10-715 Advanced Introduction to Machine Learning
Homework 1 Due Oct 1, 10.30 am

Rules

1. Homework is due on the due date at 10.30 am. Please hand over your homework at the beginning of
class. Please see course website for policy on late submission.

2. You have a grace period until 3pm on the same day to submit the homework. If you cannot submit it
in class, please hand it over to the TAs (or slide it under their office doors) with “10715 - Homework
1”7 clearly written on the front page.

3. We recommend that you typeset your homework using appropriate software such as BTEX . If you are
writing please make sure your homework is cleanly written up and legible. The TAs will not invest
undue effort to decrypt bad handwriting.

4. You must hand in a hard copy of the homework. The only exception is if you are out of town in which
case you can email your homeworks to both the TAs. If this is the case, your homeworks must be
typeset using proper software. Please do not email written and scanned copies. Your email must reach
the TAs by 3pm on the due date.

5. You are allowed to collaborate on the homework, but should write up your own solution and code.
Please indicate your collaborators in your submission.

6. Please hand in the solutions to Problems 1,2 and Problems 3, 4 separately. Write your name, andrew
id and department on both submissions.

7. If you are confused about of any of the terms you may refer Wikipedia. We have introduced some new
concepts and methods that were not discussed in class. You should be able to find all of the required
definitions on Wikipedia.




1 Regression (Samy)

1.1 Multi-Task Regresion

In class we considered the Linear regression problem 3 = "2 where z € R%, 3 € R? and y € R. Say we now
want to consider predicting a vector of outputs y € R¥ via a prediction matrix © € RF*4

We have training data (z;,y;)",; where z; € R y; € R¥. Let Y € R¥*" denote a matrix with y; in each
column and X € R4*™ with z; in each column. We wish to obtain © such that Y ~ ©X. The way we have
set it up, each row corresponds to a “task”.

1. (1 Point) If the cost function is Jo(0) = ||[Y — ©X||%, show that the solution to the combined
problem can be obtained via the solutions to each individual task. Here, || - || denotes the Frobenius
norm.

2. (6 Points) Now we use the cost function J(0) = Jy(0) + AC(O) where C(-) is a complexity penalty.
For each of the following C(-) indicate whether the tasks are still (a)independent, (b) convex. (c)
Explain why such a penalty function would be useful.

(a) C(O) = [O]%
(b) C(O) =7, \/3F 02
(c) C(O) = rank(©)

1.2 Shrinkage in Ridge Regression

We will study some of the properties of the Ridge Regression Problem

B = arg;nin lly — Xﬂ||§ + >\HB||2

where X = [X|;...; X,]] e R"¥4 B € R% y € R". Assume that EX; = 0 and rank(X) = d. Let the SVD of
XbeX =UXVT where U = [uy,...,uq] € R" V = [vy,...,v4] € R>? and ¥ = diag(oy,...,0q) € R¥¥9,

1. (3 Points) Show that the prediction at a new point R? 3 x, = Vz, can be written as,
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2. (3 Points) Use the above expression to explain how Ridge regression helps in controlling the variance
in a linear model.

1.3 Local/Weighted Linear Regression

1. (2 points) In class we looked at locally weighted linear regression where we predicted f (z) = Er T

where n
B = argminZwi(x)(yi - 5T$i)2
B =

A typical choice for w;(z) is k((x — x;)/h) where k is a smoothing kernel-hence the name local linear
regression. Show that A

f@)=z"(XTWX)'XTWy
where X € R"*? is the data matrix, W = diag(w;(x),w2(z),...,w,(x)) € R®™™ and y € R" is a
vector of training labels.



N.B: Locally Polynomial Regression refers to essentially the same idea but now you augment your X
with higher order polynomial terms of the features in addition to the constant and linear terms.

2. (1 4+ 1 points) If instead we solve for a locally “constant” estimate with the choice of w; as given
above,

fla) = arggninzwi(w)(yi - 0)?
i=1

show that we obtain the Nadaraya Watson Estimator. Argue that min; y; < f (r) < max; y;, V.

1.4 Least Norm Solution

1. (3 points) We saw that the least squares solution to the overdetermined problem y ~ XS was
B = (XTX)"'XTy. Here, X € R™*? y € R", 3 € R? and n > d. If the system is underdetermined
(n < d), one technique is to add an ¢; or {5 penalty. Alternatively, we could find the point with the
lowest norm || || in the affine subspace that solves y = X . By assuming that X is full rank, find the
least norm solution.

2. (5 points) Now the system is still under determined but X is also not full rank. Hence we are not
guaranteed to be able to solve y = X5 exactly. We wish to find the point with the lowest norm |5 in
the affince subspace that minimizes ||y — X 3||. Show that this “least-squares”—“least-norm” solution
is given by B = X'y where XT is the Moore-Penrose inverse of X.

N.B: Please do not use part 2 as a starting point for part 1. We expect you to solve part 1 from scratch.
Once you’ve done part 2, you will see that both the least squares solution and the least norm solution can
be expressed this way.

2 Pdlya Discriminant Analysis (Samy)

In class we studied Generative models for Classification — Gaussian Discriminant Analysis which applies to
continuous data is a canonical example. Here, we will look a generative classification model for discrete
data such as text corpora. This is not a popular method. (At least not yet !) But it will help you
gain some intuition on parametric probabilistic modeling and Maximum Likelihood Estimation in a fairly
complex model.

We first introduce some notation. Categ, Mult, Dir etc refer to the Categorical, Multinomial and Dirichlet
Distributions respectively. There is confusion on the definitions of the Categorical and Multinomial distri-
butions. Here we treat them as the analogues of the Bernoulli and Binomial distributions in the binary case.
(You may refer Wikipedia for proper definitions.) AV~ refers to the (N—1)—simplex: ¢ € AN"! Cc RY =
¢ >0, > ¢ = 1. We will use subscripts to index documents/labels etc in the corpus (e.g. z;,y;) and
superscripts to index elements of the vector (e.g. ().

The setting is a document classification problem for K classes using the Bag-of-Words model. We have a
vocabulary of V words. Each document is represented by z € NV which gives the number of times each
word occurred in the document. The number of words m =3, 2 in a document differs from document to
document. In addition, for each document we have the class label y € {1,2,..., K}.

2.1 Model

yi€{1,2,...,K}, x; e NV fori=1,...,n. 6 € AK=1 a5, € RV for k =1,..., K. Our generative process
is as follows. For each document in a corpus,



e y ~ Categ (9)

e 7;|ly; = k,m; : First AV~ 3 p~ Dir(ay), then x ~ Mult (m;, p)
Given data (x;,y;)"; we wish to infer the parameters 6, aq, ..., ak.

1. (2 points) Write down the log likelihood for the model.

2. (2 points) Obtain the Maximum likelihood estimator for 6.

3. (7 points) Unfortunately, we cannot optimize a4, ..., ax in closed form. We will do this via Newton’s
method. Obtain the Newton’s method updates for a;.
In a realistic setting V is at least on the order of 10* and possibly as large as 107. Creating the V x V/
matrix let alone inverting it would be a terrible idea. Can you identify structure in your Hessian that
allows you to perform the Newton’s step efficiently? You should explain how the Newton step update
can be performed using O(V) time and memory. Here O suppresses the dependence on n.

4. (1 point) Given a new point x, € N, write the prediction rule.

5. (3 points) Now we adopt the Bayesian paradigm and assume that 6y was sampled from a Dir (6y)
prior and all o were sampled from a A(0, %Id) prior. Here 6§y € RX X\ € R, are known. We wish to
obtain the MAP estimate of the parameters. Derive the MAP estimate for # and the Newton’s method
update for a;. Show that the Newton update can still be performed efficiently.

Using a normal prior for ay is technically incorrect since it needs to be non-negative. But the math still
works out even if you use a normal prior. It gives a quadratic penalty term which acts as a regularizer.
Thanks to James Duyck for pointing this out.

2.2 Experiment (10 points)

Here we will do a simple experiment for the above problem. We recommend that you use Matlab for this
part of the homework. We have provided you some starter code to load the data and output the results.
Also, Matlab has vectorized implementations of the poly-gamma and log-gamma functions so it will make
your life easier.

You need to implement code to

1. Estimate 6 and ay,k = 1,..., K. In particular, o) should be estimated using Newton’s method in
O(V) time.
2. Compute the prediction for a new point for a given model.

Please submit your code with the homework.

You have 2 datasets to experiment with given in datal.mat and data2.mat. The first is a simple dataset
with V =4, n = 200, K = 3 and the latter is slightly more challenging with V' = 1000, n = 100000, K = 3.
For both cases, you have been given the n X V training matrix XTrain and the n x 1 training labels yTrain.
In addition there is also test data and labels in XTest and yTest. For datal.mat, you should report the
estimated parameters 6, oy, as, a3, and the predictions for the given test set. For data2.mat you should
report the estimated 6, the first 5 coordinates of a1, asg, a3, the predictions on the first 5 points in the test
set and the accuracy on the test set. The given starter code does all of these for you so you can just attach
screenshots of the results.

Note the following
e To initialize oy, for Newton’s method, set it to a reasonable point in AK~1,
e Use A\ =0.1,0p=(2,2...,2)T.
e About 10 iterations of Newton’s method should be sufficient.

e If you are using Matlab the following functions would be useful. psi, gammaln, bsxfun.



>> g2

alpha =
5.8842
1.0761
1.0451

1.3622
4.3095
0.8546

1.1133
0.9938
2.3781

1.1900
1.0325
3.8601

The following was the output of our implementation for datal.mat. We haven’t thoroughly sanity checked
our code so if your answers do not correspond first double check with your peers and then speak to us.

preds =

WNN =N

Accuracy: 1.0000
>>

3 Duality (Veeru)

3.1 Weak Duality
Consider the following problem with f, hi, hy : R — R:

inf f(x)
s.t hy(z) <0,
hg(x) =0

1. (2 points) Write the Lagrange dual L(x, A\,u) where A > 0,u € R are the dual variables for the
inequality and the equality respectively.

2. (2 points) Write down the dual function g(\, u) symbolically.

3. (6 points) Show that
inf f(z) > sup g(\, u).
Inf f(z) 2 /\ZOI’UJ( )
In other words, the optimal primal value is > the optimal dual value. The result holds when we have
multiple inequality and equality constraints. This is called weak duality.

3.2 Optimal Coding

We will solve a simple convex problem in this part. The alphabet of a language consists of letters «y, i € [n]
where [n] = {1,2,--- ,n}. Assume that the letters occur with probabilites p; in natural usage. We would
like to find an optimal encoding of the letters in terms of bits, so that the expected number of bits used
per letter is minimized, while still being able to decode the sequence of bits sent in a stream without any



markers between letters. For example, if there are n = 32 letters in the alphabet and all letters occur with
equal probability(p; = 1/32), it intuitively makes sense to say that the optimal coding requires 5 bits for
each letter. It turns out that optimal coding for the alphabet can be found by solving (1) given below. The
objective function is the expected number of bits per letter. The first inequality in the problem is called
Kraft’s inequality and it ensures decodability of the letters.

n
min E PiT;
rER™ 4

i=1

sty 27" <1 (1)
i=1

x; >0 Vi€ |n]

Note that even though x; should be positive integers, we are optimizing over all positive reals.
1. (4 points) Show that the feasible region is convex in (1).
2. (4 points) Show that equality holds in the first constraint for the optimal solution to (1).

3. (7 points) By the previous part, we can solve (1) with equality in the first constraint instead of
inequality. Solve this new problem. Hint: You may show that the functions in the constraints are
convex to justify that the gradient of Lagrangian is its subgradient.

Note:If you have already written up your solution with n in the base of the Kraft’s inequality, you do not
have to change it.

4 SVM and Perceptron (Veeru)

4.1 Finding support vectors from dual variables (6 points)

Consider the SVM dual problem:

n

1
min 5 Y ciogyiys (e ) = > a
i.j€ln] i=1

s.t Zaiyizo, 0<a; <CVié€[n]

i=1

where «; are the dual variables and (x;,v;) € R? x {—1,1} are feature, label pairs. Let f(z) = (w,z) +b
be the prediction function, where w € R% b € R are primal variables. Argue from KKT conditions why the
following hold:

a; = 0=y f(z;) >
0<a; <C=yf(x;)
o; =C =y f(x:)

1
1
1

IN

4.2 Using libsvm (8 points)

Use libsvin(http://www.csie.ntu.edu.tw/ cjlin/libsvm/) on a simple 2D dataset and report your obser-
vations as you increase the regularization parameter C' from a small value to a large value. You may generate
the dataset by sampling 50 points each from N (—u,0%I) and N (u,02I) with g = (1,0) and % = 0.8(You
may experiment with the value of o2 to get nice plots). Label the points drawn from one distribution —1 and
those from the other +1. Plot how the learned plane and margin in your answer change with C. Also, plot


http://www.csie.ntu.edu.tw/~cjlin/libsvm/

testing error vs. training error with varying C, holding out a randomly chosen half of the data for testing.
You may experiment with about 8 values of C for nice plots.

4.3 Mistake bound for Perceptron

Suppose we run the perceptron algorithm on a dataset {(z;,y;) € R¥x{—1,1}|i € [n]} which is separable by a
margin, that is, Jw,, d such that y;(z;,w.) >0 > 0,Vi € [n] and ||w.|| = 1. Assume that ||z;|| < M, Vi € [n].
Let wg = 0, w1, -+ ,wg, - - be the iterates of the algorithm. Let the update step be wi.y1 = Wi +Yi(k41)Tik+1)
where the perceptron fails on i(k 4+ 1)th data point with wy. The perceptron with model w, is assumed to
fail on a data point (z,y), if (w,yz) < 0. The bias term is incorporated into all x; by setting their first
coordinate to 1.

1. (3 points) Show that (wy,w.) > kd.
2. (4 points) Show that ||wy||? < kM?2.

3. (4 points) Show that the number of mistakes done by the algorithm k&, < %2.



	Regression (Samy)
	Multi-Task Regresion
	Shrinkage in Ridge Regression
	Local/Weighted Linear Regression
	Least Norm Solution

	Pólya Discriminant Analysis (Samy)
	Model
	Experiment (10 points)

	Duality (Veeru)
	Weak Duality
	Optimal Coding

	SVM and Perceptron (Veeru)
	Finding support vectors from dual variables (6 points)
	Using libsvm (8 points)
	Mistake bound for Perceptron


