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Clustering  
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K- means clustering What is clustering? 
Clustering:  

 The process of grouping a set of objects into classes of similar objects 

 

 –high intra-class similarity 

 –low inter-class similarity 

 –It is the most common form of unsupervised learning 
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K- means clustering What is Similarity? 

Hard to define! But we know it when we see it 

The real meaning of similarity is a philosophical question. We will take a more 
pragmatic approach: think in terms of a distance (rather than similarity) 
between random variables. 
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The K- means Clustering Problem 
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K-means Clustering Problem  

 

Partition the n observations into K  sets (K ≤ n) S = {S1, S2, …, SK} 

such that the sets minimize the within-cluster sum of squares:  

K-means clustering problem: 

K=3 
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K-means Clustering Problem  

 

Partition the n observations into K  sets (K ≤ n) S = {S1, S2, …, SK} 

such that the sets minimize the within-cluster sum of squares:  

The problem is NP hard, but there are good heuristic algorithms  

that seem to work well in practice: 

• K–means algorithm 

• mixture of Gaussians 

K-means clustering problem: 

How hard is this problem? 
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K-means Clustering Alg: Step 1 

• Given n objects.  

• Guess the cluster centers k1, k2, k3. (They were 1,…,3 in the previous slide) 
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K-means Clustering Alg: Step 2 

• Build a Voronoi diagram based on the cluster centers k1, k2, k3. 

• Decide the class memberships of the n objects by assigning them to the 
nearest cluster centers k1, k2, k3. 
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K-means Clustering Alg: Step 3 

• Re-estimate the cluster centers (aka the centroid or mean), by 
assuming the memberships found above are correct. 
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K-means Clustering Alg: Step 4 

• Build a new Voronoi diagram based on the new cluster centers. 

• Decide the class memberships of the n objects based on this diagram 
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K-means Clustering Alg: Step 5 

• Re-estimate the cluster centers. 
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K-means Clustering Alg: Step 6 

• Stop when everything is settled.  
(The Voronoi diagrams don’t change anymore)   
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K- means clustering 

Algorithm 

Input  

 – Data + Desired number of clusters, K 

Initialize 

  – the K cluster centers (randomly if necessary) 

Iterate  

 1. Decide the class memberships of the n objects by assigning them to the 
nearest cluster centers 

 2. Re-estimate the K cluster centers (aka the centroid or mean), by 
assuming the memberships found above are correct. 

Termination  

– If none of the n objects changed membership in the last iteration, exit.  

Otherwise go to 1. 

K- means Clustering Algorithm 
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K- means clustering K- means Algorithm  
Computation Complexity 

 At each iteration,  

 – Computing distance between each of the n objects and the K cluster 
centers is O(Kn). 

 – Computing cluster centers: Each object gets added once to some 
cluster: O(n).   

 Assume these two steps are each done once for l iterations: O(lKn). 

Can you prove that the K-means algorithm guaranteed to terminate?  
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K- means clustering 
Seed Choice 
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K- means clustering 
Seed Choice 
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K- means clustering 
Seed Choice 

The results of the K- means Algorithm can vary based on random seed 
selection. 

 

 Some seeds can result in poor convergence rate, or convergence to 
sub-optimal clustering.  

 K-means algorithm can get stuck easily in local minima. 

 – Select good seeds using a heuristic (e.g., object least similar to any 
existing mean)  

 – Try out multiple starting points (very important!!!) 

 – Initialize with the results of another method. 
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Alternating Optimization 
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K- means clustering 
K- means Algorithm (more formally) 

 Randomly initialize k centers 

 Classify: At iteration t, assign each point (j 2 {1,…,n}) to nearest center:  

 Recenter: i is the centroid of the new sets: 

Classification at iteration t 

Re-assign new cluster 
centers at iteration t 
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K- means clustering 
What is K-means optimizing? 

 Define the following potential function F of centers  
and point allocation C 

 Optimal solution of the K-means problem: 

Two equivalent versions 
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K- means clustering 
K-means Algorithm 

K-means algorithm: 

(1) 

Optimize the potential function: 

(2) 

Exactly 2nd  step (re-center) 

Assign each point to the nearest cluster center  

Exactly first step 
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K- means clustering 
K-means Algorithm 

K-means algorithm: (coordinate descent on F) 

Today, we will see a generalization of this approach: 

EM algorithm 

(1) 

(2) 

Expectation step 

Maximization step 

Optimize the potential function: 
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Gaussian Mixture Model 
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Density Estimation 

• There is a latent parameter Θ 

• For all i, draw observed xi given Θ 

Generative approach 

) Mixture modelling, Partitioning algorithms 

Different parameters for different parts of the domain.  

What if the basic model (e.g. a Gaussian) doesn’t fit all data? 
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K- means clustering 
Partitioning Algorithms 

• K-means  

 –hard assignment: each object belongs to only one cluster 

 

• Mixture modeling 

 –soft assignment: probability that an object belongs to a cluster 
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K- means clustering 
Gaussian Mixture Model 

Mixture of K Gaussians distributions: (Multi-modal distribution) 

 • There are K components 

 • Component i has an associated mean vector i 

Component i  generates data from 

Each data point is generated using this process: 
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Gaussian Mixture Model 
Mixture of K Gaussians distributions: (Multi-modal distribution) 

Mixture 
component  

Mixture 
proportion 

Observed 
data  

Hidden variable  
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Mixture of Gaussians Clustering  

Cluster x based on posteriors:  

Assume that 

For a given x we want to decide if it belongs to cluster i or cluster j 
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Mixture of Gaussians Clustering  
Assume that 
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Piecewise linear decision boundary 
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MLE for GMM  

) Maximum Likelihood Estimate (MLE)  

What if we don't know the parameters?  
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K-means and GMM  

• What happens if we assume Hard assignment?  

   P(yj = i) = 1 if i = C(j)  

               = 0 otherwise  

In this case the MLE estimation:  

Same as K-means!!!  

MLE: 
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General GMM 

 

• There are k components 

 

• Component i has an associated 
mean vector i 

 

• Each component generates data 
from a Gaussian with mean i 
and covariance matrix i. Each 
data point is generated according 
to the following recipe:  

General GMM –Gaussian Mixture Model (Multi-modal distribution) 

1) Pick a component at random: Choose component i 
with probability P(y=i) 

2) Datapoint x~ N(i ,i) 
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General GMM 
GMM –Gaussian Mixture Model (Multi-modal distribution) 

Mixture 

component  

Mixture 

proportion 
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General GMM 

“Quadratic Decision boundary” – second-order terms don’t cancel out  

Clustering based on posteriors:  

Assume that 
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General GMM MLE Estimation  

) Maximize marginal likelihood (MLE):  

What if we don't know  

Doable, but often slow 

Non-linear, non-analytically solvable  
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Expectation-Maximization (EM) 
A general algorithm to deal with hidden data, but we will study it in 

the context of unsupervised learning (hidden class labels = 
clustering) first. 

• EM is an optimization strategy for objective functions that can be interpreted 
as likelihoods in the presence of missing data. 

• EM is “simpler” than gradient methods: 
No need to choose step size. 

• EM is an iterative algorithm with two linked steps: 

o E-step: fill-in hidden values using inference 

o M-step: apply standard MLE/MAP method to completed data 

• We will prove that this procedure monotonically improves the likelihood (or 
leaves it unchanged). EM always converges to a local optimum of the 
likelihood. 
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Expectation-Maximization (EM) 
A simple case:  

• We have unlabeled data x1, x2, …, xn 

• We know there are K classes  

• We know P(y=1)=1, P(y=2)=2, P(y=3) =2,…, P(y=K)=K 

• We know common variance 2  

• We don’t know 1, 2, … K , and we want to learn them  

We can write  

Marginalize over class 

Independent data  

) learn 1, 2, … K  
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Expectation (E) step  

Equivalent to assigning clusters to each data point in K-means in a soft way 

At iteration t, construct function Q: 

We want to learn: 

Our estimator at the end of iteration t-1: 

E step 
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Maximization (M) step  

Equivalent to updating cluster centers in K-means 

We calculated these weights in the E step 

Joint distribution is simple 

At iteration t, maximize function Q in t: M step 
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EM for spherical, same variance 
GMMs  

E-step  

Compute “expected” classes of all datapoints for each class  

In K-means “E-step” we do hard assignment. EM does soft assignment  

M-step  

Compute Max of function Q. [I.e. update μ given our data’s class 
membership distributions (weights) ] 

Iterate.  Exactly the same as MLE with weighted data. 
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EM for general GMMs  
The more general case:  

• We have unlabeled data x1, x2, …, xn 

• We know there are K classes  

• We don’t know P(y=1)=1, P(y=2)=2 P(y=3) … P(y=K)=K 

• We don’t know 1,… K  

• We don’t know 1, 2, … K  

The idea is the same: 

At iteration t, construct function Q (E step) and maximize it in t (M step) 

We want to learn: 

Our estimator at the end of iteration t-1: 
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EM for general GMMs  
At iteration t, construct function Q (E step) and maximize it in t (M step) 

M-step  

Compute MLEs given our data’s class membership distributions (weights)  

E-step  

Compute “expected” classes of all datapoints for each class  
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EM for general GMMs: Example 
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EM for general GMMs: Example 
After 1st iteration 
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EM for general GMMs: Example 
After 2nd iteration 
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EM for general GMMs: Example 
After 3rd iteration 



50 

EM for general GMMs: Example 
After 4th iteration 
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EM for general GMMs: Example 
After 5th iteration 
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EM for general GMMs: Example 
After 6th iteration 
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EM for general GMMs: Example 
After 20th iteration 
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GMM for Density Estimation  
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General EM algorithm 

What is EM in the general case, and why does it work? 
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General EM algorithm 

Observed data: 

Unknown variables: 

Paramaters: 

For example in clustering:  

For example in MoG:  

Goal: 

Notation 
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General EM algorithm 

Observed data: 

Unknown variables: 

Paramaters: 

Goal: 

Other Examples: Hidden Markov Models 

Initial probabilities: 

Transition probabilities: 

Emission probabilities: 
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General EM algorithm 

Goal: 

Free energy: 

E Step: 

M Step: 

We are going to discuss why this approach works 
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General EM algorithm 

Free energy: 

M Step: 

We maximize only here in !!! 

E Step: Let us see why! 
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General EM algorithm 

Free energy: 

Theorem: During the EM algorithm the marginal likelihood is not decreasing! 

Proof:  
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General EM algorithm 

Goal: 

E Step: 

M Step: 

During the EM algorithm the marginal likelihood is not decreasing! 
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Convergence of EM 

Sequence of EM lower bound F-functions 

EM monotonically converges to a local maximum of likelihood ! 
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Convergence of EM 

Use multiple, randomized initializations in practice 

Different sequence of EM lower bound F-functions depending on initialization 
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Variational Methods 
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Variational methods 

Free energy: 

Variational methods might decrease the marginal likelihood! 
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Variational methods 

Free energy: 

Partial M Step: 

Partial E Step: 

But not necessarily the best max/min which would be  

Variational methods might decrease the marginal likelihood! 
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Summary: EM Algorithm 
 A way of maximizing likelihood function for hidden variable models.  

Finds MLE of parameters when the original (hard) problem can be broken up 
into two (easy) pieces: 

1.Estimate some “missing” or “unobserved” data from observed data and 
current parameters. 

2. Using this “complete” data, find the MLE parameter estimates. 

Alternate between filling in the latent variables using the best guess (posterior) 
and updating the parameters based on this guess: 

In the M-step we optimize a lower bound F on the likelihood L.  

In the E-step we close the gap, making bound F =likelihood L. 

EM performs coordinate ascent on F, can get stuck in local optima. 

E Step: 

M Step: 


