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Duality In linear programs

Suppose we want to find lower bound on the optimal value in our
convex problem, B < min,cc f(x)

E.g., consider the following simple LP
min x + vy

T,y
subject to x +y > 2

Ty =0
What's a lower bound? Easy, take B = 2

But didn't we get “lucky”?



Duality Iin linear programs

Try again:
min x + 3y T4y > 2
£y 1
: y =
subject to x +y = 2 T 2y 2 0
X,y >0 = T By > 2
Lower bound B = 2

More generally:

min pr + qy a+b=p
.Y
subject to z+y = 2 atec=q
. =
z.y >0 a,b,c=10

Lower bound BB = 2a, for any
a, b, ¢ satisfying above




Duality Iin linear programs

What's the best we can do? Maximize our lower bound over all

possible a, b, c:

min pr + qy
Y

subject to z+vy = 2

Called primal LP

max 2a
a.b.c

subject to a+b=p

a+c=q
a,b,c >0
Called dual LP

Note: number of dual variables is number of primal constraints



Duality Iin linear programs

Try another one:

1?;1 pr + qy 1;?51?{ 2c—b
subject to x >0 subject to a+3c=p
y=1 —b+c=q
dr+y =2 a,b >0
Primal LP Dual LP

Note: in the dual problem, ¢ is unconstrained



Duality Iin linear programs

Given ce R", Ac R™*" peR™ Ge R heR"

min ¢! x max . T—
reR™ ueR™ veRT
subject to Az =15 subject to —ATu — GTv = ¢
Gx <h v>0
Primal LP Dual LP

Explanation: for any w and v = (), and x primal feasible,

ul (Az —b) + 01 (Gz —h) <0, e,

(—ATu —GTo)lz > —bTu—hlw

So if c = —ATu — GTv, we get a bound on primal optimal value



Another perspective on LP duality

min ¢!z max —blu— hto
reln ueR™ veR"
subject to Az =b subject to —ATu — GTv = ¢
Gr <h v >0
Primal LP Dual LP

Explanation # 2: for any u and v = 0, and = primal feasible
cle>cle+u (Ax —b) + 0! (Gz — h) := L(x,u,v)

So if (' denotes primal feasible set, f* primal optimal value, then
for any uw and v = 0,

*>min L(xz,u,v) > min L(z, u,v) := gu.v
f* = min L(z,u,v) > min L(z,u,v) := g(u,0)



Another perspective on LP duality

In other words, g(u,v) is a lower bound on f* for any u and v > 0

Note that

—blu—-hTy fe=—-ATu—GTo
glu,v) = .
— 00 otherwise

Now we can maximize g(u,v) over u and v > 0 to get the tightest
bound, and this gives exactly the dual LP as before

This last perspective is actually completely general and applies to
arbitrary optimization problems (even nonconvex ones)



Lagrangian

Consider general minimization problem

min  f(z)

subject to hi(z) <0, i=1,...m
li(x) =0, j=1,...r

Need not be convex, but of course we will pay special attention to
convex case

We define the Lagrangian as
Tri T
L(x,u,v) = f(x)+ Z’Itihg‘_(m) + Z vili(x)
i=1 =1

New variables u € R™,v € R", with u > 0 (implicitly, we define
L{x,u,v) = —o0 for u < 0)



Lagrangian

Important property: for any « > 0 and v,

f(x) > L(x,u,v) at each feasible

Why? For feasible x,

L(x,u,v)

Tri T

f(x) + ; i hi(@) + Y wibi(z) < f(z)

. S——
<() 3=1 =0

e Solid line is f

e Dashed line is h, hence
feasible set ~ [—0.46, 0.46]

* Each dotted line shows
L(x,u,v) for different
choices of u = 0 and v

(From B & V page 217)




Lagrange Dual Function

Let C' denote primal feasible set, f* denote primal optimal value.
Minimizing L(x,u,v) over all x € R™ gives a lower bound:

*>min L(z.,u.v) > min L(xz,u.v) := glu. v
f7 2 min L(z, u,v) = min L(z, u,v) := g(u, v)

We call g(u,v) the Lagrange dual function, and it gives a lower
bound on f* for any u = 0 and v, called dual feasible u, v



Quadratic program

Consider quadratic program (QP, step up from LP!)

N T
min -z’ Qx + ¢’ x
reRn 2

subject to Az =b, x >0

where () = 0. Lagrangian:

1

L(z,u,v) = 2:1:TQ:1: +clz —ulz +oT (Az —b)

Lagrange dual function:

1 -
glu,v) = m]iRp L(z,u,v) = —E(E—H—FHT’U}TQ_I(C—TL—I—ATT})—EJT?}
zelk™

For any u > 0 and any v, this is lower a bound on primal optimal
value [~



QP iIn 2D

We choose f(x) to be quadratic in 2 variables, subject to x > 0.
Dual function g(u) is also quadratic in 2 variables, also subject to
u =0

Dual function g(u)
provides a bound on
f* for every u > 0

By

Largest bound this
gives us: turns out
to be exactly f* ...
coincidence?

More on this later




Weak duality

Given primal problem

o 1@

subject to hi(z) <0, i=1,...m
G)=0, j=1,..r
Our constructed dual function g(u, v) satisfies f* > g(u,v) for all

u > 0 and v. Hence best lower bound is given by maximizing
g(u,v) over all dual feasible u, v, yielding Lagrange dual problem:

max  g(u,v)
uel™, velRr

subject to u > 0

Key property, called weak duality: if dual optimal value ¢g*, then
fF =g

Note that this always holds (even if primal problem is nonconvex)



Dual 1Is Convex

Another key property: the dual problem is a convex optimization
problem (as written, it is a concave maximization problem)

Again, this is always true (even when primal problem is not convex)

By definition:

T

ig]igl}l{ +Zuh L}—FZUJ }
= —g&g { flz) — Zuifz-t Z-vjé’j(:r}}
=1

—_

glu,v)

M

pmntwme maximum of convex functions in (u,v)

l.e., g is concave in (u,v), and u = 0 is a convex constraint, hence
dual problem is a concave maximization problem



Strong duality

Recall that we always have f* > ¢g* (weak duality). On the other
hand, in some problems we have observed that actually

=9
which is called strong duality

Slater's condition: if the primal is a convex problem (i.e., f and
hi....hy, are convex, {1,.../(, are affine), and there exists at least
one strictly feasible x € R", meaning

hi(x) <0,...hpn(x) <0 and f(x)=0,...0.(x)=0
then strong duality holds

This is a pretty weak condition. (And it can be further refined:
need strict inequalities only over functions h; that are not affine)



Strong duality for LPs

For linear programs:
e Easy to check that the dual of the dual LP is the primal LP

» Refined version of Slater's condition: strong duality holds for
an LP if it is feasible

e Apply same logic to its dual LP: strong duality holds if it is
feasible

¢ Hence strong duality holds for LPs, except when both primal
and dual are infeasible

In other words, we pretty much always have strong duality for LPs



KKT Conditions



What we have seen so far

Given a minimization problem
min f(x
TcRn 'f( )
subject to h; (.L)

we defined the Lagrangian:

LS

L(z,u,v) = :J.r‘)—|—Z:“f,.n1

and Lagrange dual function:

)+ vili(x)
j=1

g(u,v) = min L(z,u,v)

ccR"



What we have seen so far

The subsequent dual problem is:

max giu, v
ucelR™, velR" J( )

subject to u > 0

Important properties:

e Dual problem is always convex, i.e., g is always concave (even
if primal problem is not convex)

e The primal and dual optimal values, f* and g*, always satisfy
weak duality: f* > g~
e Slater’s condition: for convex primal, if there is an & such that

hi(z) <0,...hp(z) <0 and £(z)=0,...0:(x)=0

then strong duality holds: f* = g*. (Can be further refined to
strict inequalities over the nonaffine h;, i = 1,...m)



Duality Gap

Given primal feasible x and dual feasible u, v, the quantity
f(z) —g(u,v)
is called the duality gap between & and u, v. Note that
flz) =" < fx) — g(u, v)

so if the duality gap is zero, then x is primal optimal (and similarly,
u, v are dual optimal)

From an algorithmic viewpoint, provides a stopping criterion: if
f(x) — g(u,v) <, then we are guaranteed that f(z) — f* < e

Very useful, especially in conjunction with iterative methods ...
more dual uses in coming lectures



Subgradients

Remember that for convex f : R" — IR,

fy) > f(x) + V(@) (y—a) all 2,y

|.e., linear approximation always underestimates f

A subgradient of convex f: R" — R at x is any g € R" such that
fly) = flx)+g" (y—=), ally

e Always exists
o If f differentiable at x, then g = V f(x) uniquely

o Actually, same definition works for nonconvex f (however,
subgradients need not exist)



Subgradients - Example

Consider f: R — R, f(x) = |z|

f{x)

-0.5 0.0 0.5 1.0 1.5 2.0

e For x # 0, unique subgradient g = sign(x)

e For & = 0, subgradient g is any element of [—1, 1]



Subdifferential

Set of all subgradients of convex f is called the subdifferential:

df(x) ={g € R" : g is a subgradient of f at x}

df(x) is closed and convex (even for nonconvex f)
Nonempty (can be empty for nonconvex f)

If f is differentiable at x, then 0f(z) = {Vf(z)}

If Of(x) = {g}, then f is differentiable at = and Vf(z) = g¢



Optimality condition

For any f (convex or not),

f(2) = min f(z) <= 0€0f(a")

l.e., * is a minimizer if and only if 0 is a subgradient of f at x*

Why? Easy: g = 0 being a subgradient means that for all y
fly) = f(a*) + 0" (y — a*) = f(z*)

Note implication for differentiable case, where df(x) = {V f(x)}



Karush-Kuhn-Tucker conditions

Given general problem
min f(x
min - f(z)
i

subject to hi(x) <0,
0, J

1.
tj(2) L.

The Karush-Kuhn-Tucker conditions or KK T conditions are:

e 0 df(x)+ Z u;Oh;(x) + Z vj0l;(x) (stationarity)
o u;-hi(x)=0 for all 7 (complementary slackness)
e hi(x) <0, {;(x)=0foralli,j (primal feasibility)

e u; > (0 for all 1 (dual feasibility)



Necessity — Part 1

Let ™ and u™, v™ be primal and dual solutions with zero duality
gap (strong duality holds, e.g., under Slater's condition). Then

f(@®) = g(u®,v")
= min f(z +zu*h —I—;*U;Ej(ﬂ:)

=1

(a%) + > uthi(a*) + Y vit(a
i=1 j=1
< f(z")

In other words, all these inequalities are actually equalities



Necessity - Part 2

Two things to learn from this:

e The point z* minimizes L(x,u*,v*) over x € R™. Hence the
subdifferential of L(x,u*,v*) must contain 0 at x = x*—this
is exactly the stationarity condition

e We must have > ", ufh;(z*) = 0, and since each term here
is < 0, this implies uh;(z*) = 0 for every i—this is exactly
complementary slackness

Primal and dual feasibility obviously hold. Hence, we've shown:

If x* and u*,v* are primal and dual solutions, with zero duality
gap, then z*, u*, v* satisfy the KKT conditions

(Note that this statement assumes nothing a priori about convexity
of our problem, i.e., of f, h;, ;)



Sufficlency

If there exists o™, u™, v™ that satisfy the KKT conditions, then

Trt

glu™,v* ) + Z ulh;(x*) + Z“L‘ Ci(x™)

=1
= f(z7)

where the first equality holds from stationarity, and the second
holds from complementary slackness

Therefore duality gap is zero (and z* and u*, v* are primal and

dual feasible) so #* and u*,v* are primal and dual optimal. l.e.,

we've shown:

are primal and dual solutions

If #* and u*, v* satisfy the KKT conditions, then z* and u*, v

*




Putting It together

In summary, KKT conditions:

e always sufficient

e necessary under strong duality

Putting it together:

For a problem with strong duality (e.g., assume Slater's condi-
tion: convex problem and there exists x strictly satisfying non-
affine inequality contraints),

™ and u*. v”* are primal and dual solutions

< x* and u”, v* satisfy the KKT conditions

(Warning, concerning the stationarity condition: for a differentiable
function f, we cannot use df(x) = {V f(x)} unless f is convex)



Quadratic with equality constraints

Consider for (2 = 0,

1
min —ITQiﬂ + 'z
wekn 2

subject to Ax =0
E.g., as in Newton step for min cp» f(z) subject to Ax =10b

Convex problem, no inequality constraints, so by KKT conditions:
x I1s a solution if and only if

=L

for some u. Linear system combines stationarity, primal feasibility
(complementary slackness and dual feasibility are vacuous)



