X7, X6)+E(X8, X5, X6)}
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Structure: DAG

• Meaning: a node is 
conditionally independent
of every other node in the 
network outside its Markov 
blanket

• Local conditional distributions 
(CPD) and the DAG
completely determine the 
joint dist. 

• Give causality relationships, 
and facilitate a generative
process
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Descendent

Ancestor

Parent

Children's co-parentChildren's co-parent

Child

Bayesian Networks
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Structure: undirected graph

• Meaning: a node is conditionally 
independent of every other node 
in the network given its Directed 
neighbors

• Local contingency functions 
(potentials) and the cliques in 
the graph completely determine 
the joint dist. 

• Give correlations between 
variables, but no explicit way to 
generate samples

X

Y1 Y2

Markov Random Fields
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Towards structural specification of 
probability distribution

 Separation properties in the graph imply independence 
properties about the associated variables

 For the graph to be useful, any conditional independence 
properties we can derive from the graph should hold for the 
probability distribution that the graph represents

 The Equivalence Theorem
For a graph G,
Let D1 denote the family of all distributions that satisfy I(G),
Let D2 denote the family of all distributions that factor according to G,
Then D1≡D2.
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Density estimation

Regression

Classification

Parametric and nonparametric  methods

Linear, conditional mixture, nonparametric

Generative and discriminative approach

Q

X

Q

X

X Y

m,s

X X

GMs are your old friends
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(Picture by Zoubin 
Ghahramani and 
Sam Roweis)
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Fancier GMs: 
reinforcement learning
 Partially observed Markov decision processes (POMDP)
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Fancier GMs: 
machine translation
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SMT

The HM-BiTAM model 
(B. Zhao and E.P Xing,  
ACL 2006)
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Fancier GMs: 
genetic pedigree
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Fancier GMs: 
solid state physics
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Ising/Potts model
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Deep Neural Networks
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What makes it work? Why?
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An MLer’s View of the World 

Loss functions
(likelihood, reconstruction, margin, …)
Loss functions
(likelihood, reconstruction, margin, …)

Constraints
(normality, sparsity, label, prior, KL, sum,  …) 
Constraints
(normality, sparsity, label, prior, KL, sum,  …) 

Algorithms
MC (MCMC, Importance), Opt (gradient, IP), … 
Algorithms
MC (MCMC, Importance), Opt (gradient, IP), … 

Stopping criteria
Change in objective, change in 
update …

Stopping criteria
Change in objective, change in 
update …

Structures
(Graphical, group, chain, tree, iid, …)
Structures
(Graphical, group, chain, tree, iid, …)

Empirical 
Performances?
Empirical 
Performances?
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DL ML (e.g., GM)

Empirical goal: e.g., classification, feature learning, 
generating samples …

e.g., supervised/unsupervised 
learning, transfer learning, latent 
variable inference

Structure: Graphical Graphical

Objective: Something aggregated from 
local functions

Something aggregated from local 
functions 

Vocabulary: Neuron, activation/gate function 
… 

Variables, potential function

Algorithm: A single, unchallenged, 
inference algorithm – BP 

A major focus of open research,
many algorithms, and more to 
come

Evaluation: On a black-box score -- end 
performance

On almost every intermediate 
quantity

Implementation: Many untold-tricks More or less standardized 

Experiments: Massive, real data (GT
unknown)

Modest, often simulated data 
(GT known)


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Application of GMs
 Machine Learning
 Computational statistics

 Computer vision and graphics
 Natural language processing 
 Informational retrieval
 Robotic control 
 Decision making under uncertainty
 Error-control codes
 Computational biology
 Genetics and medical diagnosis/prognosis
 Finance and economics
 Etc.
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Why graphical models

 A language for communication
 A language for computation
 A language for development

 Origins: 
 Wright 1920’s
 Independently developed by Spiegelhalter and Lauritzen in statistics and Pearl in 

computer science in the late 1980’s
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 Probability theory provides the glue whereby the parts are combined, 
ensuring that the system as a whole is consistent, and providing ways to 
interface models to data. 

 The graph theoretic side of graphical models provides both an intuitively 
appealing interface by which humans can model highly-interacting sets of 
variables as well as a data structure that lends itself naturally to the design of 
efficient general-purpose algorithms. 

 Many of the classical multivariate probabilistic systems studied in fields 
such as statistics, systems engineering, information theory, pattern 
recognition and statistical mechanics are special cases of the general 
graphical model formalism

 The graphical model framework provides a way to view all of these systems 
as instances of a common underlying formalism. 

--- M. Jordan

Why graphical models
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Plan for the Class
 Fundamentals of Graphical Models: 

 Bayesian Network and Markov Random Fields
 Discrete, Continuous and Hybrid models, exponential family, GLIM
 Basic representation, inference, and learning

 …

 Advanced topics and latest developments
 Approximate inference

 Monte Carlo algorithms
 Vatiational methods and theories

 “Infinite” GMs: nonparametric Bayesian models
 Optimization-theoretic formulations for GMs, e.g., Structured sparsity
 Nonparametric and spectral graphical models, where GM meets kernels and matrix algebra  
 Alternative GM learning paradigms, 

 e.g., Margin-based learning of GMs (where GM meets SVM)
 e.g., Regularized Bayes: where GM meets SVM, and meets Bayesian, and meets NB … 

 Case studies: popular GMs and applications
 Multivariate Gaussian Models
 Conditional random fields
 Mixed-membership, aka, Topic models
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Questions ? 
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