
10-715 Advanced Introduction to Machine Learning
Homework 1 Solutions October 6, 2014

1 Regression (Samy)

1.1 Multi-Task Regresion

1. The Cost function can be decomposed as,

J0(Θ) =

k∑
j=1

‖Yj,: −Θj,:X‖2

where Yj,:,Θj,: refer to the jth rows of Y,Θ respectively. Since this essentially decouples the parameters
involved with each task, we can solve them separately.

2. (a) Independent: Yes. Convex: Yes.
This is the usual L2 regularization to control the variance.

(b) Independent: No. Convex: Yes.
Here we are trying to model all our outputs as a function of a sparse subset of the covariates.

(c) Independent: No. Convex: No.
Here, by encouraging Θ to be low rank we are trying to create (linear) dependence across multiple
tasks.
e.g. Say we are trying to predict precipitation in different regions based on different weather
features. We want different models for each region since a universal model may not be suitable.
However, all these tasks are likely to be related and so we want to encourage dependence. In
doing so, we reduce the sample complexity of learning all tasks since data from one region will be
useful in estimating the parameters of another region.
Some of you also pointed out that a rank penalty is intractable. This is true. A commonly used
convex relaxation is to use a nuclear norm penalty.

1.2 Shrinkage in Ridge Regression

1. The solution to the Ridge Regression problem is β̂ = (X>X+λI)−1X>y. Using the SVD X = UΣV >,

β̂ = V (Σ2 + λI)−1ΣU>y

x>∗ β̂ = z>∗ V
>β̂

= z>∗ (Σ2 + λI)−1ΣU>y

=

d∑
i=1

z∗iσi
σ2
i + λ

u>i y

2. Since X has zero mean, the directions v1, . . . , vn are the eigenvectors of the empirical covariance matrix.
The expression z∗iσi

σ2
i+λ

indicates that the directions along which the empirical covariance is lowest are

shrinked the most. In the directions where data is more spread out (empirical covariance high) we can
estimate the gradients of our linear function well since it would be less susceptible to noise. In the
directions where there is less spread , there is high variance in the estimate of the gradient. Ridge

1

regression helps us control the variance by imposing different penalties along different principal axes.
Some of you also made the equivalent argument that if X was poorly conditioned then it would blow
up the variance in the directions in which σi was small. The penalty prevents this from happening.

1.3 Local/Weighted Linear Regression

1. Using the given notation, we can express β̂ as follows,

β̂ = argmin
β
‖W 1/2(y −Xβ)‖2

By settings its gradient to zero we get β̂ = (X>WX)−1X>Wy. Substituting f̂(x) = x>β̂ yields the
required answer.

2. By setting β = θ, x = 1, =⇒ X = 1> ∈ Rn and f̂(x) = β>x = θ we get the same problem as above.
Then (X>WX) =

∑
i wi, X

>Wy =
∑
i wiyi which yields

f̂(x) =

∑
i wi(x)yi∑

i wi
=
∑
i

αiyi

where αi = wi/
∑
j wj . For wi(x) = k((x − xi)/h) we get precisely the Nadaraya-Watson Estimator.

Since the prediction at any point is a convex combination of the observed labels it always lies in between
the maximum and the minimum.

1.4 Least Norm Solution

1. The solution may be obtained by solving the problem,

minimize ‖β‖2, subject toXβ = y

The Lagrangian for the problem is L(ν, β) = β>β + ν>(Xβ − yb). By setting ∇βL , 0 and then

substituting back we get, β̂ln = X>(XX>)−1y.

2. Let J = ‖y − Xβ‖2 and β∗ = X†y. ∇βJ = 2X>Xβ − 2X>y. When β = β∗, ∇βJ = 2X>XX†y −
2X>y = 2X>y− 2X>y = 0. Since J is convex in β and β∗ satisfies the stationarity condition we have
that β∗ is a least squares solution.

Let β be any other least squares solution: ‖y −Xβ‖ = ‖y −Xβ∗‖. Then,

‖y −Xβ‖2 = ‖y −Xβ∗ −Xδ‖2 = ‖y −Xβ∗‖2 + ‖Xδ‖2

The last step follows by observing that (y−Xβ∗)>Xδ = y>Xδ−y>(X†)>X>Xδ = 0. Hence δ ∈ N (X)
and β∗ ⊥ δ. Therefore ‖β‖2 = ‖β∗‖2 + ‖δ‖2 ≤ ‖β∗‖2.

Some of you presented alternative arguments, mostly based on the SVD characterization of the MP
inverse.

2

2 Pólya Discriminant Analysis (Samy)

2.1 Model

1. Conditioned on yi = k,mi the distribuiton of x corresponds to a Dirichlet Multinomial with parameters
mi, αk. Its mass function and the logarithm is

pdm(xi;αk) =
Γ(Ak)

Γ(mi +Ak)

V∏
s=1

Γ(x
(s)
i + α

(s)
k)

Γ(α
(s)
k)

log pdm(xi;αk) = log Γ(Ak)− log Γ(mi +Ak) +

V∑
s=1

(
log Γ(x

(s)
i + α

(s)
k)− log Γ(α

(s)
k)
)

where Ak =
∑V
s=1 α

(s)
k and mi =

∑V
s=1 x

(s)
i .

The likelihood and log likelihood of the data D = (xi, yi)
n
i=1 is then given by,

p(D; θ, α1, . . . , αK) =
n∏
i=1

K∏
k=1

(
θ(k)pdm(xi;αk)

)1(yi=k)
`(θ, α1, . . . , αK ;D) =

n∑
i=1

K∑
k=1

1(yi = k)
(

log θ(k) + log pdm(xi;αk)
)

2. We need to maximize the above log likelihood w.r.t θ subject to the constraint
∑
k θ

(k) = 1. The
corresponding Lagrangian is,

L =

K∑
k=1

log θ(k)
n∑
i=1

1(yi = k) + ν

(
K∑
k=1

θ(k) − 1

)

Solving this for θ(k) yields the MLE estimate

θ̂(k) :=

∑n
i=1 1(yi = k)

n
=

training instances in class k

n

3. The solution to this part are based on ideas from [Min00]. The first and second partial derivatives of
the log likelihood are,

∂`

∂α
(s)
k

=

n∑
i=1

1(yi = k)
(

Ψ(Ak)−Ψ(mi +Ak) + Ψ(x
(s)
i + α

(s)
k)−Ψ(α

(s)
k)
)

∂2`

∂α
(s)
k

2 =

n∑
i=1

1(yi = k)
(

Ψ′(Ak)−Ψ′(mi +Ak) + Ψ′(x
(s)
i + α

(s)
k)−Ψ′(α

(s)
k)
)

∂2`

∂α
(s)
k ∂α

(t)
k

=

n∑
i=1

1(yi = k)
(

Ψ′(Ak)−Ψ′(mi +Ak)
)

where Ψ,Ψ′ are the di-gamma and tri-gamma functions respectively. The gradient gk ∈ RV for

optimizing αk is given by g
(s)
k = ∂`

∂α
(s)
k

. The Hessian Hk ∈ RV×V can be written as, Hk = D + z11>

where D a diagonal matrix and z ∈ R are given by,

Dss =
∑
i∈[k]

Ψ′(x
(s)
i + α

(s)
k)− nkΨ′(α

(s)
k)

z = nkΨ′(Ak)−
∑
i∈[k]

Ψ′(mi +Ak)

3

Here [k] refers to the set of training instances in class k and nk = |[k]|. By the Sherman Morrison
formula, H−1k can be computed as

H−1k = D−1 − D−111>D−1

1/z + 1>D−11

The Newton’s method update is then given by αnewk ← αoldk −H−1k gk.

To analyse the complexity, note that we first need to compute and store gk, D and z. This requires
only Õ(V) time and space complexity. Since we can write,

[H−1k gk](i) = g
(i)
k /D(i,i) −

∑
j g

(j)
k /D(j,j)

1/z +
∑
j 1/D(j,j)

(
1/D(i,i)

)
the inversion can be done in Õ(V) time.

4. We choose the class that maximizes the posterior p(y|x) = p(x|y)p(y)
p(x) ,

y∗ = argmax
k∈{1,...,K}

p(y = k|x∗) = argmax
k∈{1,...,K}

p(x∗|y = k)p(y = k) = argmax
k∈{1,...,K}

pdm(x∗;αk)θ(k)

5. In the given Bayesian formulation, we can write the joint and log-joint probability as,

p(D, θ, α1, . . . , αK) = p(θ)

(
K∏
k=1

p(αk)

)
p(D|θ, α1, . . . , αK)

=

(
Γ(
∑
k θ

(k)
0)∏

k Γ(θ
(k)
0)

K∏
k=1

θ(k)
θ
(k)
0 −1

)(
K∏
k=1

1

(2π)K/2(1/2λ)K/2
exp

(
−λ‖αk‖2

))
p(D|θ, α1, . . . , αK)

˜̀(D, θ, α1, . . . , αK) =

K∑
k=1

(θ
(k)
0 − 1) log θ(k) +

K∑
k=1

−λ‖αk‖2 + `(θ, α1, . . . , αK ;D) + C(θ0, λ)

where C(θ0, λ) is a constant term.
As before, by writing out the Lagrangian and optimizing for θ we get,

θ̂(k) :=
nk + θ

(k)
0 − 1

n+
∑
j θ

(j)
0 −K

As for αk, the partial derivatives are ,

∂ ˜̀

∂α
(s)
k

=
∂`

∂α
(s)
k

− 2λαk,
∂2 ˜̀

∂α
(s)
k

2 =
∂2`

∂α
(s)
k

2 − 2λ
∂2 ˜̀

∂α
(s)
k ∂α

(t)
k

=
∂2`

∂α
(s)
k ∂α

(t)
k

We can perform the Newton’s step efficiently using the same trick by setting z to be the same as before
and

g
(s)
k = nkΨ(Ak)−

n∑
i=1

Ψ(mi +Ak) +

n∑
i=1

Ψ(x
(s)
i + α

(s)
k)− nkΨ(α

(s)
k)− 2λαk

Dss =
∑
i∈[k]

Ψ′(x
(s)
i + α

(s)
k)− nkΨ′(α

(s)
k)− 2λ

4

2.2 Experiment

This is our Matlab implementation.

function [theta, alpha] = trainPDA(X, y, theta0, lambda)

% Prelims

K = numel(unique(y));

V = size(X, 2);

numData = size(X, 1);

% MAP for theta

table = tabulate(y);

adjustedFreqs = table(:,2) + theta0 - 1;

theta = adjustedFreqs/sum(adjustedFreqs);

% MAP for alpha

alpha = zeros(K, V);

for k = 1:K

Xk = X(y==k, :);

alpha(k, :) = newtonRaphsonPDA(Xk, lambda);

end

end

function [alpha_k] = newtonRaphsonPDA(Xk, lambda)

% Prelims

numNRIters = 10; % Just use 5 iterations of NR

nk = size(Xk, 1); % number of training data in this class

m = sum(Xk, 2); % number of words in each documents

initPt = sum(Xk); initPt = initPt/sum(initPt); % Initialization

% Now perform Newton’s

alpha_k = initPt; % alphak in the current iteration

for nrIter = 1:numNRIters

% Compute the following

Ak = sum(alpha_k);

XplusAlpha = bsxfun(@plus, Xk, alpha_k);

% The gradient

g = nk * psi(Ak) - sum(psi(m + Ak)) + sum(psi(XplusAlpha)) ...

- nk * psi(alpha_k) - 2 * lambda * alpha_k;

% The value z (see solutions)

z = nk * psi(1, Ak) - sum(psi(1, m + Ak));

% The diagonal of the Hessian

D = sum(psi(1, XplusAlpha)) - nk * psi(1, alpha_k) - 2*lambda;

% Newton’s step update

Hinvg = g./D - (1./D) * sum(g./D) / (1/z + sum(1./D));

alpha_k = alpha_k - 1*Hinvg;

end

end

function logL = classLogLikelihoods(X, alphak)

5

% Prelims

Ak = sum(alphak);

m = sum(X, 2); % number of words in each documents

XplusAlpha = bsxfun(@plus, X, alphak);

% Compute the log likelihood

logL = gammaln(Ak) - gammaln(m + Ak) + ...

sum(gammaln(XplusAlpha), 2) - sum(gammaln(alphak));

end

function [preds, classLogJoints] = predictPDA(X, theta, alpha)

% prelims

n = size(X, 1);

K = numel(theta);

% First obtain the class log joint probabilities

classLogLs = zeros(n, K);

for k = 1:K

classLogLs(:, k) = classLogLikelihoods(X, alpha(k, :));

end

classLogJoints = bsxfun(@plus, classLogLs, log(theta’));

% Finally obtain the predictions

[~, preds] = max(classLogJoints, [], 2);

end

3 Duality

3.1 Weak Duality

1. L(x, λ, u) = f(x) + λh1(x) + uh2(x)

2. g(λ, u) = infx∈Rd L(x, λ, u)

3. Let P denote the feasible region of the primal. If x ∈ P , that is, h1(x) ≤ 0, h2(x) = 0, then for any
λ ≥ 0, u ∈ R, we have f(x) ≥ f(x) + λh1(x) + uh2(x) = L(x, λ, u). Taking infimums over x ∈ P ,

inf
x∈P

f(x) ≥ inf
x∈P

L(x, λ, u) ≥ inf
x∈Rd

L(x, λ, u) = g(λ, u)

The last inequality holds because P ⊆ Rd. The required result follows from the observation that the
above inequality holds for ∀λ ≥ 0, u.

6

3.2 Optimal Coding

1. Let P denote the feasible region. It is sufficient to show that xα = αx+ (1− α)y ∈ P given x, y ∈ P ,
for α ∈ (0, 1). Using weighted AM-GM inequality and the feasibility of x, y, we can write

n∑
i=1

2−(αxi+(1−α)yi) ≤
n∑
i=1

α2−xi + (1− α)2−yi = α

n∑
i=1

2−xi + (1− α)

n∑
i=1

2−yi ≤ α+ (1− α) = 1

So xα satisfies the first inequality constraint. Further it is clear that xi, yi ≥ 0⇒ xαi ≥ 0. So xα ∈ P ,
which proves the convexity of P.

2. Suppose for the purpose of contradiction that an optimal solution x∗ satisfies the strict inequality, that
is,
∑n
i=1 2−x

∗
i < 1. ∀j, x∗j > 0, because otherwise,

∑n
i=1 2−x

∗
i > 1. So, one of the xj ’s can be reduced

so that the objective is reduced while still maintaining feasibility. This means x∗ is not an optimal
solution, which is a contradiction.

3. For λ ∈ R, ui ≥ 0, the Lagrange function is

L(x, λ, u) =

n∑
i=1

pixi + λ(

n∑
i=1

2−xi − 1)−
n∑
i=1

uixi (1)

Let (x, λ, u) satisfy KKT conditions. From complementary slackness, ∀i ∈ [n], we have uixi = 0. As
shown in the previous part, xi > 0 for any feasible point, which means ui = 0. L(x, λ, u) is convex in x
as the first and third terms in (1) are linear and the Hessian of the second term is positive definite. So
the stationarity condition 0 ∈ ∂L(x) becomes 0 = ∇L(x) when L is treated as a function of x alone.
∀i ∈ [n], as ui = 0

∂L

∂xi
= pi − λ2−xi log 2− ui = pi − λ2−xi log 2.

∂L
∂xi

= 0⇔

pi = (λ log 2)2−xi . (2)

Summing over i, and noting that
∑n
i=1 2−xi = 1, we get

n∑
i=1

pi = λ log 2

n∑
i=1

2−xi

1 = λ log 2

So λ = 1/ log 2 and from (2), we have pi = 2−xi and hence xi = − log2 pi. It is easy to verify that
xi = − log2 pi, λ = 1/ log 2, ui = 0 satisfy the KKT conditions and hence it is the optima.

4 SVM and Perceptron (Veeru)

4.1

Start with the primal and write the KKT conditions. For notation, I will use equations (48)-(56) from Chris
Burges tutorial on SVM(http://www.umiacs.umd.edu/ ramanath/svm.pdf).

αi = 0
(50)⇒ µi = C

(56)⇒ ξi = 0
(51)⇒ yif(xi) ≥ 1

0 < αi < C
(50),(55)⇒ µi > 0, yif(xi)− 1 + ξi = 0

(56)⇒ ξi = 0, yif(xi)− 1 + ξi = 0⇒ yif(xi) = 1.

αi = C
(55)⇒ yif(xi)− 1 + ξi = 0

(52)⇒ yif(xi) ≤ 1

7

http://www.umiacs.umd.edu/~ramanath/svm.pdf

4.2

Let me know if you have any difficulty with this.

4.3 Mistake bound for Perceptron

Let (xk, yk) be the datapoint for which the perceptron fails in the kth step, k ∈ N. That is, 〈wk−1, ykxk〉 < 0.
We have wk = wk−1 + ykxk from the algorithm.

1. Using this, and the fact that ∀i ∈ [n], 〈yixi, w∗〉 ≥ δ, we can write

〈wk, w∗〉 = 〈wk−1, w∗〉+ 〈ykxk, w∗〉 ≥ 〈wk−1, w∗〉+ δ

Telescoping and using w0 = 0, we get 〈wk, w∗〉 ≥ kδ.

2.

‖wk‖2 = ‖wk−1 + ykxk‖2

= ‖wk−1‖2 + 2〈wk−1, ykxk〉+ ‖ykxk‖2

≤ ‖wk−1‖2 + ‖xk‖2

≤ ‖wk−1‖2 +M2

We used 〈wk−1, ykxk〉 < 0 and yk = ±1 to get the first inequality. Again telescoping and using w0 = 0,
we arrive at ‖wk‖2 ≤ kM2.

3.

kM2 ≥ ‖wk‖2 ≥ 〈wk, w∗〉2 ≥ k2δ2.

We used the second part in the first inequality and the first part in the third inequality. The second
inequality is obtained by noting that ‖w∗‖ = 1 and using Cauchy-Schwartz inequality. From kM2 ≥
k2δ2, it easily follows that k ≤M2/δ2.

References

[Min00] Thomas P. Minka. Estimating a Dirichlet Distribution. Technical report, 2000.

8

	Regression (Samy)
	Multi-Task Regresion
	Shrinkage in Ridge Regression
	Local/Weighted Linear Regression
	Least Norm Solution

	Pólya Discriminant Analysis (Samy)
	Model
	Experiment

	Duality
	Weak Duality
	Optimal Coding

	SVM and Perceptron (Veeru)
	
	
	Mistake bound for Perceptron

