Advanced Introduction to Machine Learning CMU-10715 Duality

Barnabás Póczos, 2015 Fall

#### Credits

#### Many of these slides are taken from Ryan Tibshirani's convex optimization class

**References:** 

S. Boyd and L. Vandenberghe (2004), "Convex optimization", Chapter 5

R. T. Rockafellar (1970), "Convex analysis", Chapters 28–30

Suppose we want to find lower bound on the optimal value in our convex problem,  $B \leq \min_{x \in C} f(x)$ 

E.g., consider the following simple LP

 $\min_{\substack{x,y}} x + y$ subject to  $x + y \ge 2$  $x, y \ge 0$ 

What's a lower bound? Easy, take B = 2

But didn't we get "lucky"?

Try again:

$$\min_{\substack{x,y}} x + 3y$$
  
subject to  $x + y \ge 2$   
 $x, y \ge 0$ 

$$x + y \ge 2$$
  
+  $2y \ge 0$   
=  $x + 3y \ge 2$ 

Lower bound B = 2

More generally:

$$\min_{x,y} px + qy$$
  
subject to  $x + y \ge 2$   
 $x, y \ge 0$ 

$$a + b = p$$
$$a + c = q$$
$$a, b, c \ge 0$$

Lower bound B = 2a, for any a, b, c satisfying above

What's the best we can do? Maximize our lower bound over all possible a, b, c:

 $\begin{array}{c|c} \min_{x,y} px + qy \\ \text{subject to } x + y \ge 2 \\ x, y \ge 0 \end{array} & \begin{array}{c} \max_{a,b,c} 2a \\ \text{subject to } a + b = p \\ a + c = q \\ a, b, c \ge 0 \end{array}$ Called primal LP
Called dual LP

Note: number of dual variables is number of primal constraints

Try another one:

 $\min_{x,y} px + qy$  $\max_{a,b,c} 2c - b$ subject to  $x \ge 0$ subject to a + 3c = p $y \le 1$ -b + c = q3x + y = 2 $a, b \ge 0$ Primal LPDual LP

Note: in the dual problem, c is unconstrained

Given  $c \in \mathbb{R}^n$ ,  $A \in \mathbb{R}^{m \times n}$ ,  $b \in \mathbb{R}^m$ ,  $G \in \mathbb{R}^{r \times n}$ ,  $h \in \mathbb{R}^r$ 

$$\begin{array}{c|c} \min_{x \in \mathbb{R}^n} c^T x & \max_{u \in \mathbb{R}^m, v \in \mathbb{R}^r} -b^T u - h^T v \\ \text{subject to } Ax = b & \text{subject to } -A^T u - G^T v = c \\ Gx \leq h & v \geq 0 \end{array}$$
Primal LP Dual LP

Explanation: for any u and  $v \ge 0$ , and x primal feasible,

$$\begin{aligned} u^T(Ax-b) + v^T(Gx-h) &\leq 0, \quad \text{i.e.,} \\ (-A^Tu - G^Tv)^Tx &\geq -b^Tu - h^Tv \end{aligned}$$

So if  $c = -A^T u - G^T v$ , we get a bound on primal optimal value

#### Another perspective on LP duality



Explanation # 2: for any u and  $v \ge 0$ , and x primal feasible

$$c^{T}x \ge c^{T}x + u^{T}(Ax - b) + v^{T}(Gx - h) := L(x, u, v)$$

So if C denotes primal feasible set,  $f^*$  primal optimal value, then for any u and  $v \ge 0$ ,

$$f^{\star} \ge \min_{x \in C} L(x, u, v) \ge \min_{x \in \mathbb{R}^n} L(x, u, v) := g(u, v)$$

#### Another perspective on LP duality

In other words, g(u,v) is a lower bound on  $f^{\star}$  for any u and  $v\geq 0$ 

Note that

$$g(u,v) = \begin{cases} -b^T u - h^T v & \text{if } c = -A^T u - G^T v \\ -\infty & \text{otherwise} \end{cases}$$

Now we can maximize g(u, v) over u and  $v \ge 0$  to get the tightest bound, and this gives exactly the dual LP as before

This last perspective is actually completely general and applies to arbitrary optimization problems (even nonconvex ones)

#### Lagrangian

Consider general minimization problem

$$\min_{x \in \mathbb{R}^n} f(x)$$
  
subject to  $h_i(x) \le 0, \quad i = 1, \dots m$   
 $\ell_j(x) = 0, \quad j = 1, \dots r$ 

Need not be convex, but of course we will pay special attention to convex case

We define the Lagrangian as

$$L(x, u, v) = f(x) + \sum_{i=1}^{m} u_i h_i(x) + \sum_{j=1}^{r} v_j \ell_j(x)$$

New variables  $u \in \mathbb{R}^m, v \in \mathbb{R}^r$ , with  $u \ge 0$  (implicitly, we define  $L(x, u, v) = -\infty$  for u < 0)

#### Lagrangian

Important property: for any  $u \ge 0$  and v,

 $f(x) \geq L(x, u, v) \quad \text{at each feasible } x$ 

Why? For feasible x,





- Solid line is *f*
- Dashed line is h, hence feasible set  $\approx [-0.46, 0.46]$
- Each dotted line shows L(x, u, v) for different choices of  $u \ge 0$  and v

## Lagrange Dual Function

Let C denote primal feasible set,  $f^*$  denote primal optimal value. Minimizing L(x, u, v) over all  $x \in \mathbb{R}^n$  gives a lower bound:

$$f^{\star} \ge \min_{x \in C} L(x, u, v) \ge \min_{x \in \mathbb{R}^n} L(x, u, v) := g(u, v)$$

We call g(u, v) the Lagrange dual function, and it gives a lower bound on  $f^*$  for any  $u \ge 0$  and v, called dual feasible u, v

#### Quadratic program

Consider quadratic program (QP, step up from LP!)

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} x^T Q x + c^T x$$
  
subject to  $Ax = b, \ x \ge 0$ 

where  $Q \succ 0$ . Lagrangian:

$$L(x, u, v) = \frac{1}{2}x^{T}Qx + c^{T}x - u^{T}x + v^{T}(Ax - b)$$

Lagrange dual function:

$$g(u,v) = \min_{x \in \mathbb{R}^n} L(x,u,v) = -\frac{1}{2}(c-u+A^Tv)^T Q^{-1}(c-u+A^Tv) - b^Tv$$

For any  $u \geq 0$  and any v, this is lower a bound on primal optimal value  $f^\star$ 

#### QP in 2D

We choose f(x) to be quadratic in 2 variables, subject to  $x \ge 0$ . Dual function g(u) is also quadratic in 2 variables, also subject to  $u \ge 0$ 



Dual function g(u)provides a bound on  $f^*$  for every  $u \ge 0$ 

Largest bound this gives us: turns out to be exactly  $f^*$  ... coincidence?

More on this later

#### Weak duality

Given primal problem

$$\min_{x \in \mathbb{R}^n} f(x)$$
  
subject to  $h_i(x) \le 0, \quad i = 1, \dots m$   
 $\ell_j(x) = 0, \quad j = 1, \dots r$ 

Our constructed dual function g(u, v) satisfies  $f^* \ge g(u, v)$  for all  $u \ge 0$  and v. Hence best lower bound is given by maximizing g(u, v) over all dual feasible u, v, yielding Lagrange dual problem:

$$\max_{u \in \mathbb{R}^m, v \in \mathbb{R}^r} g(u, v)$$
  
subject to  $u \ge 0$ 

Key property, called weak duality: if dual optimal value  $g^*$ , then

$$f^{\star} \ge g^{\star}$$

Note that this always holds (even if primal problem is nonconvex)

#### Dual is Convex

Another key property: the dual problem is a convex optimization problem (as written, it is a concave maximization problem)

Again, this is always true (even when primal problem is not convex)

By definition:

I.e., g is concave in (u, v), and  $u \ge 0$  is a convex constraint, hence dual problem is a concave maximization problem

# Strong duality

Recall that we always have  $f^* \ge g^*$  (weak duality). On the other hand, in some problems we have observed that actually

$$f^{\star} = g^{\star}$$

which is called strong duality

Slater's condition: if the primal is a convex problem (i.e., f and  $h_1, \ldots h_m$  are convex,  $\ell_1, \ldots \ell_r$  are affine), and there exists at least one strictly feasible  $x \in \mathbb{R}^n$ , meaning

$$h_1(x) < 0, \dots h_m(x) < 0$$
 and  $\ell_1(x) = 0, \dots \ell_r(x) = 0$ 

then strong duality holds

This is a pretty weak condition. (And it can be further refined: need strict inequalities only over functions  $h_i$  that are not affine)

## Strong duality for LPs

For linear programs:

- Easy to check that the dual of the dual LP is the primal LP
- Refined version of Slater's condition: strong duality holds for an LP if it is feasible
- Apply same logic to its dual LP: strong duality holds if it is feasible
- Hence strong duality holds for LPs, except when both primal and dual are infeasible

In other words, we pretty much always have strong duality for LPs

#### **KKT Conditions**

#### What we have seen so far

Given a minimization problem

$$\min_{x \in \mathbb{R}^n} f(x)$$
  
subject to  $h_i(x) \le 0, \quad i = 1, \dots m$   
 $\ell_j(x) = 0, \quad j = 1, \dots r$ 

we defined the Lagrangian:

$$L(x, u, v) = f(x) + \sum_{i=1}^{m} u_i h_i(x) + \sum_{j=1}^{r} v_j \ell_j(x)$$

and Lagrange dual function:

$$g(u,v) = \min_{x \in \mathbb{R}^n} L(x, u, v)$$

#### What we have seen so far

The subsequent dual problem is:

 $\max_{u \in \mathbb{R}^m, v \in \mathbb{R}^r} g(u, v)$ subject to  $u \ge 0$ 

Important properties:

- Dual problem is always convex, i.e., g is always concave (even if primal problem is not convex)
- The primal and dual optimal values,  $f^\star$  and  $g^\star,$  always satisfy weak duality:  $f^\star \geq g^\star$
- Slater's condition: for convex primal, if there is an x such that

$$h_1(x) < 0, \dots h_m(x) < 0$$
 and  $\ell_1(x) = 0, \dots \ell_r(x) = 0$ 

then strong duality holds:  $f^* = g^*$ . (Can be further refined to strict inequalities over the nonaffine  $h_i$ , i = 1, ..., m)

## **Duality Gap**

Given primal feasible x and dual feasible u, v, the quantity

$$f(x) - g(u, v)$$

is called the duality gap between x and u, v. Note that

$$f(x) - f^{\star} \le f(x) - g(u, v)$$

so if the duality gap is zero, then x is primal optimal (and similarly, u, v are dual optimal)

From an algorithmic viewpoint, provides a stopping criterion: if  $f(x) - g(u, v) \leq \epsilon$ , then we are guaranteed that  $f(x) - f^* \leq \epsilon$ 

Very useful, especially in conjunction with iterative methods ... more dual uses in coming lectures

## Subgradients

Remember that for convex  $f : \mathbb{R}^n \to \mathbb{R}$ ,

$$f(y) \geq f(x) + \nabla f(x)^T (y - x) \quad \text{all } x, y$$

I.e., linear approximation always underestimates  $\boldsymbol{f}$ 

A subgradient of convex  $f:\mathbb{R}^n\to\mathbb{R}$  at x is any  $g\in\mathbb{R}^n$  such that

$$f(y) \ge f(x) + g^T(y - x), \quad \text{all } y$$

- Always exists
- If f differentiable at x, then  $g = \nabla f(x)$  uniquely
- Actually, same definition works for nonconvex f (however, subgradients need not exist)

### Subgradients - Example

Consider  $f : \mathbb{R} \to \mathbb{R}$ , f(x) = |x|



- For  $x \neq 0$ , unique subgradient  $g = \operatorname{sign}(x)$
- For x = 0, subgradient g is any element of [−1, 1]

#### Subdifferential

Set of all subgradients of convex f is called the subdifferential:

$$\partial f(x) = \{g \in \mathbb{R}^n : g \text{ is a subgradient of } f \text{ at } x\}$$

- $\partial f(x)$  is closed and convex (even for nonconvex f)
- Nonempty (can be empty for nonconvex f)
- If f is differentiable at x, then  $\partial f(x) = \{\nabla f(x)\}$
- If  $\partial f(x) = \{g\}$ , then f is differentiable at x and  $\nabla f(x) = g$

## **Optimality condition**

For any f (convex or not),

$$f(x^{\star}) = \min_{x \in \mathbb{R}^n} f(x) \quad \Longleftrightarrow \quad 0 \in \partial f(x^{\star})$$

I.e.,  $x^*$  is a minimizer if and only if 0 is a subgradient of f at  $x^*$ Why? Easy: g = 0 being a subgradient means that for all y

$$f(y) \ge f(x^{\star}) + 0^T (y - x^{\star}) = f(x^{\star})$$

Note implication for differentiable case, where  $\partial f(x) = \{\nabla f(x)\}$ 

#### Karush-Kuhn-Tucker conditions

Given general problem

$$\min_{x \in \mathbb{R}^n} f(x)$$
  
subject to  $h_i(x) \le 0, \quad i = 1, \dots m$   
 $\ell_j(x) = 0, \quad j = 1, \dots r$ 

The Karush-Kuhn-Tucker conditions or KKT conditions are:

• 
$$0 \in \partial f(x) + \sum_{i=1}^{m} u_i \partial h_i(x) + \sum_{j=1}^{r} v_j \partial \ell_j(x)$$
 (stationarity)  
•  $u_i \cdot h_i(x) = 0$  for all  $i$  (complementary slackness)  
•  $h_i(x) \leq 0, \ \ell_j(x) = 0$  for all  $i, j$  (primal feasibility)

(dual feasibility)

•  $u_i \ge 0$  for all i

## Necessity – Part 1

Let  $x^*$  and  $u^*$ ,  $v^*$  be primal and dual solutions with zero duality gap (strong duality holds, e.g., under Slater's condition). Then

$$\begin{aligned} (x^{\star}) &= g(u^{\star}, v^{\star}) \\ &= \min_{x \in \mathbb{R}^n} f(x) + \sum_{i=1}^m u_i^{\star} h_i(x) + \sum_{j=1}^r v_j^{\star} \ell_j(x) \\ &\leq f(x^{\star}) + \sum_{i=1}^m u_i^{\star} h_i(x^{\star}) + \sum_{j=1}^r v_j^{\star} \ell_j(x^{\star}) \\ &\leq f(x^{\star}) \end{aligned}$$

In other words, all these inequalities are actually equalities

## Necessity - Part 2

Two things to learn from this:

- The point x<sup>\*</sup> minimizes L(x, u<sup>\*</sup>, v<sup>\*</sup>) over x ∈ ℝ<sup>n</sup>. Hence the subdifferential of L(x, u<sup>\*</sup>, v<sup>\*</sup>) must contain 0 at x = x<sup>\*</sup>—this is exactly the stationarity condition
- We must have  $\sum_{i=1}^{m} u_i^{\star} h_i(x^{\star}) = 0$ , and since each term here is  $\leq 0$ , this implies  $u_i^{\star} h_i(x^{\star}) = 0$  for every *i*—this is exactly complementary slackness

Primal and dual feasibility obviously hold. Hence, we've shown:

If  $x^*$  and  $u^*, v^*$  are primal and dual solutions, with zero duality gap, then  $x^*, u^*, v^*$  satisfy the KKT conditions

(Note that this statement assumes nothing a priori about convexity of our problem, i.e., of  $f, h_i, \ell_j$ )

## Sufficiency

If there exists  $x^{\star}, u^{\star}, v^{\star}$  that satisfy the KKT conditions, then

$$g(u^{\star}, v^{\star}) = f(x^{\star}) + \sum_{i=1}^{m} u_i^{\star} h_i(x^{\star}) + \sum_{j=1}^{r} v_j^{\star} \ell_j(x^{\star})$$
$$= f(x^{\star})$$

where the first equality holds from stationarity, and the second holds from complementary slackness

Therefore duality gap is zero (and  $x^*$  and  $u^*, v^*$  are primal and dual feasible) so  $x^*$  and  $u^*, v^*$  are primal and dual optimal. I.e., we've shown:

If  $x^*$  and  $u^*, v^*$  satisfy the KKT conditions, then  $x^*$  and  $u^*, v^*$  are primal and dual solutions

## Putting it together

In summary, KKT conditions:

- always sufficient
- necessary under strong duality

Putting it together:

For a problem with strong duality (e.g., assume Slater's condition: convex problem and there exists x strictly satisfying nonaffine inequality contraints),

 $x^{\star}$  and  $u^{\star}, v^{\star}$  are primal and dual solutions

 $\Leftrightarrow$   $x^{\star}$  and  $u^{\star}, v^{\star}$  satisfy the KKT conditions

(Warning, concerning the stationarity condition: for a differentiable function f, we cannot use  $\partial f(x) = \{\nabla f(x)\}$  unless f is convex)

#### Quadratic with equality constraints

Consider for  $Q \succeq 0$ ,

$$\min_{x \in \mathbb{R}^n} \ \frac{1}{2} x^T Q x + c^T x$$
  
subject to  $Ax = 0$ 

E.g., as in Newton step for  $\min_{x \in \mathbb{R}^n} f(x)$  subject to Ax = b

Convex problem, no inequality constraints, so by KKT conditions: x is a solution if and only if

$$\begin{bmatrix} Q & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix} = \begin{bmatrix} -c \\ 0 \end{bmatrix}$$

for some u. Linear system combines stationarity, primal feasibility (complementary slackness and dual feasibility are vacuous)