Advanced Introduction to Machine Learning CMU-10715 Clustering and EM

Barnabás Póczos

Clustering K-means Mixture of Gaussians

Expectation MaximizationVariational Methods

What is clustering?

Clustering:

The process of grouping a set of objects into classes of similar objects

- -high intra-class similarity
- -low inter-class similarity
- -It is the most common form of unsupervised learning

Clustering is subjective

Simpson's Family

School Employees

Females

Males

What is Similarity?

Hard to define! But we know it when we see it

The real meaning of similarity is a philosophical question. We will take a more pragmatic approach: think in terms of a **distance** (rather than similarity) between random variables. 5

The K- means Clustering Problem

K-means Clustering Problem

Given a set of observations (x_1, x_2, \ldots, x_n) , where $x_i \in \mathbb{R}^d$

K-means clustering problem:

Partition the *n* observations into *K* sets ($K \le n$) **S** = { $S_1, S_2, ..., S_K$ } such that the sets minimize the within-cluster sum of squares:

$$rgmin_{\mathbf{S}}\sum_{i=1}^{\kappa}\sum_{\mathbf{x}_{j}\in S_{i}}\left\|\mathbf{x}_{j}-oldsymbol{\mu}_{i}
ight\|^{2}$$

where μ_i is the mean of points in set S_i .

K=3

K-means Clustering Problem

Given a set of observations (x_1, x_2, \ldots, x_n) , where $x_i \in \mathbb{R}^d$

K-means clustering problem:

Partition the *n* observations into *K* sets ($K \le n$) **S** = { $S_1, S_2, ..., S_K$ } such that the sets minimize the within-cluster sum of squares:

$$rgmin_{\mathbf{S}}\sum_{i=1}^{K}\sum_{\mathbf{x}_{j}\in S_{i}}\left\|\mathbf{x}_{j}-oldsymbol{\mu}_{i}
ight\|^{2}$$

where μ_i is the mean of points in set S_i .

How hard is this problem?

The problem is NP hard, but there are good heuristic algorithms

that seem to work well in practice:

- K–means algorithm
- mixture of Gaussians

- Given n objects.
- Guess the cluster centers k_1 , k_2 , k_3 . (They were $\mu_1,...,\mu_3$ in the previous slide)

- Build a Voronoi diagram based on the cluster centers k₁, k₂, k₃.
- Decide the class memberships of the n objects by assigning them to the nearest cluster centers k₁, k₂, k₃.

 Re-estimate the cluster centers (aka the centroid or mean), by assuming the memberships found above are correct.

- Build a new Voronoi diagram based on the new cluster centers.
- Decide the class memberships of the n objects based on this diagram

• Re-estimate the cluster centers.

 Stop when everything is settled. (The Voronoi diagrams don't change anymore)

K- means Clustering Algorithm

Algorithm

Input

– Data + Desired number of clusters, K

Initialize

- the K cluster centers (randomly if necessary)

Iterate

1. Decide the class memberships of the n objects by assigning them to the nearest cluster centers

2. Re-estimate the K cluster centers (aka the centroid or mean), by assuming the memberships found above are correct.

Termination

If none of the n objects changed membership in the last iteration, exit.
 Otherwise go to 1.

K- means Algorithm Computation Complexity

- □ At each iteration,
 - Computing distance between each of the *n* objects and the *K* cluster centers is O(*Kn*).
 - Computing cluster centers: Each object gets added once to some cluster: O(n).
- \Box Assume these two steps are each done once for ℓ iterations: O(ℓKn).

Can you prove that the K-means algorithm guaranteed to terminate?

Seed Choice

Seed Choice

Seed Choice

- The results of the K- means Algorithm can vary based on random seed selection.
- Some seeds can result in **poor convergence rate**, or convergence to **sub-optimal** clustering.
- □ K-means algorithm can get stuck easily in **local minima.**
 - Select good seeds using a heuristic (e.g., object least similar to any existing mean)
 - Try out **multiple** starting points (very important!!!)
 - Initialize with the results of another method.

Alternating Optimization

K- means Algorithm (more formally)

□ Randomly initialize k centers

$$\mu^0 = (\mu_1^0, \dots, \mu_K^0)$$

Classify: At iteration t, assign each point ($j \in \{1,...,n\}$) to nearest center:

 $C^{t}(j) \leftarrow \arg\min_{i} \|\mu_{i}^{t} - x_{j}\|^{2}$ Classification at iteration t

Recenter: μ_i is the centroid of the new sets:

$$\mu_i^{(t+1)} \leftarrow \arg\min_{\mu} \sum_{j:C^t(j)=i} \|\mu - x_j\|^2$$

Re-assign new cluster
centers at iteration *t*

21

What is K-means optimizing?

Define the following potential function F of centers μ and point allocation C

$$\mu = (\mu_1, ..., \mu_K)$$

$$C = (C(1), ..., C(n))$$

$$F(\mu, C) = \sum_{j=1}^{n} \|\mu_{C(j)} - x_j\|^2$$

$$= \sum_{i=1}^{K} \sum_{j:C(j)=i} \|\mu_i - x_j\|^2$$
Two equivalent versions

□ Optimal solution of the K-means **problem**:

1

1

 $\min_{\mu,C} F(\mu,C)$

K-means Algorithm

Optimize the potential function:

$$\min_{\mu,C} F(\mu,C) = \min_{\mu,C} \sum_{j=1}^{n} \|\mu_{C(j)} - x_j\|^2 = \min_{\mu,C} \sum_{i=1}^{K} \sum_{j:C(j)=i} \|\mu_i - x_j\|^2$$

K-means algorithm:

(1) Fix
$$\mu$$
, Optimize C

$$\min_{C(1),C(2),...,C(n)} \sum_{j=1}^{n} \|\mu_{C(j)} - x_j\|^2 = \sum_{j=1}^{n} \min_{\substack{C(j) \\ C(j)}} \|\mu_{C(j)} - x_j\|^2$$
Exactly first step
Assign each point to the pearest cluster center

(2) Fix C, Optimize
$$\mu$$

$$\min_{\mu_1,\dots,\mu_K} \sum_{i=1}^K \sum_{j:C(j)=i} \|\mu_i - x_j\|^2 = \sum_{i=1}^K \min_{\substack{\mu_i \ j:C(j)=i}} \sum_{j:C(j)=i} \|\mu_i - x_j\|^2$$

Exactly 2nd step (re-center)

K-means Algorithm

Optimize the potential function:

$$\min_{\mu,C} F(\mu,C) = \min_{\mu,C} \sum_{j=1}^{n} \|\mu_{C(j)} - x_j\|^2$$

K-means algorithm: (coordinate descent on F)

- (1) Fix μ , Optimize C Expectation step
- (2) Fix C, Optimize μ Maximization step

Today, we will see a generalization of this approach:

EM algorithm

Gaussian Mixture Model

Density Estimation

Generative approach

$$p(x_1,\ldots,x_n|\theta) = \prod_{i=1}^n p(x_i|\theta)$$

- There is a latent parameter Θ
- For all i, draw observed x_i given Θ

What if the basic model (e.g. a Gaussian) doesn't fit all data?

⇒ Mixture modelling, Partitioning algorithms

Different parameters for different parts of the domain. $[\theta_1, \ldots, \theta_K]$

Partitioning Algorithms

• K-means

-hard assignment: each object belongs to only one cluster $\theta_i \in \{\theta_1, \dots, \theta_K\}$

Mixture modeling

-soft assignment: probability that an object belongs to a cluster

$$(\pi_1,\ldots,\pi_K)$$
, $\pi_i\geq 0$, $\sum_{i=1}^K\pi_i=1$

Gaussian Mixture Model

Mixture of K Gaussians distributions: (Multi-modal distribution)

- There are K components
- Component *i* has an associated mean vector μ_i

Component *i* generates data from $N(\mu_i, \Sigma_i)$

Each data point is generated using this process:

- 1) Choose component *i* with probability $\pi_i = P(y = i)$
- 2) Datapoint $x \sim N(\mu_i, \Sigma_i)$

Gaussian Mixture Model

Mixture of K Gaussians distributions: (Multi-modal distribution) Hidden variable

$$p(x|y = i) = N(\mu_i, \Sigma_i)$$

$$p(x) = \sum_{i=1}^{K} p(x|y = i)P(y = i)$$

$$f$$
Observed Mixture Mixture proportion

.

$$\mu_1 \quad \mu_2 \\ \mu_3 \quad \mu_3$$

Mixture of Gaussians Clustering

Assume that

 $\Sigma_i = \sigma^2 \mathbf{I}$, for simplicity. $p(x|y=i) = N(\mu_i, \sigma^2 \mathbf{I})$ $p(y=i) = \pi_i$

All prameters $\mu_1, \ldots, \mu_K, \sigma^2, \pi_1, \ldots, \pi_K$ are known.

For a given x we want to decide if it belongs to cluster i or cluster j

Cluster x based on posteriors:

$$\log \frac{P(y = i|x)}{P(y = j|x)}$$

= $\log \frac{p(x|y = i)P(y = i)/p(x)}{p(x|y = j)P(y = j)/p(x)}$
= $\log \frac{p(x|y = i)\pi_i}{p(x|y = j)\pi_j} = \log \frac{\pi_i \exp(\frac{-1}{2\sigma^2} ||x - \mu_i||^2)}{\pi_j \exp(\frac{-1}{2\sigma^2} ||x - \mu_j||^2)}$

Mixture of Gaussians Clustering

Assume that

$$\begin{split} & \Sigma_i = \sigma^2 \mathbf{I}, \text{ for simplicity.} \quad p(x|y=i) = N(\mu_i, \sigma^2 \mathbf{I}) \\ & p(y=i) = \pi_i \quad \mu_1, \dots, \mu_K, \sigma^2, \pi_1, \dots, \pi_K \text{ are known.} \\ & \log \frac{P(y=i|x)}{P(y=j|x)} = \log \frac{p(x|y=i)\pi_i}{p(x|y=j)\pi_j} = \log \frac{\pi_i \exp(\frac{-1}{2\sigma^2} ||x-\mu_i||^2)}{\pi_j \exp(\frac{-1}{2\sigma^2} ||x-\mu_j||^2)} \end{split}$$

Piecewise linear decision boundary

MLE for GMM

K-means and GMM

MLE:
$$\hat{\theta} = \arg\max_{\theta} \prod_{j=1}^{n} \sum_{i=1}^{K} \pi_i \frac{1}{\sqrt{2\pi\sigma^2}} \exp(\frac{-1}{2\sigma^2} ||x_j - \mu_i||^2)$$

• What happens if we assume **Hard assignment**?

$$P(y_j = i) = 1 \text{ if } i = C(j)$$
$$= 0 \text{ otherwise}$$

In this case the MLE estimation:

$$P(y_{j} = i, x_{j} | \theta)$$

$$\arg \max_{\theta} \prod_{j=1}^{n} P(x_{j} | \theta) = \arg \max_{\theta} \prod_{j=1}^{n} \sum_{i=1}^{K} P(y_{j} = i) \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp(\frac{-1}{2\sigma^{2}} ||x_{j} - \mu_{i}||^{2})$$

$$= \arg \max_{\theta} \prod_{j=1}^{n} \exp(\frac{-1}{2\sigma^{2}} ||x_{j} - \mu_{C(j)}||^{2})$$

$$= \arg \min_{\mu, C} \sum_{j=1}^{n} ||x_{j} - \mu_{C(j)}||^{2}) = \arg \min_{\mu, C} F(\mu, C)$$

Same as K-means!!!

General GMM

General GMM – Gaussian Mixture Model (Multi-modal distribution)

- There are k components
- Component *i* has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix Σ_i . Each data point is generated according to the following recipe:

- 1) Pick a component at random: Choose component i with probability P(y=i)
- 2) Datapoint x~ N(μ_i , Σ_i)

General GMM

GMM – Gaussian Mixture Model (Multi-modal distribution)

General GMM

Assume that

$$\theta = [\mu_1, \dots, \mu_K, \Sigma_1, \dots, \Sigma_K, \pi_1, \dots, \pi_K]$$
 are known
 $p(x|y=i) = N(\mu_i, \Sigma_i)$

 $p(y=i)=\pi_i$

Clustering based on posteriors:

 $\log \frac{P(y=i|x)}{P(y=i|x)}$ $= \log \frac{p(x|y=i)P(y=i)/p(x)}{p(x|y=i)P(y=i)/p(x)}$ $= \log \frac{p(x|y=i)\pi_i}{p(x|y=j)\pi_j} = \log \frac{\pi_i \frac{1}{\sqrt{|2\pi\Sigma_i|}} \exp\left[-\frac{1}{2}(x-\mu_i)^T \Sigma_i^{-1}(x-\mu_i)\right]}{\pi_j \frac{1}{\sqrt{|2\pi\Sigma_j|}} \exp\left[-\frac{1}{2}(x-\mu_j)^T \Sigma_j^{-1}(x-\mu_j)\right]}$ $=x^TWx+w^Tx+c$ Depends on $\mu_1, \ldots, \mu_K, \Sigma_1, \ldots, \Sigma_K, \pi_1, \ldots, \pi_K$

"Quadratic Decision boundary" – second-order terms don't cancel out 37

General GMM MLE Estimation

What if we don't know $\theta = [\mu_1, \ldots, \mu_K, \Sigma_1, \ldots, \Sigma_K, \pi_1, \ldots, \pi_K]$?

⇒ Maximize marginal likelihood (MLE):

$$\arg \max_{\theta} \prod_{j=1}^{n} P(x_j|\theta) = \arg \max_{\theta} \prod_{j=1}^{n} \sum_{i=1}^{K} P(y_j = i, x_j|\theta)$$
$$= \arg \max_{\theta} \prod_{j=1}^{n} \sum_{i=1}^{K} P(y_j = i|\theta) p(x_j|y_j = i|\theta)$$
$$= \arg \max_{\theta} \prod_{j=1}^{n} \sum_{i=1}^{K} \pi_i \frac{1}{\sqrt{|2\pi\Sigma_i|}} \exp\left[-\frac{1}{2}(x_j - \mu_i)^T \Sigma_i^{-1}(x_j - \mu_i)\right]$$

* Set
$$\frac{\partial}{\partial \mu_i}$$
 log Prob(...) = 0, and solve for μ_i .

Non-linear, non-analytically solvable

* Use gradient descent. Doable, but often slow

* Use EM.

Expectation-Maximization (EM)

- A general algorithm to deal with hidden data, but we will study it in the context of unsupervised learning (hidden class labels = clustering) first.
- EM is an optimization strategy for objective functions that can be interpreted as likelihoods in the presence of missing data.
- EM is "simpler" than gradient methods: No need to choose step size.
- EM is an iterative algorithm with two linked steps:

o E-step: fill-in hidden values using inference

o M-step: apply standard MLE/MAP method to completed data

• We will prove that this procedure monotonically improves the likelihood (or leaves it unchanged). EM always converges to a local optimum of the likelihood.

Expectation-Maximization (EM)

A simple case:

- We have unlabeled data $x_1, x_2, ..., x_n$
- We know there are K classes
- We know $P(y=1)=\pi_1$, $P(y=2)=\pi_2$, $P(y=3)=\pi_2$,..., $P(y=K)=\pi_K$
- We know common variance σ^2
- We **don't** know μ_1 , μ_2 , ... μ_K , and we want to learn them

We can write

$$p(x_1, \dots, x_n | \mu_1, \dots, \mu_K) = \prod_{\substack{j=1 \\ m}}^n p(x_j | \mu_1, \dots, \mu_K) \text{ Independent data}$$

$$= \prod_{\substack{j=1 \\ i=1}}^n \sum_{\substack{i=1 \\ i=1}}^K p(x_j, y_j = i | \mu_1, \dots, \mu_K) \text{ Marginalize over class}$$

$$= \prod_{\substack{j=1 \\ i=1}}^n \sum_{\substack{i=1 \\ i=1}}^K p(x_j | y_j = i, \mu_1, \dots, \mu_K) p(y_j = i)$$

$$\propto \prod_{\substack{j=1 \\ i=1}}^n \sum_{\substack{i=1 \\ i=1}}^K \exp(-\frac{1}{2\sigma^2} ||x_j - \mu_i||^2) \pi_i \quad \Rightarrow \text{ learn } \mu_1, \mu_2, \dots, \mu_K$$

Expectation (E) step

We want to learn: $\theta = [\mu_1, \dots, \mu_K]$ Our estimator at the end of iteration t-1: $\theta^{t-1} = [\mu_1^{t-1}, \dots, \mu_K^{t-1}]$

At iteration t, construct function Q:

$$Q(\theta^{t}|\theta^{t(\theta^{t}|\theta^{t-1})}) \stackrel{n}{=} \sum_{j=1}^{n} \sum_{i=1}^{K} \sum_{i=1}^{K} P(\underline{y}_{j} \ \overline{i} \overline{x}_{j}^{i}, \theta^{t,\theta^{t}}) | \theta \theta P(\underline{x}_{j}^{x}, \underline{y}_{j}^{y} \overline{=} i | \theta^{t})$$

E step

$$P(y_j = i | x_j, \theta^{t-1}) = P(y_j = i | x_j, \mu_1^{t-1}, \dots, \mu_K^{t-1})$$

$$\propto P(x_j | y_j = i, \mu_1^{t-1}, \dots, \mu_K^{t-1}) P(y_j = i)$$

$$\propto \exp(-\frac{1}{2\sigma^2} || x_j - \mu_i^{t-1} ||^2) \pi_i$$

$$= \frac{\exp(-\frac{1}{2\sigma^2} || x_j - \mu_i^{t-1} ||^2) \pi_i}{\sum_{i=1}^{K} \exp(-\frac{1}{2\sigma^2} || x_j - \mu_i^{t-1} ||^2) \pi_i}$$

Equivalent to assigning clusters to each data point in K-means in a soft way

Maximization (M) step

$$Q(\theta^{t}|\theta^{t-1}) = \sum_{\substack{j=1\\n}}^{n} \sum_{\substack{i=1\\K}}^{K} P(y_{j} = i|x_{j}, \theta^{t-1}) \log P(x_{j}, y_{j} = i|\theta^{t})$$

$$= \sum_{\substack{j=1\\i=1}}^{n} \sum_{\substack{i=1\\i=1}}^{K} P(y_{j} = i|x_{j}, \theta^{t-1}) [\log P(x_{j}|y_{j} = i, \theta^{t}) + \log P(y_{j} = i|\theta^{t})]$$

$$\propto \exp(-\frac{1}{2\sigma^{2}}||x_{j} - \mu_{i}^{t}||^{2})$$

$$\pi_{i}$$
Ne calculated these weights in the E step
$$R_{i,j}^{t-1} = P(y_{j} = i|x_{j}, \theta^{t-1})$$
Joint distribution is simple

M step At iteration t, maximize function Q in θ^t :

$$Q(\mu_{i}^{t}|\theta^{t-1}) \propto \sum_{j=1}^{n} R_{i,j}^{t-1} \left(-\frac{1}{2\sigma^{2}} \|x_{j} - \mu_{i}^{t}\|^{2}\right)$$
$$\frac{\partial}{\partial \mu_{i}^{t}} Q(\mu_{i}^{t}|\theta^{t-1}) = 0 \Rightarrow \sum_{j=1}^{n} R_{i,j}^{t-1} (x_{n} - \mu_{i}^{t}) = 0$$

$$\mu_i^t = \sum_{j=1}^n w_j x_j \text{ where } w_j = \frac{R_{i,j}^{t-1}}{\sum_{j=1}^n R_{i,j}^{t-1}} = \frac{P(y_j = i | x_j, \theta^{t-1})}{\sum_{l=1}^n P(y_l = i | x_l, \theta^{t-1})}$$

Equivalent to updating cluster centers in K-means

EM for spherical, same variance GMMs

E-step

Compute "expected" classes of all datapoints for each class $P(y_j = i | x_j, \theta^{t-1}) = \frac{\exp(-\frac{1}{2\sigma^2} || x_j - \mu_i^{t-1} ||^2) \pi_i^{t-1}}{\sum_{i=1}^K \exp(-\frac{1}{2\sigma^2} || x_j - \mu_i^{t-1} ||^2) \pi_i^{t-1}}$

In K-means "E-step" we do hard assignment. EM does soft assignment

M-step

Compute Max of function Q. [I.e. update µ given our data's class membership distributions (weights)]

$$\mu_{i}^{t} = \sum_{j=1}^{n} w_{j} x_{j} \quad \text{where } w_{j} = \frac{P(y_{j} = i | x_{j}, \theta^{t-1})}{\sum_{l=1}^{n} P(y_{l} = i | x_{l}, \theta^{t-1})}$$

Iterate. Exactly the same as MLE with weighted data.

EM for general GMMs

The more general case:

- We have unlabeled data $x_1, x_2, ..., x_n$
- We know there are K classes
- We **don't** know P(y=1)=π₁, P(y=2)=π₂ P(y=3) ... P(y=K)=π_K
- We **don't** know $\Sigma_1, \dots \Sigma_K$
- We **don't** know μ_1 , μ_2 , ... μ_K

We want to learn: $\theta = [\mu_1, \dots, \mu_K, \pi_1, \dots, \pi_K, \Sigma_1, \dots, \Sigma_K]$

Our estimator at the end of iteration t-1: $\theta^{t-1} = [\mu_1^{t-1}, \dots, \mu_K^{t-1}, \pi_1^{t-1}, \dots, \pi_K^{t-1}, \Sigma_1^{t-1}, \dots, \Sigma_K^{t-1}]$ The idea is the same:

At iteration t, construct function Q (E step) and maximize it in θ^t (M step)

$$Q(\theta^{t}|\theta^{t-1}) = \sum_{j=1}^{n} \sum_{i=1}^{K} P(y_{j} = i|x_{j}, \theta^{t-1}) \log P(x_{j}, y_{j} = i|\theta^{t})$$

EM for general GMMs

At iteration t, construct function Q (E step) and maximize it in θ^{t} (M step) **E-step** $Q(\theta^{t}|\theta^{t-1}) = \sum_{j=1}^{n} \sum_{i=1}^{K} P(y_{j} = i|x_{j}, \theta^{t-1}) \log P(x_{j}, y_{j} = i|\theta^{t})$ Compute "expected" classes of all datapoints for each class $R_{i,j}^{t-1} = P(y_{j} = i|x_{j}, \theta^{t-1}) = \frac{\mathcal{N}(x_{j} | \mu_{i}^{t-1}, \sum_{i=1}^{t-1}) \pi_{i}^{t-1}}{\sum_{i=1}^{K} \mathcal{N}(x_{j} | \mu_{i}^{t-1}, \sum_{i=1}^{t-1}) \pi_{i}^{t-1}}$

M-step $\frac{\partial}{\partial \theta^t} Q(\theta^t | \theta^{t-1}) = 0$

Compute MLEs given our data's class membership distributions (weights)

$$\mu_{i}^{t} = \sum_{j=1}^{n} w_{j} x_{j} \text{ where } w_{j} = \frac{R_{i,j}^{t-1}}{\sum_{j=1}^{n} R_{i,j}^{t-1}}$$

$$\Sigma_{i}^{t} = \sum_{j=1}^{n} w_{j} (x_{j} - \mu_{i}^{t})^{T} (x_{j} - \mu_{i}^{t})$$

$$\pi_{i}^{t} = \frac{1}{n} \sum_{j=1}^{n} R_{i,j}^{t-1}$$

After 1st iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

GMM for Density Estimation

What is EM in the general case, and why does it work?

Notation

Observed data: $D = \{x_1, \dots, x_n\}$ **Unknown variables:** yFor example in clustering: $y = (y_1, \dots, y_n)$ **Paramaters:** θ

For example in MoG: $\theta = [\mu_1, \dots, \mu_K, \pi_1, \dots, \pi_K, \Sigma_1, \dots, \Sigma_K]$

Goal: $\hat{\theta}_n = \arg \max_{\theta} \log P(D|\theta)$

Other Examples: Hidden Markov Models

Observed data: $D = \{x_1, ..., x_n\}$

Unknown variables: $y = (y_1, \dots, y_n)$

Paramaters: θ $\theta = [\pi_1, \dots, \pi_K, A, B]$

Initial probabilities: $P(x_1 = i) = \pi_i, i = 1, ..., K$

Transition probabilities: $P(y_{t+1} = j | y_t = i) = A_{ij}$ Emission probabilities: $P(x_t = l | y_t = i) = B_{il}$

Goal:

 $\hat{\theta}_n = \arg\max_{\theta} \log P(D|\theta) = \arg\max_{\pi,A,B} \log P(x_1, \dots, x_n|\theta)$

Goal: arg max $\log P(D|\theta)$ $\log P(D|\theta^t) = \int dy q(y) \log P(D|\theta^t)$ $= \int dy \, q(y) \log \left| \frac{P(y, D|\theta^t)}{P(y|D, \theta^t)} \frac{q(y)}{q(y)} \right| \text{ since } P(y, D|\theta^t) = P(D|\theta^t) P(y|D, \theta^t)$ $= \int dy q(y) \log P(y, D|\theta^t) - \int dy q(y) \log q(y) + \int dy q(y) \log \frac{q(y)}{P(y|D, \theta^t)}$ H(q) $KL(q(y)||P(y|D,\theta^t))$ Free energy: $F_{\theta^t}(q(\cdot), D)$ **E Step:** $Q(\theta^t | \theta^{t-1}) = \mathbb{E}_y[\log P(y, D | \theta^t) | D, \theta^{t-1}]$ $= \int dy P(y|D, \theta^{t-1}) \log P(y, D|\theta^{t})$ M Step: $\theta^t = \arg \max_{\theta} Q(\theta | \theta^{t-1})$

We are going to discuss why this approach works

Free energy: $F_{\theta^t}(q(\cdot), D)$

 $Q(\theta|\theta^t) = \int dy P(y|D, \theta^t) \log P(y, D|\theta)$ E Step: Let us see why! Let $q(y) = P(y|D, \theta^t)$ $\Rightarrow KL(q(y) \| P(y|D, \theta^t)) = 0$ $\Rightarrow \log P(D|\theta^t) = F_{\theta^t}(P(y|D, \theta^t), D)$ $= \int dy P(y|D,\theta^t) \log P(y,D|\theta^t) - \int dy P(y|D,\theta^t) \log P(y|D,\theta^t)$ $\leq \int dy P(y|D,\theta^t) \log P(y,D|\theta^{t+1}) - \int dy P(y|D,\theta^t) \log P(y|D,\theta^t)$ M Step: $\theta^{t+1} = \arg\max_{\theta} Q(\theta|\theta^t)$ We maximize only here in θ !!! 59

Theorem: During the EM algorithm the marginal likelihood is not decreasing! $P(D|\theta^t) \le P(D|\theta^{t+1})$

Proof:

$$\log P(D|\theta^{t}) = F_{\theta^{t}}(P(y|D,\theta^{t}),D)$$

$$\leq \int dy P(y|D,\theta^{t}) \log P(y,D|\theta^{t+1}) - \int dy P(y|D,\theta^{t}) \log P(y|D,\theta^{t})$$

$$= F_{\theta^{t+1}}(P(y|D,\theta^{t}),D)$$

$$= \log P(D|\theta^{t+1}) - KL(P(y|D,\theta^{t})||P(y|D,\theta^{t+1}))$$

$$\leq \log P(D|\theta^{t+1})$$
60

Goal: $\arg \max_{\theta} \log P(D|\theta)$ E Step: $Q(\theta^t | \theta^{t-1}) = \mathbb{E}_y[\log P(y, D|\theta^t) | D, \theta^{t-1}]$ $= \int dy P(y|D, \theta^{t-1}) \log P(y, D|\theta^t)$ M Step: $\theta^t = \arg \max_{\theta} Q(\theta|\theta^{t-1})$

During the EM algorithm the marginal likelihood is not decreasing! $P(D|\theta^t) \le P(D|\theta^{t+1})$

Convergence of EM

Sequence of EM lower bound F-functions

EM monotonically converges to a local maximum of likelihood !

Convergence of EM

Different sequence of EM lower bound F-functions depending on initialization

Use multiple, randomized initializations in practice

Variational Methods

$$\log P(D|\theta^{t}) = \int dy \, q(y) \log P(y, D|\theta^{t}) - \int dy \, q(y) \log q(y) + \int dy \, q(y) \log \frac{q(y)}{P(y|D, \theta^{t})}$$

$$H(q)$$

$$KL(q(y)||P(y|D, \theta^{t}))$$

Free energy: $F_{\theta^t}(q(\cdot), D)$

$\log P(D|\theta^t) \ge F_{\theta^t}(q(\cdot), D)$

If $P(y|D, \theta^t)$) is complicated, then instead of setting $q(y) = P(y|D, \theta^t)$),

try to find suboptimal maximum points of the free energy.

Variational methods might decrease the marginal likelihood!

Free energy: $F_{\theta^t}(q(\cdot), D)$

 $\log P(D|\theta^{t}) = F_{\theta^{t}}(q(\cdot), D) + KL(q(y)||P(y|D, \theta^{t})) \quad \log P(D|\theta^{t}) \geq F_{\theta^{t}}(q(\cdot), D)$ **Partial E Step:**

 θ^t is fixed

$$q^{t}(\cdot) = \arg\max_{q(\cdot)} F_{\theta^{t}}(q(\cdot), D) = \arg\min_{q(\cdot)} KL(q(y) || P(y|D, \theta^{t}))$$

But **not** necessarily the best max/min which would be $P(y|D, \theta^t)$) **Partial M Step:**

> q^t is fixed $\theta^{t+1} = \arg \max_{\theta} F_{\theta}(q^t(\cdot), D)$

Variational methods might decrease the marginal likelihood! 66

Summary: EM Algorithm

- A way of maximizing likelihood function for hidden variable models.
- Finds MLE of parameters when the original (hard) problem can be broken up into two (easy) pieces:
 - 1.Estimate some "missing" or "unobserved" data from observed data and current parameters.
 - 2. Using this "complete" data, find the MLE parameter estimates.
- Alternate between filling in the latent variables using the best guess (posterior) and updating the parameters based on this guess:

E Step: $q^t = \arg \max_q F_{\theta^t}(q(\cdot), D)$ **M Step:** $\theta^{t+1} = \arg \max_{\theta} F_{\theta}(q^t(\cdot), D)$

In the M-step we optimize a lower bound F on the likelihood L. In the E-step we close the gap, making bound F =likelihood L. EM performs coordinate ascent on F, can get stuck in local optima.