
10-715 Advanced Introduction to Machine Learning
Homework 3 Solutions November 22, 2014

1 Dimensionality Reduction (Samy)

1.1 Principal Components Analysis

First note that if X = UΣV > then the eigendecomposition of the empirical covariance matrix S = 1
nX
>X

is V
(
1
nΣ2

)
V >. Therefore eigenvectors of S are the right singular vectors of X.

1. We wish to maximize 1
n

∑
i a
>
1 xix

>
i a1 = a>1 Σa1 subject to the constraint ‖a1‖ = 1. This is the first

eigenvector of Σ.

2. Let X̃ = X −XAA> = X(I − AA>). We want to find orthonormal ak+1 so as to maximize J(a) =
a>(I−AA>)>X>X(I−AA>)a. Any a ∈ R(a1, . . . , ak) has J(a) = 0 so we can formulate the problem
as maximize a>k+1Σak+1 subject to the constraints ‖ak+1‖ = 1 and ak+1 ⊥ ai, i = 1, . . . , k. This is the
(k + 1)st eigenvector of Σ.

1.2 Affine Subspace Identification

First observe that we can write the objective as

J(A, b, Z) = ‖X − ZA> − 1b>‖2F

Further the two constraints on Z can be written as Z>1 = 0 and Z>Z = nΨ.

1. We will show that Z1A
>
1 + 1b>1 = Z2A

>
2 + 1b>2 , so both values will achieve the same objective.

Z2A
>
2 + 1b>2 = (Z1C

> + 1d>)C−TA>1 + 1(b1 −A1C
−1d)>

= Z1C
>C−>A>1 + 1d>C−>A>1 + 1b>1 − 1>dC−>A>1

= Z1A
>
1 + 1b>1

2. First note that the problem does not constrain b in any way so we can take the derivative and set it
to zero.

0 = ∇bJ = 2(X − ZA> − 1b>)>1

= X>1> −AZ>1− b>1>1

b =
1

n
X>1 = X̄

Here, first note that 1>1 = n. If we can find Z to satisfy the constraint Z>1 = 0 then the last step
holds. We will assume this and then show that we can find such a Z.

To minimize w.r.t A,Z, note that ZA> needs to be the best rank k approximation to X − 1b> in
Frobenius norm. We can do this by first taking the SVD of X̃ = X−1b> and then zeroing out the last
min {n, d} − k singular values. Let X̃ = UΣV > be the SVD. Here, U ∈ Rn×n, Σ ∈ Rn×D is diagonal
and V ∈ RD×D. Denote the first d columns of U and V by Ud, Vd and the top d× d block of Σ by Σd.
The rank d approximation is given by, ZA> = UdΣdV

>
d .

1

Now if we choose Z =
√
nUdΨ

1/2 and A> = 1√
n

Ψ−1/2ΣdV
>
d

Z>Z = nΨ1/2U>d UdΨ
1/2 = nΨ

Finally we need to show that this Z satisfies Z>1 = 0. For this first note that X̃>1 = V ΣU>1 = 0
which implies U>1 = 0 since V Σ is full rank (as dim(span(X)) > d). Then U>d 1 = 0 =⇒ Z>1 = 0.

3. z∗ = A†(x∗− b), where A† is the MP inverse. This gives the projection of x∗− b onto the column space
of A.

1.3 Factor Analysis

1. First note that we can write x conditioned on z as x|z = Az + b+ ε where ε ∼ N (0, η2I).
The joint distribution will be Gaussian since x is just a linear transformation of z. To specify the joint
distribution we should know the mean of x, the variance of x and the covariance between x and z.
They can be computed as follows.

E[x] = E[Az + b+ ε] = 0 + b = b

E
[
(z − E[z])(x− E[x])>

]
= E

[
z(x− b)>

]
= E[z(Az + b+ ε)>]− E[zb>]

= E[zz>A> + zb> + zε>] = ΨA>

E
[
(x− E[x])(x− E[x])>

]
= E

[
(x− b)(x− b)>

]
= E

[
(Az + ε)(Az + ε)>

]
= E

[
Azz>A> + 2εz>A> + εε>

]
= AΨA> + η2I

Therefore, we can write [
z
x

]
∼ N

([
0
b

]
,

[
Ψ ΨA>

AΨ> AΨA>η2I

])
Using the hints given in the question, the marginal for x and the conditional z|x can be written as

x ∼ N (b, AΨA> + η2I)

z|x ∼ N
(
ΨA>(AΨA> + η2I)−1(x− b) , Ψ−ΨA>(AΨA+ η2I)−1AΨ>

)
We will denote the conditional mean and variance of z|x by µz|x and Σz|x respectively.

2. The log likelihood for A, b, η given data (xi)
n
i=1 is,

`(A, b, η) = log

n∏
i=1

p(xi) =

n∑
i=1

log p(xi)

=

n∑
i=1

−D
2

log(2π)− 1

2
log det(AΨA> + η2I)− 1

2
(xi − b)>(AΨA> + η2I)−1(xi − b)

The MLE for b can be obtained easily. By taking the derivative of ` w.r.t. b and setting it to 0 we
have,

∇b` =

n∑
i=1

(AΨA> + η2I)−1(xi − b) = 0 =⇒ b =
1

n

n∑
i=1

xi

since (AΨA> + η2I)−1 is full rank.

2

3. To perform EM, we use Jensen’s inequality to construct the following lower bound.

`(A, b, η) ≤
n∑
i=1

∫
R(zi|xi) log

p(xi, zi;A, b,Ψ)

R(zi|xi)

=

n∑
i=1

ER(zi|xi) [log p(xi|zi;A, b, η)] + C

=

n∑
i=1

ER(zi|xi)

[
log

(
1

(2π)D/2ηD
exp

(
− (xi − b−Azi)>(xi − b−Azi)

2η2

))]
+ C

=

n∑
i=1

ER(zi|xi)

[
log

(
−D

2
log(2π)−D log(η)− 1

2η2
(xi − b−Azi)>(xi − b−Azi)

)]
+ C

= −nD log(η) +
−1

2η2

n∑
i=1

ER(zi|xi)

[
‖xi − b‖2 − 2z>i A

>(xi − b) + ziA
>Azi

]
+ C ′

Here C,C ′ are constants that do not depend on A, b, η. Let us call this lower bound `b

4. In the M-step we will maximize the lower bound above w.r.t the parameters A, η simply by taking the
derivative and setting it to zero. First take the derivative w.r.t A–using the hints given in the question,

∇A`b(A, b, η) =
−1

2η2

n∑
i=1

ER(zi|xi)

[
2A(ziz

>
i)− 2(xi − b)z>i

]
=⇒

A

(∑
i

ER(zi|xi)ziz
>
i

)
=
∑
i

(xi − b)ER(zi|xi)z
>
i =⇒ A =

(∑
i

(xi − b)µ>zi|xi

)(∑
i

µ>zi|xi
µ>zi|xi

+ Σzi|xi

)−1
Similarly for η,

∂`b
∂η

= −nD
η

+
1

η3

n∑
i=1

ER(zi|xi)

[
‖xi − b‖2 − 2z>i A

>(xi − b) + ziA
>Azi

]
=⇒

η2 =
1

nD

n∑
i=1

(
‖xi − b‖2 − 2µ>zi|xi

A>(xi − b) + ‖Aµzi|xi
‖2 + diag(AΣzi|xi

A>)>1
)

For the last step we used the fact that ER(zi|xi)zi = µzi|xi
and from the properties of the Gaussian,

ER(zi|xi)‖Azi‖2 = ‖Aµzi|xi
‖2 + diag(AΣzi|xi

A>)>1. We can perform the M-step via the above update
equations for A and η.

1.4 Experiment

Results for the 2D dataset

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

1.5

2

2.5

3
Buggy PCA

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Demeaned PCA

3

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Normalized PCA

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

1.5

2

2.5

3

ISA

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

1.5

2

2.5

3

FA

Results for the 1000D dataset
We used d = 30 since the singular values fall off sharply after this. See figure below:

0 50 100 150 200 250 300 350 400 450 500
0

100

200

300

400

500

600

700

800

900

1000

This was the output.

>> q14

Reconstruction Errors:

Buggy PCA: 777.871447

Demeaned PCA: 272.546928

Normalized PCA: 273.140905

ASI: 272.546928

FA: 272.549605

4

Answers to Questions

1. When you SVD without demeaning on the dataset, you are find the best linear (as opposed to affine)
subspace. The first principal component then will then be from the origin towards the data and other
principal components will be orthogonal to this.

2. This is because the reconstructions are identical in both cases even if the representations are not.

3. No. Since in ASI we are directly minimizing this error criterion.

This is our implementation.

function [Z, params, Y] = deMeanPrinCompAnalysis(X, d)

% First normalize the data

meanX = mean(X);

X_ = bsxfun(@minus, X, mean(X));

% Now apply PCA

[Z, params, Y_] = buggyPrinCompAnalysis(X_, d);

% Now reconstruct

Y = bsxfun(@plus, Y_, meanX);

params.meanX = meanX;

end

function [Z, params, Y] = normPrinCompAnalysis(X, d)

% First normalize the data

meanX = mean(X);

stdX = std(X);

X_ = bsxfun(@rdivide, bsxfun(@minus, X, mean(X)), stdX);

% Now apply PCA

[Z, params, Y_] = buggyPrinCompAnalysis(X_, d);

% Now reconstruct

Y = bsxfun(@plus, bsxfun(@times, Y_, stdX), meanX);

params.meanX = meanX;

params.stdX = stdX;

end

function [Z, params, Y] = affineSubspaceIdentification(X, d)

% prelims

n = size(X, 1);

b = mean(X)’;

[U,S,V] = svd(bsxfun(@minus, X, b’) , ’econ’);

% plot(diag(S)),

Ud = U(:, 1:d);

Sd = S(1:d, 1:d);

Vd = V(:, 1:d);

5

A = (1/sqrt(n) * Sd * Vd’)’;

% Z and Y

Z = sqrt(n) * Ud;

Y = bsxfun(@plus, Z*A’, b’);

params.A = A;

params.b = b;

end

function [Z, params, Y] = factorAnalysis(X, d)

% prelims

NUM_EM_ITERS = 10;

D = size(X, 2);

n = size(X, 1);

% Initialize using ASI

[~, initParams, Y] = affineSubspaceIdentification(X, d);

b = initParams.b; % this will also be the final b

A = initParams.A;

eta = sqrt(mean(mean((Y-X).^2)));

for emIter = 1:NUM_EM_ITERS

[A, eta] = emFA(X, A, eta, b);

end

params.A = A;

params.b = b;

params.eta = eta;

% Finally obtain Z and Y

Z = bsxfun(@minus, X, b’) * ((A*A’ + eta^2 *eye(D)) \ A) ;

Y = bsxfun(@plus, Z*A’, b’);

end

function [ANew, etaNew, RzxMeans] = emFA(X, AOld, etaOld, b)

% prelims

D = size(X, 2);

d = size(AOld, 2);

n = size(X, 1);

% E-step

K = AOld*AOld’ + etaOld^2 * eye(D);

Kinv = inv(K);

RzxMeans = bsxfun(@minus, X, b’) * Kinv * AOld;

RzxVar = eye(d) - AOld’ * Kinv * AOld;

% Compute the following which will be useful too

EAZ = RzxMeans * AOld’;

EAZ2 = sum(EAZ.^2 , 2) + sum(diag(AOld * RzxVar * AOld’));

6

Xmb = bsxfun(@minus, X, b’);

% M-step

% First A

M1 = Xmb’ * RzxMeans;

M2 = RzxMeans’ * RzxMeans + n * RzxVar;

ANew = M1 / M2;

% Now eta

etaNew = sqrt(1/(n*D) * (norm(Xmb, ’fro’)^2 ...

- 2 * sum(sum((Xmb .* EAZ))) ...

+ sum(EAZ2)));

end

2 Unsupervised Learning (Samy)

2.1 K-means Clustering

1. If K ≥ n, we can set the first set n centres to the n data points and f to be the identity map. This
gives JK(Xn

1) = 0 for all K ≥ n. Now let n < K. Let µ∗, f∗ be such that JK(Xn
1) = J(µK1 , f ;Xn

1).
Pick any point X ′ in the data set that is not a centre and modify f∗ to f ′∗(X) = f∗(X) if X 6= X ′ and
f ′∗(X

′) = X ′. Then,

JK(Xn
1) ≥ JK+1(

{
µK1 , X

′} , f ′∗;Xn
1) ≥ min

µK+1
1 ,f

J(µK+1
1 , f ;Xn

1) = JK+1(Xn
1)

2. First we will show that the objective can only decrease at each iteration. Denote γij = 1(f(Xi) =
j) where f is the rule that assigns a point to the closest centre. At a given iteration, J(γ, µ) =∑n
i=1

∑k
j=1 γij ‖xi − µj‖

2
=
∑
i ‖xi −Π(xi)‖, where Π(xi) = argminj ‖xi − µj‖ is the assignment of

xi to particular centre. In step 1 of the algorithm, we re-assign the xi’s to their closest centres.
Hence,‖xi −Π(xi)‖ can only get smaller. In the second step we update the centres to the means of the
assigned points, which can be interpreted as minimizing the squared distance to all the points.

µj =

∑
i γijxi∑
i γi

= argmin
µ∈Rd

∑
i

γij ‖xi − µ‖2

Thus this step too can only decrease the objective. Therefore, the objective is non-increasing in each
iteration.

Since there are at most kn assignments of points to cluster centres, the above objective can only achieve
one of kn different values and one of kn different assignments. Therefore, it has to terminate in a finte
number of steps.

2.2 Independent Components Analysis

Solutions are straightforward.

3 Graphical Models(20 points)

1. (a) P (I,W,G,L) = P (I)P (W)P (G|I,W)P (L|G)

7

(b) Without the knowledge of the graphical model, we need d4 − 1 parametrize the full joint distri-
bution. With the knowledge, we need (d− 1) + (d− 1) + (d− 1)(d2) + (d1)d = 1008.

2. (a) No. L is a descendant of G and I,G,W form a V-structure.

(b) No. There is an active trail between I and G after we execute the d-separation algorithm.

(c) Yes. Any trail between I and L has to go through G but G is conditioned.

(d) No. There is an active trail between G and L after we execute the d-separation algorithm.

3. Applying Bayes rule appropriately,

(a)

P (L = 1) =
∑
G,I,W

P (L = 1, G,W, I) =
∑
G

P (L = 1|G)
∑
I,W

P (G|I,W)

= 0.3 ∗ (0.1 ∗ 0.06 + 0.6 ∗ 0.24 + 0.7 ∗ 0.14 + 0.1 ∗ 0.56)

+ 0.8 ∗ (0.3 ∗ 0.24 + 0.2 ∗ 0.14 + 0.9 ∗ 0.56)

= 0.5744

(b)

P (L = 1|I = 1,W = 0) =
∑
G

P (L = 1, G|I = 1,W = 0) =
∑
G

P (L = 1|G)P (G|I = 1,W = 0)

= 0 + 0.3× 0.7 + 0.8× 0.2 = 0.37

4. (a) The probability of the sequence is 2.0646e-05 by forward algorithm.

(b) The most likely path is 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1 by Viterbi decoding.

See sample code in viterbi.m, fwd.m

4 Markov Chain Monte Carlo

4.1 Markov Chain properties

1. As all rows sum to 1, we have T1 = 1.1 showing that 1 is an eigen value of T and hence an eigen value
of TT .

2. T is a reducible matrix, with two connected components, where the first and third states are in one
component and the other two are in the second compnonent. A stationary distribution of any of the
components is a stationary distribution of the whole Markov chain. The transition matrices of the
individual components are

T1 =
1

10

[
3 7
4 6

]
, T2 =

1

10

[
4 6
7 3

]
and their stationary distributions are given by

v1 =
1

11

[
4
7

]
, v2 =

1

13

[
7
6

]
and so the two stationary distributions of T are given by

u1 =
1

11

4
0
7
0

 , v2 =
1

13

0
7
0
6

8

3. Consider an aperiodic matrix T , such as a permutation matrix which is not identity:

T =

[
0 1
1 0

]
, p0 =

[
1
0

]

4.2 Detailed balance property

1. (4 points) Suppose p is proportional to the target distribution. Let x, x′ be in the domain of sampling.
The detailed balance equation trivially holds if x = x′. Assume x, x′ are distinct from now. To go
from x to x′, the proposal distribution q(.|x) needs to generate x′ and x′ needs to be accepted. So, the
transition kernel is given by T (x→ x′) = q(x′|x)A(x′|x) where A(x′|x) is the acceptance probability

A(x′|x) = min{1, z(x′|x)} where z(x′|x) =
p(x′)q(x|x′)
p(x)q(x′|x)

To show detailed balance, we need to show p(x)T (x→ x′) = p(x′)T (x′ → x).

Note that z(x′|x) = 1
z(x|x′) . So at least one of z(x′|x), z(x|x′) is ≤ 1. Wlog assume z(x′|x) ≤ 1, so that

A(x′|x) = z(x′|x) and A(x|x′) = 1.

p(x)T (x→ x′) = p(x)q(x′|x)z(x′|x)

= p(x)q(x′|x)
p(x′)q(x|x′)
p(x)q(x′|x)

= p(x′)q(x|x′) = p(x′)q(x|x′)A(x|x′) = p(x′)T (x′ → x)

2. (2 points)

Let p(x)T (x→ x′) = p(x′)T (x′ → x) for all x, x′ in X, the domain of sampling. We claim that p is a
stationary distribution of the Markov chain. For that, we need to show∫

X

p(x)T (x→ x′) dx = p(x′) for any x, x′ ∈ X

Let x, x′ ∈ X. Integrating both sides of the detailed balance equation w.r.t x,∫
X

p(x)T (x→ x′) dx =

∫
X

p(x′)T (x′ → x) dx

= p(x′)

∫
X

T (x′ → x) dx

= p(x′)

The last equality holds because T (x′ → .) is a probability density on X. Therefore p is a stationary
distribution of the Markov chain.

4.3 Experiments

1. Metropolis Hastings

(a) See run_metropolis.m for the code. With σ = 0.5, the chain gets stuck in one of Gaussians.The
m sample means are close to either −5 or 5.

(b) With σ = 0.5, the chain manages to move from one Gaussian to the other and so the sample
means are closer to 0.

(c) With σ = 0.5, as the chain gets stuck in one of the Gaussians chosen randomly, with a larger m,
the average of the sample means is expected to go to 0.

9

2. Gibbs sampling for Gaussian Mixture models

(a) The first conditional distribution is given by

p(zi = k|x, z−i, µ) =
p(zi = k, x, z−i, µ)∑
k′ p(zi = k′, x, z−i, µ)

=
p(x|zi = k, z−i, µ)p(zi = k)p(z−i)p(µ)∑
k′ p(x|zi = k′, z−i, µ)p(zi = k′)p(z−i)p(µ)

=
p(x|zi = k, z−i, µ)p(zi = k)∑
k′ p(x|zi = k′, z−i, µ)p(zi = k′)

∝ p(x|zi = k, z−i, µ)p(zi = k)

∝ p(xi|zi = k, µk)p(zi = k)

The idea is to absorb the terms that do not depend on k into a proportionality constant.

The second one is given by,

p(µk = u|x, z, µ−k) ∝ p(µk = u, x, z, µ−k)

∝
∏
j

p(xj |zj = k, µk = u)I(zj=k)p(µk = u)

by absorbing the terms that do not depend on u into the proportionality constant.

(b) Plugging in the known distributions, the conditionals can be written as

p(zi = k|x, z−i, µ) ∝ exp(−‖xi − µk‖2/2)

p(µk = u|x, z, µ−k) ∝ exp

(
−1

2

{
‖u‖2 +

n∑
i=1

‖xj − u‖2I(zi = k)

})

See the code in sample_gibbs.m.

References

10

	Dimensionality Reduction (Samy)
	Principal Components Analysis
	Affine Subspace Identification
	Factor Analysis
	Experiment

	Unsupervised Learning (Samy)
	K-means Clustering
	Independent Components Analysis

	Graphical Models(20 points)
	Markov Chain Monte Carlo
	Markov Chain properties
	Detailed balance property
	Experiments

