
10-715 Advanced Introduction to Machine Learning
Homework 2 Solutions October 26, 2014

1 More Regression & Classification (Samy)

1.1 Optimal Classification & Regression

1. Let g be the Bayes Classifier and f be any other rule. SinceR(f)−R(g) = E [P(Y 6= f(X)|X)− P(Y 6= g(X)|X)|X]
it is sufficient to show that R = P(Y 6= f(X))− P(Y 6= g(X)) ≥ 0.

R = f(X)P(Y 6= 1|X) + (1− f(X))P(Y = 1|X)− (g(X)P(Y 6= 1|X) + (1− g(X))P(Y = 1|X))

= 2 (E[Y |X]− 1/2) (g(X)− f(X)) ≥ 0

The last step follows by noting that E[Y |X] = P(Y = 1|X). The inequality follows by noting that
g(X) ≥ 0 iff E[Y |X] ≥ 1/2.

2. Let g(X) = E[Y |X] and f : X → Y be any other rule.

EXY [(f(X)− Y)2] = EXY
[
(f(X)− g(X))2 + (g(X)− Y)2 + 2(f(X)− g(X))(g(X)− Y)

]
= EX

[
(f(X)− g(X))2

]
+ EXY

[
(g(X)− Y)2

]
+ 2EX [(f(X)− g(X))EY [(g(X)− Y)|X]]

≥ EXY
[
(g(X)− Y)2

]
The last step follows by noting that EY [(g(X)− Y)|X] = g(X)−EY [Y |X] = 0 and that EX

[
(f(X)− g(X))2

]
≥

0.

1.2 Support Vector Regression

1. By introducing slack variables si s.t. si = |yi − f(xi)| − ε if |yi − f(xi)| > ε and 0 otherwise, we have
the following problem

minimize
w,s

1

2
‖w‖2 + c

n∑
i=1

si

subject to si ≥ 0 i = 1, . . . , n

|yi − x>i w| ≤ si + ε i = 1, . . . , n

By writing s ∈ Rn and denoting �,� to denote elementwise inequalities we obtain the following
quadratic program.

minimize
w,s

1

2
w>w + c1>s

subject to s � 0

− s− ε1 � y −Xw � s+ ε1

In the Lagrangian, we use λ1, λ2, λ3 ∈ Rn to denote the dual variables for the three inequality con-
straints above.

L(w, s, λ1, λ2, λ3) =
1

2
w>w + c1>s− λ>1 s+ λ>2 (y −Xw − s− ε1) + λ>3 (−s− ε1− y +Xw)

=
1

2
w>w +

[
X>(λ3 − λ2)

]>
w + (c1− λ1 − λ2 − λ3)>s+ (λ2 − λ3)>y − ε(λ2 + λ3)>1

1

We may derive the dual via the KKT Conditions. First compute the derivatives w.r.t to the primal
variables.

∇wL = w +X>(λ3 − λ2) := 0

∇sL = c1− λ1 − λ2 − λ3 := 0

Write µ = λ2 − λ3. By setting the above to 0 and observing dual feasibilty gives us,

λ1 � 0 =⇒ λ2 + λ3 � c1 =⇒ 2λ2 − µ � c1
λ3 � 0 =⇒ λ2 � µ

Accordingly, we have the following dual QP

maximize
λ2,µ

− 1

2
µ>XX>µ+ (y + ε1)>µ− 2ελ>2 1

subject to 2λ2 � µ+ c1

λ2 � µ
λ2 � 0

2. To Kernelize the algorithm, we replace XX> via a kernel matrix K = (k(xi, xj))ij ∈ Rn×n and solve,

maximize
λ2,µ

− 1

2
µ>Kµ+ (y + ε1)>µ− 2ελ>2 1

subject to 2λ2 � µ+ c1

λ2 � µ
λ2 � 0

The prediction at a new point x∗ is f̂(x∗) =
∑n
i=1 µik(xi, x∗).

To see this, the prediction from the primal solution w is, f̂(x∗) = w>x∗. If we solve the dual problem,

then f̂(x) = µ>Xx∗. In the kernelized version, denote the mapping of x∗ by φ(x∗) and the mapping of

the training data by Φ. Then f̂(x∗) = µ>Φφ(x∗) which can be computed using just the inner prducts

as f̂(x∗) =
∑n
i=1 µik(xi, x∗)

3. In classification, the support vectors are those points whose inequality constraints are active and
are used in computing the prediction. Here, similarly they are the points for which si > 0 in the
primal problem and hence by complementary slackness λ1i = 0 ⇔ 2λ2i = µi + c in the dual problem.
Geometrically, these are the points that lie outside an ε-tube of the estimated function.

4. This is our implementation.

function [params, svs] = dualSVMRegression(K, y, c, eps)

N = size(y, 1);

cvx_begin

variables muu(N) lambda2(N)

maximize(-0.5* muu’ * K * muu + (y + eps)’*muu - 2*eps * sum(lambda2));

subject to

2*lambda2 <= muu + c;

lambda2 >= muu;

lambda2 >= 0;

cvx_end

params.muu = muu;

2

params.lambda2 = lambda2;

svs = abs(2*lambda2 - muu -c) < 1e-5;

end

function K = rbfKernel(X, Y, h)

D = dist2(X, Y);

K = exp(-D/(2*h^2));

end

function preds = dualSVMPredict(params, k)

preds = params.muu’ * k;

end

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Linear Kernel

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

RBF Kernel

2 Expectation Maximization (Samy)

2.1 EM Basics

The solutions are straightforward. Please see the slides.

2.2 Pólya Mixture Model

2.2.1 Model

Conditioned on zi = k,mi the distribuiton of x corresponds to a Dirichlet Multinomial with parameters
mi, αk. Its mass function and the logarithm is

pdm(xi;αk) =
Γ(Ak)

Γ(mi +Ak)

V∏
s=1

Γ(x
(s)
i + α

(s)
k)

Γ(α
(s)
k)

log pdm(xi;αk) = log Γ(Ak)− log Γ(mi +Ak) +

V∑
s=1

(
log Γ(x

(s)
i + α

(s)
k)− log Γ(α

(s)
k)
)

where Ak =
∑V
s=1 α

(s)
k and mi =

∑V
s=1 x

(s)
i .

3

Let Θ = θ, α1, . . . , αK . The likelihood and log likelihood of the data D = (xi)
n
i=1 is given by,

p(D|Θ) =

n∏
i=1

K∑
k=1

p(xi, zk; Θ)

˜̀(Θ|D) =

n∑
i=1

log

K∑
k=1

p(xi, zk; Θ)

where, p(xi, zk; Θ) = p(zk; Θ)p(xi|zk; Θ) = θ(k)pdm(xi;αk)

Accordingly, the joint probability of the parameters and the data and its log are given by,

p(D,Θ) = p(θ)

(
K∏
k=1

p(αk)

)
p(D|Θ)

=

(
Γ(
∑
k θ

(k)
0)∏

k Γ(θ
(k)
0)

K∏
k=1

θ(k)
θ
(k)
0 −1

)(
K∏
k=1

1

(2π)K/2(1/2λ)K/2
exp

(
−λ‖αk‖2

))
p(D|Θ)

`(Θ,D) =

K∑
k=1

(θ
(k)
0 − 1) log θ(k) +

K∑
k=1

−λ‖αk‖2 + `(Θ|D) + C(θ0, λ)

The log joint probability can be bounded via `(Θ,D) ≥ `b(Θ;D) where,

`b(Θ;D) =

K∑
k=1

(θ
(k)
0 − 1) log θ(k) − λ

K∑
k=1

‖αk‖2 +

n∑
i=1

K∑
k=1

R(zk|xi) log

(
p(xi, zk; Θ)

R(zk|xi)

)
+ C(θ0, λ)

Here R(zk|xi) is any distribution on the zk’s. In E step we set it to R(zk|xi) = p(zk|xi; Θ) where the class
posterior probabilities are computed using the current estimates for Θ. Let Sk =

∑n
i=1R(zk|xi).

In the M-step we maximize the above w.r.t Θ. We can write `b(Θ;D) = `0(θ) +
∑K
k=1 `k(αk) +C1 where C1

is a constant that does not affect the optimization and

`0(θ) =

K∑
k=1

(θ
(k)
0 − 1 + Sk) log θ(k)

`k(αk) = −λ‖αk‖2 +

n∑
i=1

R(zk|xi)

(
log Γ(Ak)− log Γ(mi +Ak) +

V∑
s=1

(
log Γ(x

(s)
i + α

(s)
k)− log Γ(α

(s)
k)
))

= −λ‖αk‖2 + Sk log Γ(Ak)−
n∑
i=1

R(zk|xi) log Γ(mi +Ak) +

n∑
i=1

R(zk|xi)
V∑
s=1

log Γ(x
(s)
i + α

(s)
k)− Sk

V∑
s=1

log Γ(α
(s)
k)

To optimize w.r.t θ we write out the Lagrangian and obtain the derivatives. The maximum can be found to
be,

θ̂(k) :=
Sk + θ

(k)
0 − 1

n+
∑
j θ

(j)
0 −K

To maximize w.r.t αk we use a Newton scheme as before. The first and second derivatives of `k are,

∂`k

∂α
(s)
k

= −2λα
(s)
k + SkΨ(Ak)−

n∑
i=1

R(zk|xi)Ψ(mi +Ak) +

n∑
i=1

R(zk|xi)Ψ(x
(s)
i + α

(s)
k)− SkΨ(α

(s)
k)

∂2`k

∂α
(s)
k

2 = −2λ+ SkΨ′(Ak)−
n∑
i=1

R(zk|xi)Ψ′(mi +Ak) +

n∑
i=1

R(zk|xi)Ψ′(x(s)i + α
(s)
k)− SkΨ′(α

(s)
k)

∂2`k

∂α
(s)
k ∂α

(t)
k

= SkΨ′(Ak)−
n∑
i=1

R(zk|xi)Ψ′(mi +Ak)

4

The Newton step update is given by αnewk ← αoldk −H−1k gk where g
(s)
k = ∂`k

∂α
(s)
k

and H
(s,t)
k = ∂2`k

∂α
(s)
k ∂α

(t)
k

. As

before, we can use the Sherman Morrison formula to compute the Newton step in Õ(V) time. We can write
Hk = Dk + z11> where,

D
(s,s)
k = −2λ+

n∑
i=1

R(zk|xi)Ψ′(x(s)i + α
(s)
k)− SkΨ′(α

(s)
k)

z = SkΨ′(Ak)−
n∑
i=1

R(zk|xi)Ψ′(mi +Ak)

and then, [H−1k gk](i) = g
(i)
k /D(i,i) −

∑
j g

(j)
k /D(j,j)

1/z+
∑

j 1/D(j,j)

(
1/D(i,i)

)
.

To summarize, our learning algorithm is as follows:

• Initialize: t = 0, Set θ[0], αk[0] to reasonable values.

• Repeat until convergence:

– t = t+ 1

– E-step
- Compute

R(zk|xi) = p(zk|xi; Θ[t]) =
θ[t](k)pdm(xi;αk[t])∑K
j=1 θ[t]

(j)pdm(xi;αj [t])

- Compute Sk =
∑n
i=1R(zk|xi).

– M-step
- Set

θ̂(k) :=
Sk + θ

(k)
0 − 1

n+
∑
j θ

(j)
0 −K

- Maximize w.r.t the αk’s as outlined above.

Finally, to obtain the prediction at a new point we choose the class that maximizes the posterior p(z|x) =
p(x|z)p(z)
p(x) ,

z∗ = argmax
k∈{1,...,K}

p(z = k|x∗) = argmax
k∈{1,...,K}

p(x∗|z = k)p(z = k) = argmax
k∈{1,...,K}

pdm(x∗;αk)θ(k)

2.2.2 Experiment

Our Implementation is as follows,

function [theta, alpha] = trainPMM(X, K, theta0, lambda, thetaInit, alphaInit)

% X is an nxV matrix, y is an nx1 vector

% This function returns

% theta: a Kx1 vector indicating the class probabilities

% alpha: a KxV matrix

% Prelims

V = size(X, 2);

numData = size(X, 1);

numEMIters = 10;

5

% Perform EM

theta = thetaInit;

alpha = alphaInit;

for emIter = 1:numEMIters

fprintf(’EM Iter: %d\n’, emIter);

[theta, alpha] = emPMM(X, K, theta0, lambda, theta, alpha);

end

end

% This function performs EM

function [theta, alpha] = emPMM(X, K, theta0, lambda, thetaPrev, alphaPrev)

% prelims

n = size(X, 1);

V = size(X, 2);

% E-step

%%

% First obtain the class log likelihoods

classLogLs = zeros(n, K);

for k = 1:K

classLogLs(:, k) = classLogLikelihoods(X, alphaPrev(k, :));

end

% Add the prior to obtain the joint

classLogJoints = bsxfun(@plus, classLogLs, log(thetaPrev’));

shiftClassLogJoints = ...

bsxfun(@minus, classLogJoints, max(classLogJoints, [], 2));

shiftLogJoints = exp(shiftClassLogJoints);

R = bsxfun(@rdivide, shiftLogJoints, sum(shiftLogJoints, 2));

% logJoints = log_sum_exp(classLogJoints’)’;

% R = exp(bsxfun(@minus, classLogJoints, logJoints));

S = sum(R);

% M-step

%%

% First theta

theta = theta0 + S’ -1;

theta = theta / sum(theta);

% Then alpha

alpha = zeros(K, V);

for k = 1:K

% Iterate through each class and obtain the alpha_k’s

alpha(k, :) = newtonRaphsonPMM(X, R(:,k), S(k), lambda);

end

end

% This function implements Newton’s Method.

function [alphak] = newtonRaphsonPMM(X, Rk, Sk, lambda)

6

% Prelims

numNRIters = 10; % Just use 10 iterations of NR

V = size(X, 2); % size of vocabulary

n = size(X, 1); % number of training data in this class

m = sum(X, 2); % number of words in each documents

% Set up initializations

initPt = sum(bsxfun(@times, X, Rk));

initPt = initPt / sum(initPt);

nrProgress = zeros(numNRIters, 1);

alphak = initPt; % alphak in the current iteration

for nrIter = 1:numNRIters

% Compute the following

Ak = sum(alphak);

XplusAlpha = bsxfun(@plus, X, alphak);

% The gradient

g = Sk * psi(Ak) - Rk’ * psi(m + Ak) + Rk’ * psi(XplusAlpha) ...

- Sk * psi(alphak) - 2 * lambda * alphak;

% The value z (see solutions)

z = Sk * psi(1, Ak) - Rk’ * psi(1, m + Ak);

% The diagonal of the Hessian

D = Rk’ * psi(1, XplusAlpha) - Sk * psi(1, alphak) - 2*lambda;

% Newton’s step update

Hinvg = g./D - (1./D) * sum(g./D) / (1/z + sum(1./D));

alphak = alphak - 1*Hinvg;

% DEBUG

nrProgress(nrIter) = Rk’ * classLogLikelihoods(X, alphak);

end

% nrProgress,

end

function logP = classLogJointProb(X, alphak, lambda)

% Computes the log joint probability for one class (ignoring the constants).

logL = classLogLikelihoods(X, alphak);

logP = sum(logL) - lambda * norm(alphak)^2;

end

function logL = classLogLikelihoods(X, alphak)

% X is an nxV matrix, alphak is the class Dirichlet parameter. logL is a nx1

% vector with the log likelihood of each point

% Prelims

Ak = sum(alphak);

V = size(X, 2); % size of vocabulary

n = size(X, 1); % number of training data in this class

m = sum(X, 2); % number of words in each documents

XplusAlpha = bsxfun(@plus, X, alphak);

7

% Compute the log likelihood

logL = gammaln(Ak) - gammaln(m + Ak) + ...

sum(gammaln(XplusAlpha), 2) - sum(gammaln(alphak));

end

function [preds, classLogJoints] = predictPMM(X, theta, alpha)

% X is an nxV matrix. theta, alpha are the learned parameters.

% preds (nx1) is the predictions for X

% post (nxK) is the posterior for each class

% prelims

n = size(X, 1);

V = size(X, 2);

K = numel(theta);

% First obtain the class log likelihoods

classLogLs = zeros(n, K);

for k = 1:K

classLogLs(:, k) = classLogLikelihoods(X, alpha(k, :));

end

% Add the prior to obtain the joint

classLogJoints = bsxfun(@plus, classLogLs, log(theta’));

% Finally obtain the predictions

[~, preds] = max(classLogJoints, [], 2);

end

3 Kernels and RKHS (Veeru)

3.1 Image similarity functions

1. Let d denote the number of possible 16 × 16 pixel patches. As each pixel can take 256 values, d =
25616×16. Define feature map φ from the space of arbitrary rectangular pictures to {0, 1}d by setting
1 in a position if the corresponding patch is present in the picture, 0 otherwise. It is easy to see that
k1(x, x′) = 〈φ(x), φ(x′)〉 for this φ.

2. Let A,B denote a two patches with all 0’s and all 1’s respectively. Let x1, x2, x3 be three pictures with
x1 = A, x2 = B, x3 = [AB](A,B horizontally concatenated. Then the Gram matix is K is not positive
semi-definite.

3.2 Positive definiteness of Gaussian Kernel

1. Let x1, x2, xn be arbitrary points in Rd. Let K1,K2 be the Gram matrices of k1, k2 for these points.
Then the Gram matrix of k is αK1 + βK2 which is � 0 because K1,K2 � 0 and α, β ≥ 0.

2. Let K1,K2 be the Gram matrices of k1, k2. Then their element-wise product K = K1 ◦K2 is the Gram
matrix of k. Let U, V be independent zero-mean Gaussian random variables with covariance matrices

8

K1,K2. Then the covariance matrix of U ◦ V is K1 ◦K2 as its ijth element is

E[UiViUjVj] = E[UiUj]E[ViVj] = (K1)ij(K2)ij

which means K � 0.

3. Let the partial sums in the Taylor expansion of exp(k) be

km =

m∑
i=1

ki

i!
, so that exp(k) = lim

m→∞
km.

km is a valid kernel for m ∈ N. Let xi, i ∈ [n] be n arbitrary points in Rd. Let u ∈ Rn. Let ε > 0.
∃m0 ∈ N 3 m ≥ m0 ⇒ |k(xi, xj)− km(xi, xj)| < ε. Let m ≥ m0 and let K,Km be the Gram matrices
of k, km respectively for x1, · · · , xn.

|uTKu− uKmu| = |
∑
i,j

uiuj(K −Km)ij | ≤ εuTu⇒ uTKu ≥ uKmu− εuTu ≥ −εuTu

Thus, given any u ∈ Rn, and ε > 0, we can show uKu ≥ −εuTu, which means uTKu ≥ 0. This shows
that K � 0 and hence exp(k) is a positive definite kernel.

4. Let psi(x) = exp(−δ‖x‖2). Write

k(x, x′) = exp(−δ‖x− x′‖2) = ψ(x)ψ(x′) exp(δ〈x, x′〉)

Let k1(x, x′) = ψ(x)ψ(x′). Then for arbitrary points x1, x2, · · · , xn, the Gram matrix constructed from
k1 would be the outer product

[ψ(x1), · · · , ψ(xn)][ψ(x1), · · · , ψ(xn)]T

which is � 0, and hence k1 is a positive definite kernel. Now using parts 3 and 2 of this subproblem,
k is a positive definite kernel.

5. Let k1 = exp(−k) and let x, y be two distint points. We will show that k21(x, y) > k1(x, x)k1(y, y)
which means k1 is not a positive definite kernel.

k21(x, y) > k1(x, x)k1(y, y)

⇔ e−2k(x,y) > e−k(x,x)e−k(y,y)

⇔ −2k(x, y) > −k(x, x)− k(y, y)

⇔ ‖k(x, .)− k(y, .)‖2 > 0

which is true.

3.3 Checking validity by Fourier transforms

1. Define f : R → R by f(x) = exp(−δx2). Its Fourier transform f̃R → R can be lookedup up from
Wikipedia:

f̃(a) =

∫
R
e2πaxe−δx

2/2 dx =
√
π/δe−π

2a2/δ > 0

The Fourier transform of k′ is

k̃′(w) =

∫
Rd

e2πi〈w,x〉e−δ‖x‖
2

dx =

∫
Rd

d∏
i=1

e2πwixie−δx
2
i dx =

d∏
i=1

∫
R
e2πwixie−δx

2
i dxi =

d∏
i=1

f̃(wi)

which is positive and so k′ is positive definite.

9

2. Define f : R → R by f(x) = 1
1+x2 . Its Fourier transform f̃R → R can be lookedup up from

Wikipedia(characterstic function of univariate Cauchy distribution):

f̃(a) =

∫
R
e2πax

1

1 + x2
dx = πe−2π|a| > 0

The Fourier transform of k′ is

k̃′(w) =

∫
Rd

e2πi〈w,x〉
d∏
i=1

1

1 + x2i
dx =

∫
Rd

d∏
i=1

e2πwixi
1

1 + x2i
dx =

d∏
i=1

∫
R
e2πwixi

1

1 + x2i
dxi =

d∏
i=1

f̃(wi)

which is positive and so k′ is positive definite.

3.4 RKHS from the eigen functions of the kernels integral operator

Let f ∈ H. Then f can be written as f =
∑∞
j=1 ajφj , for some reals aj .

〈f, k(x, .)〉 =

〈 ∞∑
j=1

ajφj ,

∞∑
i=1

λiφi(x)φi

〉
=

∞∑
j=1

ajλjφ(x)/lambdaj =

∞∑
j=1

ajφ(x) = f(x)

3.5 Optimizing over an RKHS

Let f∗ be a minimizer. By Representer theorem, there exists αi ∈ R, i ∈ [n] such that f∗ =
∑n
i=1 αik(xi, .).

Let K denote the Gram matrix for the data points xi, i ∈ [n]. Note that f∗(xi) = (Kα)i and ‖f∗‖2 = αTKα.
f∗ is an optimizer for the given problem

⇔ α minimizes ‖y −Kα‖2 + λαTKα

⇔ K(Kα− y) + λKα = 0

⇔ (K + λI)(Kα) = Ky

⇔ Kα = (K + λI)−1Ky

Notice that K + λI � 0 and hence invertible because K � 0 and λI � 0. For the fitted values,

ŷ = f∗(x) = Kα = (K + λI)−1Ky,

which of the form ŷ = Sy with S = (K + λI)−1K.

3.6 Some computational considerations for SVM

1. O(m2)

2. O(md)

3. O(n log d where n is the number of random projections used.

10

	More Regression & Classification (Samy)
	Optimal Classification & Regression
	Support Vector Regression

	Expectation Maximization (Samy)
	EM Basics
	Pólya Mixture Model
	Model
	Experiment

	Kernels and RKHS (Veeru)
	Image similarity functions
	Positive definiteness of Gaussian Kernel
	Checking validity by Fourier transforms
	RKHS from the eigen functions of the kernelâ•Žs integral operator
	Optimizing over an RKHS
	Some computational considerations for SVM

