
10-715 Advanced Introduction to Machine Learning
Homework 3 Due Nov 12, 10.30 am

Rules

1. Homework is due on the due date at 10.30 am. Please hand over your homework at the beginning of
class. Please see course website for policy on late submission.

2. We recommend that you typeset your homework using appropriate software such as LATEX . If you are
writing please make sure your homework is cleanly written up and legible. The TAs will not invest
undue effort to decrypt bad handwriting.

3. You must hand in a hard copy of the homework. The only exception is if you are out of town in which
case you can email your homeworks to both the TAs. If this is the case, your homeworks must be
typeset using proper software. Please do not email written and scanned copies. Your email must reach
the TAs by 10.30 am on the due date.

4. You are allowed to collaborate on the homework, but should write up your own solution and code.
Please indicate your collaborators in your submission.

5. Please hand in the solutions to Problems 1,2 and Problem 3 separately. Write your name, andrew id
and department on both submissions.

6. Please staple your homeworks.

7. If you are confused about of any of the terms you may refer Wikipedia. We have introduced some new
concepts and methods that were not discussed in class. You should be able to find all of the required
definitions on Wikipedia.
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1 Dimensionality Reduction (Samy)

1.1 Principal Components Analysis

Principal Components Analysis (PCA) is a popular method for linear dimensionality reduction.

PCA attempts to find a lower dimensional subspace such that when you project the data onto the subspace
as much of the variance is preserved. Say we have data X = [x>1 ; . . . ;x>n ] ∈ Rn×D where each point is
x = [x(1), . . . , x(D)] ∈ RD. We wish to find a d (< D) dimensional subspace A = [a1, . . . , ad] ∈ RD×d
ai ∈ RD, A>A = Id, so as to maximize 1

n

∑n
i=1 ‖A>xi‖2.

1. (2 Points) We want to find a1 to maximize 1
n

∑
i(a
>
1 Xi)

2. Show that a1 is the first right singular
vector of X.

2. (3 Points) Given a1, . . . , ak, let Ak = [a1, . . . , ak] and x̃i = xi − AA>xi. We wish to find ak+1, to
maximize 1

n

∑
i(a
>
k+1x̃i)

2. Show that ak+1 is the (k + 1)th right singular vector of X.

1.2 Affine Subspace Identification (ASI)

We will now motivate the dimensionality reduction problem in a slightly different perspective. The resulting
algorithm has many similarities to PCA. We will refer to method as Affice Subspace Identification (ASI).

You are given data (xi)
n
i=1, xi ∈ RD. Let X = [x>1 ; . . . x>n ] ∈ Rn×D. We suspect that the data actually

lies in a d dimensional affine subspace plus some gaussian noise. Our objective is to find a d dimensional
representation z for x–this can be used as a preprocessing step before an algorithm. In particular, we are
not after any interpretation for this lower dimensional representation.

We will assume d < n and that the span of the data has dimension larger than d. Further, our method
should work whether n > D or n < D.

We wish to find parameters A ∈ RD×d, b ∈ RD and a lower dimensional representation Z ∈ Rn×d so as to
minimize

J(A, b, Z) =
1

n

n∑
i=1

‖xi −Azi − b‖2.

Here Z = [z>1 ; . . . ; z>n ] and zi is the representation for xi.

1. (1 Point) Let C ∈ Rd×d be invertible and d ∈ Rd. Show that both (A1, b1, Z1) and (A2, b2, Z2) achieve
the same value on the objective J . Here, A2 = A1C

−1, b2 = b1 −A1C
−1d and Z2 = Z1C

> + 1d>.

Therefore in order to make the problem determined we need to impose some constraint on Z. We will assume
that the zi’s have zero mean covariance Ψ where Ψ is given.

Z̄ =
1

n

n∑
i=1

zi = 0, S =
1

n

n∑
i=1

ziz
>
i = Ψ

1. (6 Points) Outline a procedure to solve the above problem. Specify how you would obtain A,Z, b
which minimize the objective and satisfy the constraints.
Hint: The rank k approximation of a matrix in Frobenius norm is obtained by taking its SVD and
then zeroing out all but the first k singular values.

2. (1 Point) You are given a new point x∗. Give the rule to obtain the d dimensional representation x∗
for the new point.
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1.3 Factor Analysis (FA)

Factor analysis is a generative model for linear dimensionality reduction. As before we will assume a d(< n)
dimensional latent space. However, this time we assume the following generative process for the data.

Rd 3 z ∼ N (0,Ψ)

RD 3 x|z ∼ N (Az + b, η2I)

where Ψ is already known. The model says that we first sample a d dimensional Gaussian with zero mean
and variance Ψ. Then we map it to D dimensions by computing Az + b. Finally, we add some spherical
Gaussian noise with variance η2 on each dimension.

We will use an EM procedure to learn the parameters A, b, η. So far we were only looking at EM with
discrete latent variables. In this case we will look at EM with a parametric continuous latent space.

The following results will be useful for us:

Fact 1 (Conditional of a Gaussian). Say (Y1, Y2), Yi ∈ Rdi is Gaussian distribued.(
Y1
Y2

)
= N

((
µ1

µ2

)
,

[
Σ11 Σ12

Σ>12 Σ22

])
Then, conditioned on Y1 = y1 the distribution for Y2 is

Y2|Y1 = y1 ∼ N (µ2 + Σ>12Σ−111 (y1 − µ1), Σ22 − Σ>12Σ−111 Σ12)

Fact 2 (Some Matrix Derivatives). Let X ∈ Rr×c, and u ∈ Rr, v, w ∈ Rc.

∇Xv>X>u = uv>

∇Xv>X>Xw = X(vw> + wv>)

1. (4 Points) Write down the joint distribution of (z, x). Use this to derive the marginal distribution of
x and the conditional distribution z|x.
The conditional distribution z|x will be useful for us when performing the E-step. In addition, one
option for the lower dimensional representation of xi will be the conditional mean E[z|xi].

2. (3 Points) First obtain the Maximum Likelihood Estimate for b. This does not require EM and can
be done easily.

3. (1 Point) Obtain a lower bound on the log likelihood using R(zi|xi) - the conditional distribution for
zi given xi.

4. (2 Points) Write down the E-step update at the (t + 1)th iteration. Here, you compute R(zi|xi) for
all data points using your estimates at the tth iteration.

5. (5 Points) Now write down the M-step. You need to maximize the lower bound w.r.t A and η.

1.4 Experiment

Here we will compare the above three methods on two data sets. For ASI and FA we will take Ψ = Id.

A common preprocessing step before applying PCA is to subtract the mean. As we will see, without this
preprocessing just taking the SVD of X will give very bad results. For the purposes of this problem we will
call these two variants “demeaned PCA” and “buggy PCA”. Sometimes, after subtracting the mean we also
apply a diagonal scaling so that each dimension has unit variance. We will call this normalized PCA.
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One way to study how well the low dimensional representation captures the linear structure in our data is
to project it back to D dimensions and look at the reconstruction error. For PCA, if we mapped it to d
dimensions via z = V x then the reconstruction is V >z. For the preprocessed versions, we first do this and
then reverse the preprocessing steps too. For ASI we just compute Az+ b. For FA, we will use the posterior
mean E[z|x] as the lower dimensional representation and Az + b as the reconstruction. We will compare all
four methods by the reconstruction error on the datasets.

Please implement code for the five methods: Buggy PCA (just take the SVD of X) , Demeaned PCA,
Normalized PCA, ASI, FA. In all cases your function should take in an n×d data matrix and d as an argument.
It should return the the d dimensional representations, the estimated parameters, and the reconstructions
of these representations in D dimensions. For FA, use the values obtained from ASI as initializations for A.
Set η based on the reconstruction errors of ASI. Use 10 iterations of EM.

You are given two datasets: A two Dimensional dataset with 50 points data2D.mat and a thousand dimen-
sional dataset with 500 points data1000D.mat.

For the 2D dataset use d = 1. For the 1000D dataset, you need to choose d. For this, observe the singular
values in ASI and see if there is a clear “knee point” in the spectrum. Attach any figures/ Statistics you
computed for this to justify your choice.

For the 2D dataset you need to attach the a plot comparing the orignal points with the reconstructed points
for all five methods. For both datasets you should also report the reconstruction errors. The given starter
code does all of this for you so you need to just attach the results.

These were our errors for the 2D dataset. If your answers do not tally, please check with the TAs.

>> q14

Reconstruction Errors:

Buggy PCA: 0.365284

Demeaned PCA: 0.008448

Normalized PCA: 0.008454

ASI: 0.008448

FA: 0.008526

Questions

1. Look at the results for Buggy PCA. The reconstruction error is bad and the reconstructed points don’t
seem to well represent the original points. Why is this ?
Hint: Which subspace is Buggy PCA trying to project the points onto ?

2. In both demeaned PCA and ASI the errors are identical. But the Z values are not. You can check this
via the command norm(Z2-Z4, ’fro’). Explain why ?.

3. The error criterion we are using is the average squared error between the original points and the
reconstructed points. In both examples ASI (and demeaned PCA) achieves the lowest error among all
methods. Is this surprising ? Why ?

Please submit your code along with your results.

Point Allocation

• Implementation of all five methods: (6 Points)

• Results - Figures and errors (3 Points)

• Choice of d for 1000D dataset and appropriate justification: (1 Point)

• Questions (3 Points)
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2 Some Random Topics (Samy)

2.1 K-means Clustering

1. (3 Points) Given n observations Xn
1 = X1, . . . , Xn, Xi ∈ X the K-means objective is to find k (< n)

centres µk1 = µ1, . . . , µk and a rule f : X → {1, . . . ,K} so as to minimize the objective

J(µK1 , f ;Xn
1 ) =

n∑
i=1

K∑
k=1

1(f(Xi) = k)‖Xi − µk‖2

Let JK(Xn
1 ) = minµk

1 ,f
J(µK1 , f ;Xn

1 ). Prove that JK(Xn
1 ) is a non-increasing function of K.

2. (2 Points) Consider the K-means clustering algorithm we studied in class. We terminate the algorithm
when there are no changes to the objective. Show that the algorithm terminates in a finite number of
steps.

2.2 Independent Components Analysis

1. (3 Points) You are given starter code that generates some signals in Matlab and then mixes them.
Use any ICA library (FastICA is a popular package, http://research.ics.aalto.fi/ica/fastica/)
and reconstruct the signals. Attach your code and the unmixed signals.

2. (1 Point) Explain why the unmixed components may be scaled versions of the original inputs.

3 Graphical Models (Veeru)

1. (3 points) Consider a situation where there is a student is interested in getting a letter from his
course instructor. The instructor writes a letter based on the student’s grade which in turn depends
on how smart the student is and how much effort he has put into the course. Consider the graphical
model in Figure (1) which encodes these dependencies between the variables: Intelligence(I), Work(W),
Grade(G), Letter(L).

G

I W

L

Figure 1: Graphical model for Problem 1

(a) Write the joint probability distribution in the factored form for the given graphical model.

(b) Assuming that there are d = 10 levels in each of the variables(that is, each variable takes d
values with non-zero probability), then how many parameters do we need to model the full joint
distribution, with and without the knowledge of dependencies in the graphical model.

2. (4 points) Do the following independencies hold? Justify.
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(a) I ⊥W |L

(b) I ⊥ G

(c) I ⊥ L|G

(d) G ⊥ L|W

3. (4 points) In this part, you will compute some conditional probabilities based on the graphical model.
Assume I,W,L are binary variables taking values from {0, 1} and G ∈ {0, 1, 2}. The conditional
probabilities are given by:

• P (I = 1) = 0.7, P (W = 1) = 0.8

• P (L = 1|G = 0) = 0, P (L = 1|G = 1) = 0.3, P (L = 1|G = 2) = 0.8.

P (G|I = 0,W = 0) P (G|I = 0,W = 1) P (G|I = 1,W = 0) P (G|I = 1,W = 1)
G=0 0.9 0.1 0.1 0
G=1 0.1 0.6 0.7 0.1
G=2 0.0 0.3 0.2 0.9

Now answer the following questions.

(a) What is the probability that a student gets a letter?

(b) What is the probability that a student gets a letter provided he is intelligent but does not work?

4. (4+5 points) Hidden Markov Models

HMMs can be used to infer hidden state sequences from time series data. Suppose there is a soccer
striker who, on a given day, plays in one of three modes: bad(0), average(1), good(2). Roughly
speaking, he scores more goals as he changes his mode from bad through good. Further, he has a
tendency to play in a fixed mode for a few games before he changes the mode. Formally, let xt denote
the mode he is in game t and yt denote the number of goals he scores. The conditional probability
p(y|x) is given by for all t:

p(y = 0|x) p(y = 1|x) p(y = 2|x) p(y ≥ 3|x)
x = 0 0.9 0.1 0 0
x = 1 0.8 0.1 0.1 0
x = 2 0.5 0.3 0.1 0.1

He goes from mode i to mode j between games with probability Tij where

T =

0.7 0.2 0.1
0.2 0.7 0.1
0.1 0.3 0.6


Suppose he scores the following number of goals in 12 consecutive games:

1 5 0 1 1 0 0 0 0 0 0 0

Assume that for the first game, his mode is uniformly distributed.

(a) What is the probability of this sequence of goals?

(b) What is the most likely sequence of his modes in these games?

If you program, please attach your code. In the unlikely case that you work out by hand, please include
all calculations.
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4 Markov Chain Monte Carlo(Veeru)

4.1 Markov Chain properties

Let T be the transition probability matrix of a Markov Chain. So Tij is the probability of going from state
i to state j, for i, j ∈ [n] where n is the size of the state space.

1. (2 points) Show that 1 is an eigen value of TT .

2. (3 points) Show that the Markov Chain with the following transition matrix does not have a unique
stationary distribution:

T =
1

10


3 0 7 0
0 4 0 6
4 0 6 0
0 7 0 3


3. (2 points) This is a long question, but needs a short answer. Suppose a random walker starts on a

Markov Chain with a distribution p0 over the states and makes transitions according to the transition
probability matrix T . The probabilities of the random walker over the states, after n steps are given
by pT0 T

n. It is well-known that the largest absolute value of an eigen-value of T is 1. Let E be the
space formed by the eigen-vectors of T whose associated eigen-value is 1 in absolute value. If we make
sufficiently large number of transitions n, the projection of p0 in the space perpendicular to E goes to
0 as n → ∞. (To see this, let F be the eigen-space of TT and write p0 as the sum of its projections
PF (p0), PF⊥(p0) on F and F⊥ where F⊥ is the space orthogonal to F . PF (p0) can be written a linear
combination of eigen vectors of TT and the eigen values of (TT )n are the eigen values of TT raised to n
etc.). So after sufficiently large number of transitions, we hope to converge to a stationary distribution.

Find a T and a p0 such that pT0 T
n fails to converge to a stationary distribution of T .

4.2 Detailed balance property

1. (4 points) Show that the transition kernel in Metropolis Hastings algorithm satisfies detailed balance
property. Assume that the proposal density and the target density are positive.

2. (2 points) Show that the detailed balance property is sufficient for the existence of a stationary
distribution. Note that it is not necessary for existence.

4.3 Experiments

1. (3+3+2 points) Metropolis Hastings

Pretend that you do not know how to draw samples from a mixture of Gaussians. We wish to draw
samples from:

p(x) ∝ exp(−1

2
(x− µ)2) + exp(−1

2
(x+ µ)2))

with µ = 5 using Metropolis Hastings(MH) algorithm. Let the proposal distribution q(x′|x) be
N(x, σ2). We will vary σ and see how MH behaves.

(a) Implement MH with σ = 0.5 and initial point x0 = 0. Discard the first b = 10000 samples and
compute the mean of the next n = 1000 samples. Repeat this m = 6 times and plot the b + n
samples(including the samples collected during the burnin period) with m subplots for the m
repititions. What are the sample means(after the burnin period) in the m cases? You should
report m numbers. The mean of the distribution p is clearly 0. If there is a discrepancy between
the sample means and the population mean, explain.
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(b) Repeat the experiment with σ = 5. What are the m sample means this time? Is this σ better
than the earlier one? Explain your findings.

(c) Report the average of the sample means if we take a larger m, say m = 50, while still maintaining
σ = 0.5.

2. (3+6 points) Gibbs sampling for Gaussian Mixture models
Suppose we have a data points x1, x2, · · · , xn ∈ R2 that we think are generated from a mixture of K
Gaussians with unit variance. Let µ1, µ2, · · · , µK denote the K cluster centers and let z1, z2, · · · , zn be
the cluster assignments. For brevity, denote z = {z1, · · · , zn}, µ = {µ1, · · · , µK} and x = {x1, · · · , xn}.
In this part, we would like to treat z, µ as the latent variables and use Gibbs sampling to sample from
the posterior p(z, µ|x).

(a) For Gibbs sampling, we need to find the conditional distributions of the latent variables zi, µk
given the rest of the variables. Show that

p(zi = k|x, z−i, µ) ∝ p(xi|zi = k, µk)p(zi = k), (1)

p(µk = u|x, z, µ−k) ∝ p(µk = u)
∏

{i:zi=k}

p(xi|zi = k, µk = u) (2)

We need to assume priors over z, µ to fully specify these conditionals. For simplicity, for i =
1, 2, · · · , n, k = 1, 2, · · · ,K, let the priors be

p(zi = k) =
1

K
, µk ∼ N(0, I).

Note: There was an additional p(µk) term in (1) earlier.

(b) Generate 30 points each from three Gaussian distributions centered at (−4, 0), (4, 0) and (0, 7)
with unit variance. Let K = 3. Using the conditional distributions in (1), (2) and the given
priors, run Gibbs sampling starting at random points drawn from the priors, discard the first
5000 samples and for the next sample, scatter plot the points x1, x2, · · · , xn with a marker/color-
coding depending on the cluster assignments z1, z2, · · · , zn. That is, make sure that the cluster
assignments are visible when you plot the points.
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