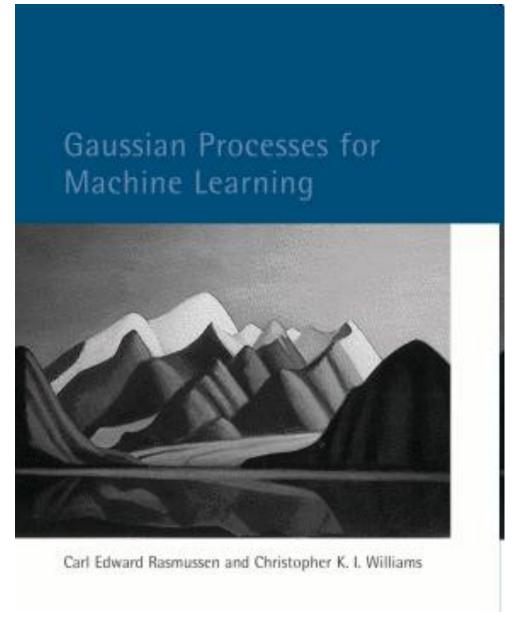
Advanced Introduction to Machine Learning CMU-10715

Gaussian Processes

Barnabás Póczos



http://www.gaussianprocess.org/

Some of these slides in the intro are taken from D. Lizotte, R. Parr, C. Guesterin

Contents

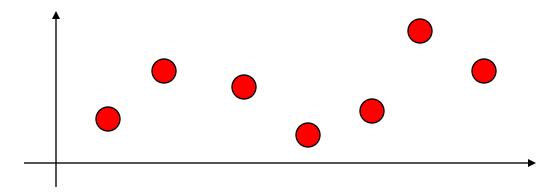
- Introduction
- ☐ Ridge Regression
- ☐ Gaussian Processes
 - Weight space view
 - Bayesian Ridge Regression + Kernel trick
 - Function space view
 - Prior distribution over functions
 - + calculation posterior distributions

Contents

- Introduction
- □ Ridge Regression
- ☐ Gaussian Processes
 - Weight space view
 - Bayesian Ridge Regression + Kernel trick
 - Function space view
 - Prior distribution over functions
 - + calculation posterior distributions

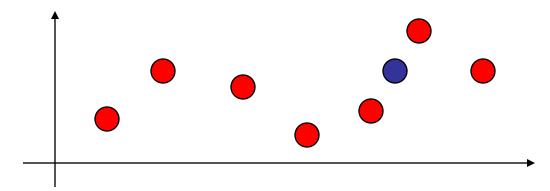
Why GPs for Regression?

Here are some data points! What function did they come from?



- I have *no idea*.

Oh. Okay. Uh, you think this point is likely in the function, too?



- I still have *no idea*.

Why GPs for Regression?

- ☐ You can't get anywhere without making some assumptions
- ☐ GPs are a nice way of expressing this 'prior on functions' idea.
- ☐ Can be used in many applications:
 - Regression
 - Classification
 - Optimization

Why GPs for Regression?

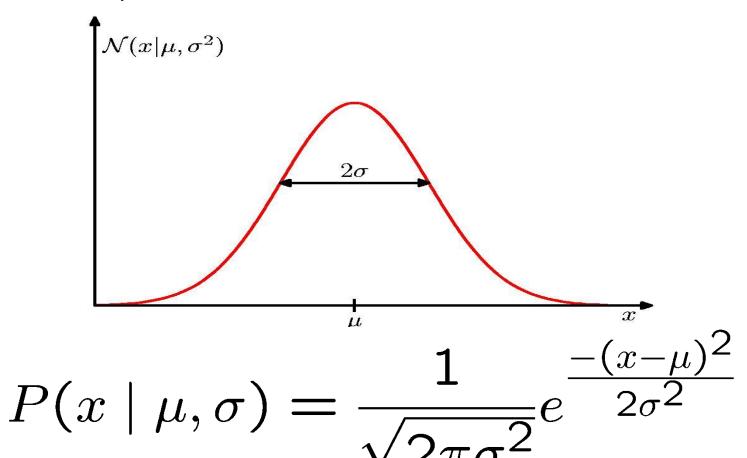
Under certain assumptions GPs can answer the following questions

- Here's where the function will most likely be. (expected function)
- Here are some examples of what it might look like.
 (sampling from the posterior distribution)
- Here is a prediction of what you'll see if you evaluate your function at x', with confidence

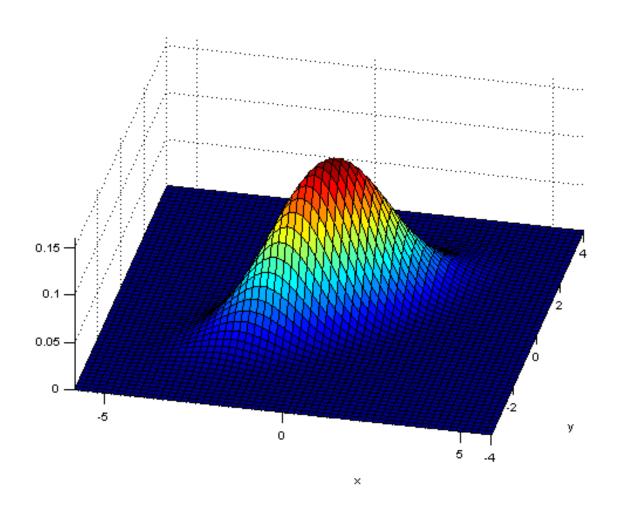
1D Gaussian Distribution

Parameters

- Mean, μ
- Variance, σ²



Multivariate Gaussian



$$P(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{2\pi|\boldsymbol{\Sigma}|}} \exp\{\frac{-1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\}$$

Multivariate Gaussian

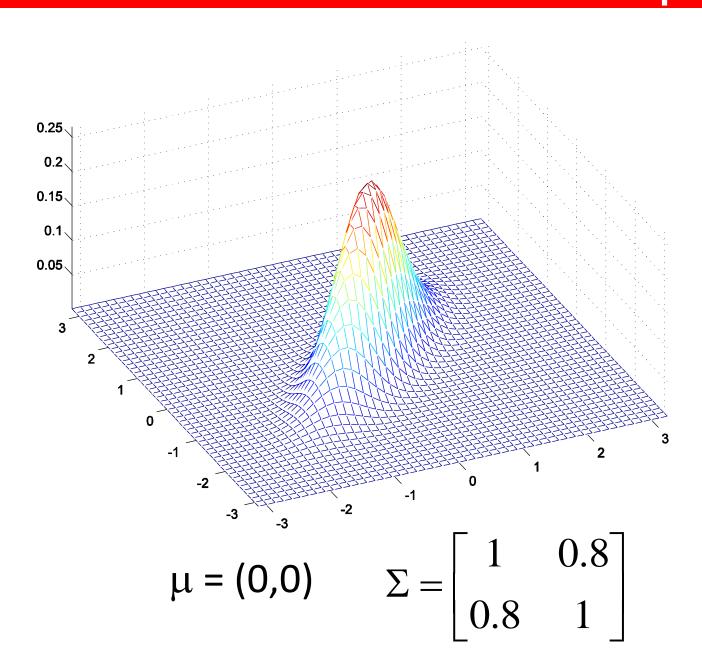
- ☐ A 2-dimensional Gaussian is defined by

 - a mean vector $\mu = [\mu_1, \mu_2]$ a covariance matrix: $\Sigma = \begin{bmatrix} \sigma_{1,1}^2 & \sigma_{2,1}^2 \\ \sigma_{1,2}^2 & \sigma_{2,2}^2 \end{bmatrix}$

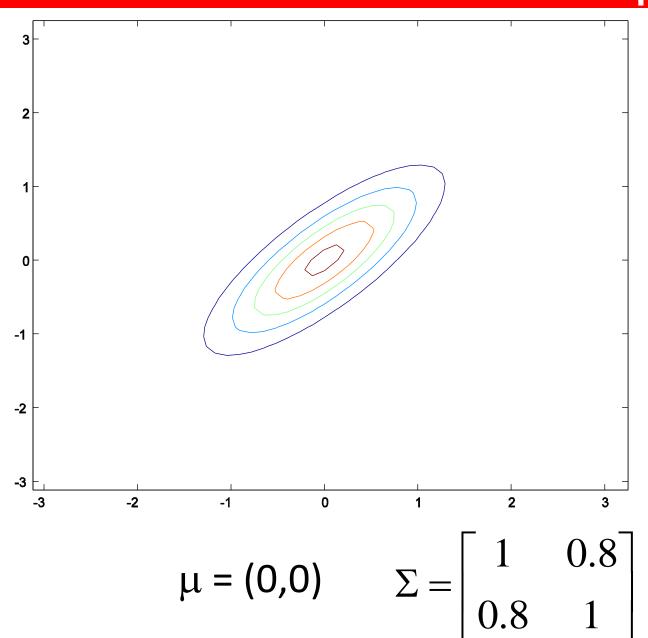
```
where \sigma_{i,j}^2 = E[(x_i - \mu_i)(x_j - \mu_j)] is (co)variance
```

□ Note: ∑ is symmetric, "positive semi-definite": $\forall x: x^T \sum x \geq 0$

Multivariate Gaussian examples



Multivariate Gaussian examples



Useful Properties of Gaussians

☐ Marginal distributions of Gaussians are Gaussian

□Given:

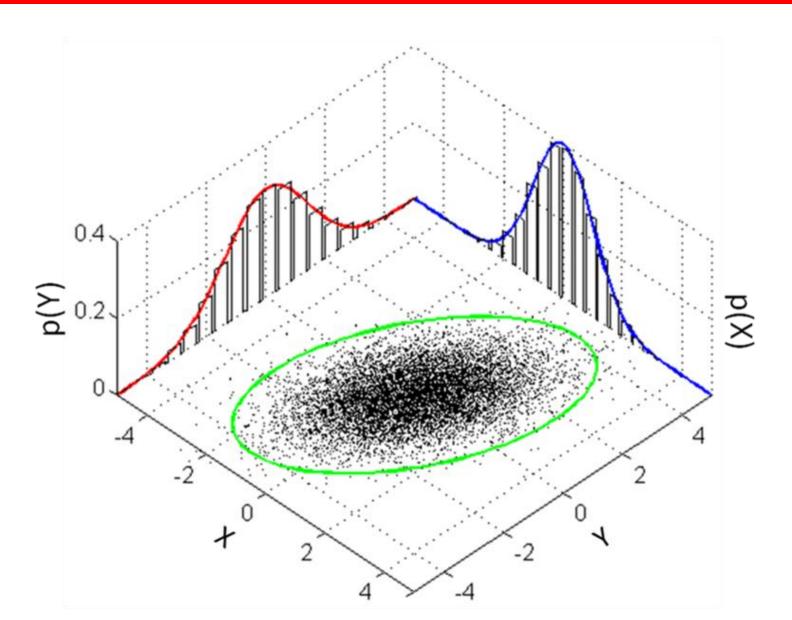
$$x = (x_a, x_b), \mu = (\mu_a, \mu_b)$$

$$\Sigma = \begin{pmatrix} \Sigma_{aa} & \Sigma_{ab} \\ \Sigma_{ba} & \Sigma_{bb} \end{pmatrix}$$

☐ Marginal Distribution:

$$p(X_a) = \mathcal{N}(x_a \mid \mu_a, \Sigma_{aa})$$

Marginal distributions of Gaussians are Gaussian



Useful Properties of Gaussians

- □ Conditional distributions of Gaussians are Gaussian
- □ Notation:

$$\Sigma = \begin{pmatrix} \Sigma_{aa} & \Sigma_{ab} \\ \Sigma_{ba} & \Sigma_{bb} \end{pmatrix} \quad \Lambda = \Sigma^{-1} = \begin{pmatrix} \Lambda_{aa} & \Lambda_{ab} \\ \Lambda_{ba} & \Lambda_{bb} \end{pmatrix}$$

□ Conditional Distribution:

$$\int p(X_a|X_b) = \mathcal{N}(x_a \mid \mu_{a|b}, \Lambda_{aa}^{-1})$$

$$\mu_{a|b} = \mu_a - \Lambda_{aa}^{-1} \Lambda_{ab} (\mathbf{x}_b - \mu_a) = \mu_a - \Sigma_{ab} \Sigma_{bb}^{-1} (\mathbf{x}_b - \mu_a)$$

$$\Lambda_{aa}^{-1} = \Sigma_{aa} - \Sigma_{ab} \Sigma_{bb}^{-1} \Sigma_{ba}$$

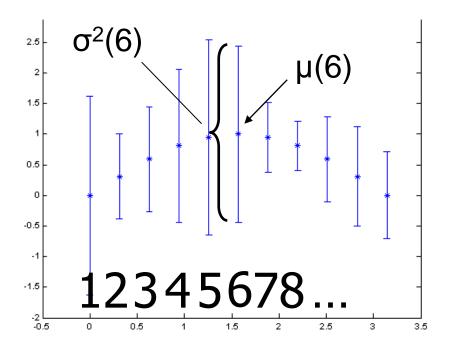
$$\Lambda_{aa}^{-1} = \Sigma_{aa} - \Sigma_{ab}\Sigma_{bb}^{-1}\Sigma_{ba}$$

Schur complement of Σ_{bb} in Σ_{15}

Higher Dimensions

- □ Visualizing > 3 dimensions is... difficult
- ☐ Means and marginals are practical, but then we don't see correlations between those variables
- \square Marginals are Gaussian, e.g., f(6) \sim N(μ (6), σ^2 (6))

Visualizing a multivariate Gaussian f:

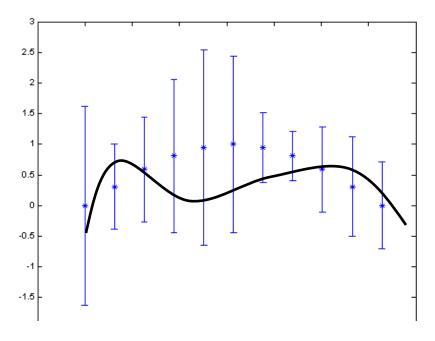


Yet Higher Dimensions

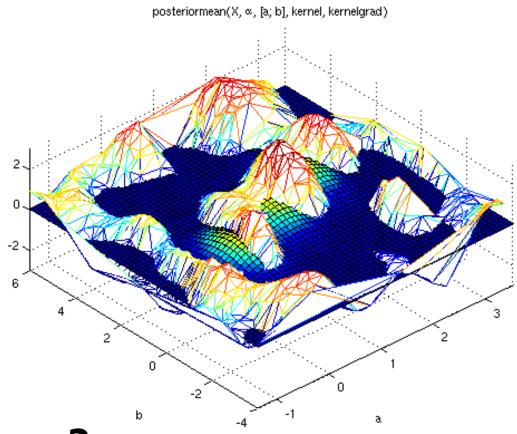
Why stop there?

- We indexed before with \mathbb{Z} , why not with \mathbb{R} ?
- Need functions $\mu(x), k(x,z), \forall x,z \in \mathbb{R}$
- x and z are indexes over the random variables
- f is now an uncountably infinite dimensional vector

Don't panic: It's iust a function



Getting Ridiculous



Why stop there?

- ullet We indexed before with \mathbb{R} , why not with \mathbb{R}^D ?
- Need functions $\mu(\mathbf{x}), k(\mathbf{x}, \mathbf{z}), \ \forall \mathbf{x}, \mathbf{z} \in \mathbb{R}^D$

Gaussian Process

Definition:

- ☐ Probability distribution *indexed by* an arbitrary set (integer, real, finite dimensional vector, etc)
- \Box Each element gets a Gaussian distribution over the reals with mean $\mu(x)$
- □ These distributions are dependent/correlated as defined by k(x,z)
- □ Any finite subset of indices defines a multivariate Gaussian distribution

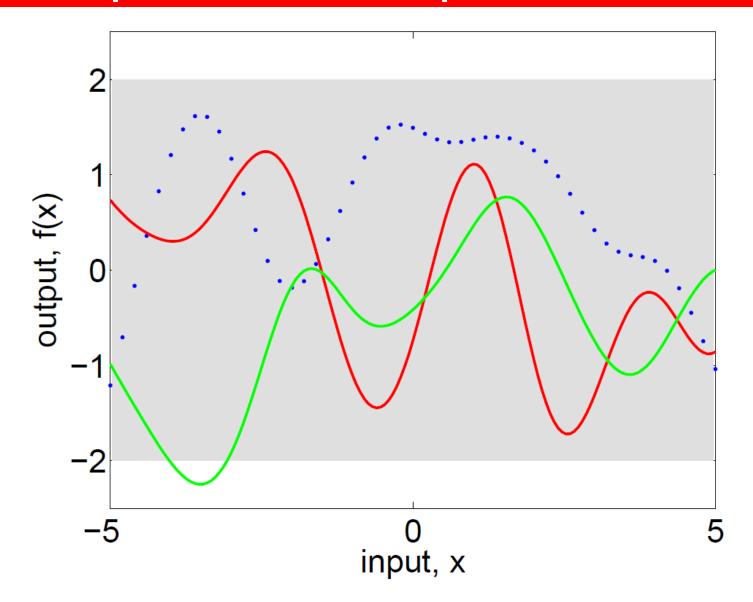
Gaussian Process

- ☐ Distribution over *functions*
- ☐ Domain (index set) of the functions can be pretty much whatever
 - Reals
 - Real vectors
 - Graphs
 - Strings
 - Sets
 - ...
- \square Most interesting structure is in k(x,z), the 'kernel.'

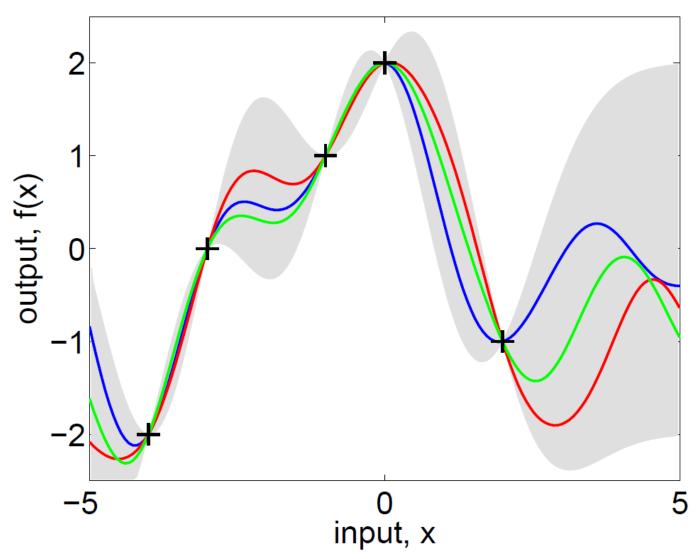
Bayesian Updates for GPs

- How do Bayesians use a Gaussian Process?
 - Start with GP prior
 - Get some data
 - Compute a posterior
- Ask interesting questions about the posterior

Samples from the prior distribution

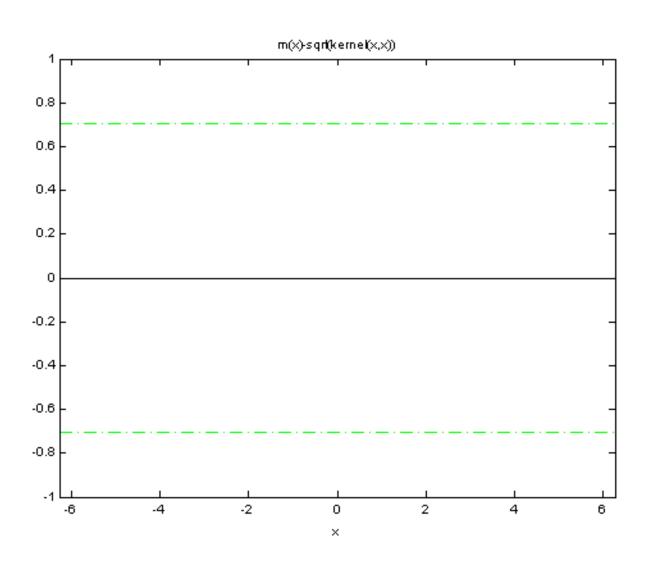


Samples from the posterior distribution

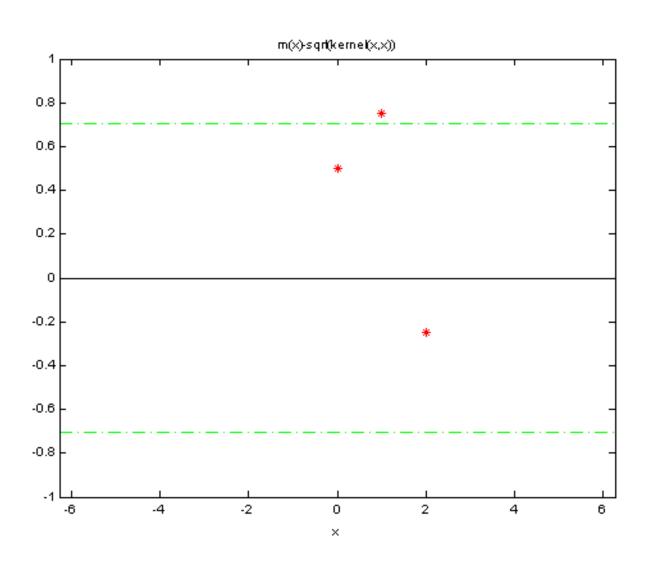


Picture is taken from Rasmussen and Williams

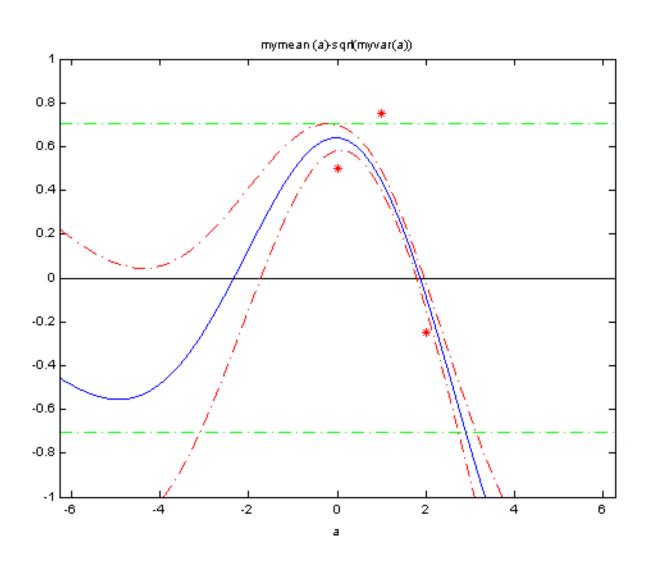
Prior



Data



Posterior



Contents

- ☐ Introduction
- ☐ Ridge Regression
- ☐ Gaussian Processes
 - Weight space view
 - Bayesian Ridge Regression + Kernel trick
 - Function space view
 - Prior distribution over functions
 - + calculation posterior distributions

Ridge Regression

Training set: $D = \{(x_i, y_i) | i = 1, ..., n\}$

Linear regression: $f(x) = \langle \mathbf{w}, \phi(x) \rangle$

Ridge regression:

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w} \in \mathcal{K}} \sum_{i=1}^{m} (y_i - \langle \underline{\phi(x_i)}, \mathbf{w} \rangle)^2 + \lambda \|\mathbf{w}\|^2$$

The Gaussian Process is a Bayesian Generalization of the Ridge regression

Contents

- □ Introduction
- ☐ Ridge Regression
- ☐ Gaussian Processes
 - Weight space view
 - Bayesian Ridge Regression + Kernel trick
 - Function space view
 - Prior distribution over functions
 - + calculation posterior distributions

Weight Space View

GP = Bayesian ridge regression in feature space + Kernel trick to carry out computations

Training set:
$$D = \{(\mathbf{x}_i, y_i) | i = 1, \dots, n\}$$

$$X = egin{bmatrix} \mathbf{x}_1 & \dots & \mathbf{x}_n \end{bmatrix} \in \mathbb{R}^{D imes n}$$
, design matrix

$$\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{R}^n$$

The training data

$$f(\mathbf{x}) = \mathbf{x}^T \mathbf{w} \in \mathbb{R}, \ \mathbf{x}, \mathbf{w} \in \mathbb{R}^D$$
 $y = f(\mathbf{x}) + \epsilon = \mathbf{x}^T \mathbf{w} + \epsilon \in \mathbb{R}$
 $\epsilon \sim \mathcal{N}(0, \sigma^2) \in \mathbb{R}$
(Homoscedastic noise, the same for all \mathbf{x})

Let us calculate the likelihood:

$$P(\mathbf{y}|X,\mathbf{w}) = \prod_{i=1}^{n} P(y_i|\mathbf{x}_i^T\mathbf{w})$$

and then put $\mathbf{w} \sim \mathcal{N}_{\mathbf{w}}(0, \mathbf{\Sigma}_p)$ prior over parameters \mathbf{w} .

The likelihood:

$$P(\mathbf{y}|X,\mathbf{w}) = \prod_{i=1}^{n} P(y_i|\mathbf{x}_i^T\mathbf{w})$$

$$= \prod_{i=1}^{n} \mathcal{N}_{y_i}(\mathbf{x}_i^T\mathbf{w}, \sigma^2)$$

$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[\frac{-(y_i - \mathbf{x}_i^T\mathbf{w})^2}{2\sigma^2}\right]$$

$$= \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left[\frac{-1}{2\sigma^2} ||\mathbf{y} - X^T\mathbf{w}||^2\right]$$

$$= \mathcal{N}_{\mathbf{y}}(X^T\mathbf{w}, \sigma^2\mathbf{I}_n)$$

The prior:

$$\mathbf{w} \sim \mathcal{N}_{\mathbf{w}}(0, \mathbf{\Sigma}_p)$$

Now, we can calculate the posterior:

$$P(\mathbf{w}|X,\mathbf{y}) = \frac{P(\mathbf{y}|X,\mathbf{w})P(\mathbf{w})}{P(\mathbf{y}|X)}$$

$$= \frac{P(\mathbf{y}|X,\mathbf{w})P(\mathbf{w})}{\int P(\mathbf{y}|X,\mathbf{w})d\mathbf{w}}$$

$$= \frac{\mathcal{N}_{\mathbf{y}}(X^T\mathbf{w},\sigma^2\mathbf{I}_n)\mathcal{N}_{\mathbf{w}}(0,\Sigma_p)}{\int \mathcal{N}_{\mathbf{y}}(X^T\mathbf{w},\sigma^2\mathbf{I}_n)\mathcal{N}_{\mathbf{w}}(0,\Sigma_p)d\mathbf{w}}$$

$$\sim \mathcal{N}_{\mathbf{y}}(X^T\mathbf{w},\sigma^2\mathbf{I}_n)\mathcal{N}_{\mathbf{w}}(0,\Sigma_p)$$

Ridge Regression
$$P(\mathbf{w}|X,\mathbf{y}) \sim \mathcal{N}_{\mathbf{y}}(X^T\mathbf{w},\sigma^2\mathbf{I}_n)\mathcal{N}_{\mathbf{w}}(\mathbf{0},\mathbf{\Sigma}_p) \\ \sim \exp\{\frac{-1}{2\sigma^2}(\mathbf{y}-X^T\mathbf{w})^T(\mathbf{y}-X^T\mathbf{w})\}\exp\{\frac{-1}{2}\mathbf{w}^T\mathbf{\Sigma}_p^{-1}\mathbf{w}\} \\ \sim \exp\{\frac{-1}{2}(\mathbf{w}-\bar{\mathbf{w}})^T\underbrace{\left(\frac{1}{\sigma^2}XX^T+\mathbf{\Sigma}_p^{-1}\right)}_{A}(\mathbf{w}-\bar{\mathbf{w}})\} \\ \sim \boxed{\mathcal{N}_{\mathbf{w}}(\bar{\mathbf{w}},A^{-1})} \qquad \text{After "completing the square"}$$

where $\mathbf{\bar{w}} \doteq \sigma^{-2} \underbrace{\left(\sigma^{-2} X X^T + \Sigma_p^{-1}\right)^{-1}}_{A^{-1} \in \mathbb{R}^{D \times D}} X \mathbf{y} \in \mathbb{R}^D$

MAP estimation

$$A \doteq \left(\sigma^{-2}XX^T + \mathbf{\Sigma}_p^{-1}\right) \in \mathbb{R}^{D \times D}$$

We want to use $P(\mathbf{w}|X,\mathbf{y}) = N_{\mathbf{w}}(\bar{\mathbf{w}},A^{-1})$ posterior for predicting f in a test point \mathbf{x}_* .

$$f_* \doteq f(\mathbf{x}_*)$$
 $f(\mathbf{x}) = \mathbf{x}^T \mathbf{w} \in \mathbb{R}, \ \mathbf{x}, \mathbf{w} \in \mathbb{R}^D$ $y = f(\mathbf{x}) + \epsilon = \mathbf{x}^T \mathbf{w} + \epsilon \in \mathbb{R}$

$$P(\underbrace{f_*}_{\mathbf{x}_*^T\mathbf{w}}|\mathbf{x}_*, X, \mathbf{y}) = \int \underbrace{P(f_*|\mathbf{x}_*, \mathbf{w})}_{\delta(f_*, \mathbf{x}_*^T\mathbf{w})} \underbrace{P(\mathbf{w}|\mathbf{y}, X)}_{\mathcal{N}_{\mathbf{w}}(\bar{\mathbf{w}}, A^{-1})} d\mathbf{w}$$
$$= \mathcal{N}_{f_*}(\mathbf{x}_*^T\bar{\mathbf{w}}, \mathbf{x}_*^TA^{-1}\mathbf{x}_*)$$

This posterior covariance matrix doesn't depend on the observations \mathbf{y} , A strange property of Gaussian Processes $\mathbf{y}^T = [y_1, \dots, y_n]$

Projections of Inputs into Feature Space

The reviewed Bayesian linear regression suffers from limited expressiveness

To overcome the problem \Rightarrow go to a feature space and do linear regression there

a., explicit features
$$\phi(\mathbf{x}) = [x_1, x_1 x_2^2, x_1 - x_2, \ldots]^T$$

b., implicit features (kernels) $k(\vec{x}, \vec{y}) = \exp(-\|\vec{x} - \vec{y}\|^2)$

$$\phi(\mathbf{x}) = [x_1, x_1 x_2^2, x_1 - x_2, \ldots]^T \in \mathbb{R}^N$$

$$\phi(X) = \left[\phi(\mathbf{x}_1)\middle|\phi(\mathbf{x}_2)\middle| \dots \middle|\phi(\mathbf{x}_n)\right] \in \mathbb{R}^{N \times n}$$

$$f(\mathbf{x}) = \phi(\mathbf{x})^T \mathbf{w} \in \mathbb{R}, \quad \phi(\mathbf{x}), \mathbf{w} \in \mathbb{R}^N$$
$$y = f(\mathbf{x}) + \epsilon = \phi(\mathbf{x})^T \mathbf{w} + \epsilon \in \mathbb{R}$$

Linear regression in the feature space

The predictive distribution after feature map:

$$P(\underbrace{f_*}_{\phi(\mathbf{x}_*)^T\mathbf{w}}|\mathbf{x}_*, X, \mathbf{y}) = \mathcal{N}_{f_*} \left(\phi(x_*)^T \bar{\mathbf{w}}, \phi(x_*)^T A^{-1} \phi(x_*)\right)$$

where
$$\bar{\mathbf{w}} \doteq \sigma^{-2} \underbrace{\left(\sigma^{-2}\phi(X)\phi(X)^T + \Sigma_p^{-1}\right)^{-1}}_{A^{-1} \in \mathbb{R}^{N \times N}} \phi(X) \mathbf{y} \in \mathbb{R}^D$$

$$A \doteq \left[\left(\sigma^{-2} \phi(X) \phi(X)^T + \Sigma_p^{-1} \right) \in \mathbb{R}^{N \times N} \right]$$

Shorthands:

$$\phi_* \doteq \phi(\mathbf{x}_*) \in \mathbb{R}^N \qquad N = \text{dim of feature space}$$

$$\phi \doteq \phi(X) = \left[\phi(\mathbf{x}_1) \middle| \phi(\mathbf{x}_2) \middle| \dots \middle| \phi(\mathbf{x}_n) \right] \in \mathbb{R}^{N \times n}$$

$$A \doteq \left(\sigma^{-2} \phi \phi^T + \Sigma_p^{-1} \right) \in \mathbb{R}^{N \times N}$$

$$\bar{\mathbf{w}} \doteq \sigma^{-2} \underbrace{\left(\sigma^{-2} \phi \phi^T + \Sigma_p^{-1} \right)^{-1}}_{A^{-1} \in \mathbb{R}^{N \times N}} \phi_{\mathbf{y}} \in \mathbb{R}^N$$

The predictive distribution after feature map:

$$P(\underbrace{f_*}_{\phi_*^T \mathbf{w}} | \mathbf{x}_*, X, \mathbf{y}) = \mathcal{N}_{f_*} \left(\phi_*^T \mathbf{\bar{w}}, \phi_*^T A^{-1} \phi_* \right)$$

The predictive distribution after feature map:

$$P(\underbrace{f_*}_{\phi_*^T \mathbf{w}} | \mathbf{x}_*, X, \mathbf{y}) = \mathcal{N}_{f_*} \left(\phi_*^T \bar{\mathbf{w}}, \phi_*^T A^{-1} \phi_* \right)$$

$$= \mathcal{N}_{f_*} \left(\sigma^{-2} \phi_*^T \left[\sigma^{-2} \phi \phi^T + \Sigma_p^{-1} \right]^{-1} \phi_{\mathbf{y}}, \phi_*^T \left[\sigma^{-2} \phi \phi^T + \Sigma_p^{-1} \right]^{-1} \phi_* \right)$$

$$(*)$$

A problem with (*) is that it needs an NxN matrix inversion...

Let
$$K \doteq \phi^T \Sigma_p \phi \in \mathbb{R}^{n \times n}$$

(*) can be rewritten: $P(f_*|\mathbf{x}_*, X, \mathbf{y}) =$

$$\mathcal{N}_{f_*} \left((\phi_*^T \mathbf{\Sigma}_p \phi) (K + \sigma^2 \mathbf{I}_n)^{-1} \mathbf{y}, (\phi_*^T \mathbf{\Sigma}_p \phi_*) - (\phi_*^T \mathbf{\Sigma}_p \phi) (K + \sigma^2 \mathbf{I}_n)^{-1} (\phi^T \mathbf{\Sigma}_p \phi_*) \right) \\
\mathbb{R}^{n \times n} \qquad \mathbb{R}^{n \times n} \qquad \mathbb{R}^{n \times n} \qquad \mathbb{R}^{n \times n} \qquad \mathbb{R}^{n \times n}$$

Proofs

Mean expression. We need:

$$\sigma^{-2}\phi_*^T \underbrace{\left[\sigma^{-2}\phi\phi^T + \Sigma_p^{-1}\right]^{-1}}_{A^{-1}} \phi \mathbf{y} = (\phi_*^T \underbrace{\Sigma_p \phi)(K + \sigma^2 \mathbf{I}_n)^{-1}}_{\sigma^{-2}A^{-1}\phi} \mathbf{y}$$

Lemma:

$$\sigma^{-2}\phi(K+\sigma^2\mathbf{I}_n)=\sigma^{-2}\phi(\phi^T\Sigma_p\phi+\sigma^2\mathbf{I}_n)=A\Sigma_p\dot{\phi}$$

• Variance expression. We need:

$$\phi_*^T \left[\sigma^{-2} \phi \phi^T + \Sigma_p^{-1} \right]^{-1} \phi_* = (\phi_*^T \Sigma_p \phi_*) - (\phi_*^T \Sigma_p \phi) (K + \sigma^2 \mathbf{I}_n)^{-1} (\phi^T \Sigma_p \phi_*)$$

Matrix inversion Lemma:

$$(\underbrace{U}_{\phi}\underbrace{W}_{\sigma^{-2}}\underbrace{V}_{\phi^{T}}^{T} + \underbrace{Z}_{\Sigma_{p}^{-1}})^{-1} = Z^{-1} - Z^{-1}U(W^{-1} + \underbrace{V}_{K}^{T}Z^{-1}U)^{-1}V^{T}Z^{-1}$$

From Explicit to Implicit Features

$$P(f_*|\mathbf{x}_*, X, \mathbf{y}) =$$

$$\mathcal{N}_{f_*} \left((\phi_*^T \mathbf{\Sigma}_p \phi) (K + \sigma^2 \mathbf{I}_n)^{-1} \mathbf{y}, (\phi_*^T \mathbf{\Sigma}_p \phi_*) - (\phi_*^T \mathbf{\Sigma}_p \phi) (K + \sigma^2 \mathbf{I}_n)^{-1} (\phi^T \mathbf{\Sigma}_p \phi_*) \right)$$

$$\mathbb{R}^{n \times n} \qquad \mathbb{R}^{n \times n} \qquad \mathbb{R}^{n \times n} \qquad \mathbb{R}^{n \times n} \qquad \mathbb{R}^{n \times n}$$

We have to work only with $n \times n$ matrices, and not by $N \times N$

The feature space always enters in the form of:

$$(\phi_*^T \Sigma_p \phi_*)$$
, $(\phi_*^T \Sigma_p \phi)$, $(\phi^T \Sigma_p \phi)$, $(\in \mathbb{R}^{n \times n} \text{ matrices})$

Let
$$k(x, \tilde{x}) \doteq \phi(x)^T \Sigma_p \phi(x)$$

Lemma:

 $k(x,\tilde{x})$ is an inner product in the feature space: $\psi(x) \doteq \Sigma_p^{1/2} \phi(x)$ 42

Contents

- ☐ Introduction
- ☐ Ridge Regression
- ☐ Gaussian Processes
 - Weight space view
 - Bayesian Ridge Regression + Kernel trick
 - Function space view
 - Prior distribution over functions
 - + calculation posterior distributions

☐ An alternative way to get the previous results

☐ Inference directly in function space

Definition: (Gaussian Processes)

GP is a collection of random variables, s.t. any finite number of them have a joint Gaussian distribution

Notations:

$$f(\mathbf{x}) \sim GP(m(\mathbf{x}), k(\mathbf{x}, \tilde{\mathbf{x}})) \in \mathbb{R}, \ \mathbf{x} \in \mathbb{R}^D$$

$$m(\mathbf{x}) = \mathbb{E}[f(x)] \in \mathbb{R}, \ (\text{mean function})$$

$$k(\mathbf{x}, \tilde{\mathbf{x}}) = \mathbb{E}[(f(x) - m(\mathbf{x}))(f(\tilde{\mathbf{x}}) - m(\tilde{\mathbf{x}}))^T] \in \mathbb{R}$$

$$(\text{covariance function})$$

GP is **completely specified** by its mean function $m(\mathbf{x})$, and covariance function $k(\mathbf{x}, \tilde{\mathbf{x}})$

Gaussian Processes:

For each $\mathbf{x} \in \mathbb{R}^D$ we associate a Gaussian variable $f(\mathbf{x})$ such that $\mathbb{R} \ni f(\mathbf{x}) \sim \mathcal{N}_{f(\mathbf{x})}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}))$, and its correalation with other $f(\tilde{\mathbf{x}})$ variables is $k(\mathbf{x}, \tilde{\mathbf{x}})$.

$$\mathbb{R} \ni f(\mathbf{x}) \sim \mathcal{N}_{f(\mathbf{x})}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}))$$

$$\begin{bmatrix} f(\mathbf{x}) \\ f(\tilde{\mathbf{x}}) \end{bmatrix} \sim \mathcal{N}_{\begin{bmatrix} f(\mathbf{x}) \\ f(\tilde{\mathbf{x}}) \end{bmatrix}} \left\{ \begin{bmatrix} m(\mathbf{x}) \\ m(\tilde{\mathbf{x}}) \end{bmatrix}, \begin{bmatrix} k(\mathbf{x}, \mathbf{x}) & k(\tilde{\mathbf{x}}, \mathbf{x}) \\ k(\mathbf{x}, \tilde{\mathbf{x}}) & k(\tilde{\mathbf{x}}, \tilde{\mathbf{x}}) \end{bmatrix} \right\}$$

The Bayesian linear regression is an example of GP

$$f(\mathbf{x}) = \phi(\mathbf{x})^T \mathbf{w} \in \mathbb{R}, \ \phi(\mathbf{x}), \mathbf{w} \in \mathbb{R}^N \ \mathbf{w} \sim \mathcal{N}_{\mathbf{w}}(0, \mathbf{\Sigma}_p)$$

 \Rightarrow [$f(\mathbf{x}_1), \dots, f(\mathbf{x}_k)$] are jointly Gaussian $\forall \mathbf{x}_1, \dots, \mathbf{x}_k$ thus f is GP.

$$\mathbb{E}[f(\mathbf{x})] = \phi(\mathbf{x})^T \mathbb{E}[\mathbf{w}] = 0 \Rightarrow m(\mathbf{x}) = 0$$

$$\mathbb{E}[f(x)f(\tilde{\mathbf{x}})^T] = \phi(\mathbf{x})^T \underbrace{\mathbb{E}[\mathbf{w}\mathbf{w}^T]}_{\boldsymbol{\Sigma}_p} \phi(\tilde{\mathbf{x}}) = k(\mathbf{x}, \tilde{\mathbf{x}})$$

Special case

$$m(\mathbf{x}) = 0$$

$$k(\mathbf{x}, \tilde{\mathbf{x}}) = \exp\left(-\frac{1}{2}||\mathbf{x} - \tilde{\mathbf{x}}||^2\right) \Rightarrow f \text{ GP is given}$$

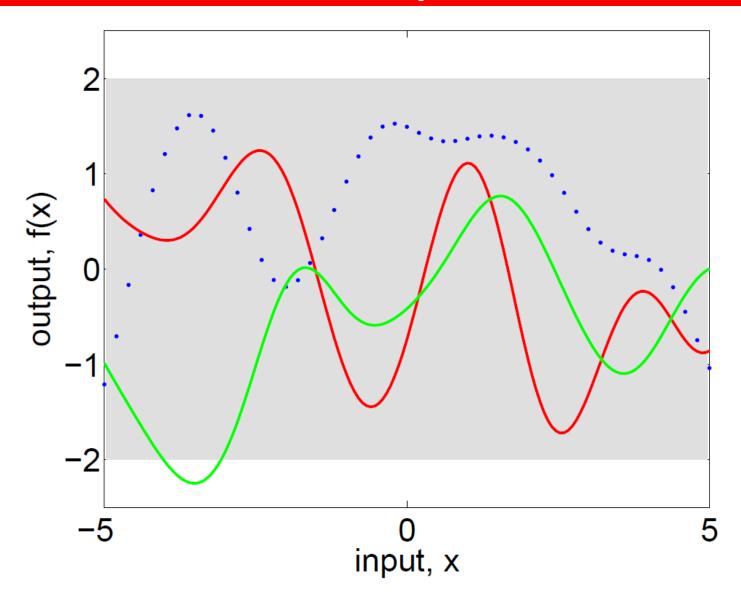
 \Rightarrow implies a distribution over functions.

Let
$$X_* = \begin{bmatrix} \mathbf{x}_{*1}^T \\ \vdots \\ \mathbf{x}_{*m}^T \end{bmatrix}$$
 m input points

$$\Rightarrow \mathbb{R}^m \ni f_* \sim \mathcal{N}_{f_*}(\underbrace{\mathbf{0}}_{\in \mathbb{R}^m}, \underbrace{k(X_*, X_*)}_{\in \mathbb{R}^{m \times m}})$$

At arbitray $\mathbf{x}_{*1}, \dots, \mathbf{x}_{*m}$ places, we can generate m points from f (denoted by f_*) and plot them .

48



Observation

The plotted $f(\mathbf{x}_{*1}), \dots, f(\mathbf{x}_{*m})$ function looks smooth.

Explanation

$$k(\mathbf{x}, \tilde{\mathbf{x}}) = \exp\left(-\frac{1}{2}||\mathbf{x} - \tilde{\mathbf{x}}||^2\right)$$

Thus if $\|\mathbf{x}_{*i} - \mathbf{x}_{*j}\|$ is small, then $corr(f(\mathbf{x}_{*i}), f(\mathbf{x}_{*j}))$ is high.

Training set:
$$D = \{(\mathbf{x}_i, f_i) | i = 1, \dots, n\}$$

Training set:
$$D=\{(\mathbf{x}_i,f_i)|i=1,\ldots,n\}$$
 noise free observations $X=\begin{bmatrix}\mathbf{x}_1^T\\\vdots\\\mathbf{x}_n^T\end{bmatrix}\in\mathbb{R}^{n\times D}$, m training inputs

$$X_* = \begin{bmatrix} \mathbf{x}_{*1}^T \\ \vdots \\ \mathbf{x}_{*m}^T \end{bmatrix} \in \mathbb{R}^{m \times D}$$
, m test inputs

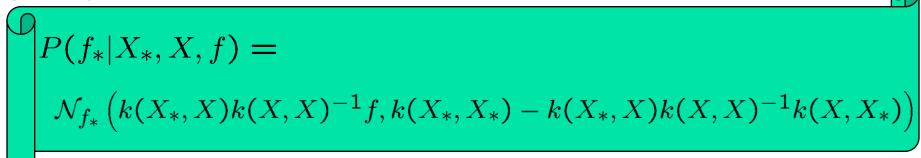
$$f = \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix} \in \mathbb{R}^n$$
, n training targets

$$f_* = egin{bmatrix} f_{*1} \ dots \ f_{*m} \end{bmatrix} \in \mathbb{R}^m$$
, m test targets

$$\begin{bmatrix} f \\ f_* \end{bmatrix} \sim \mathcal{N}_{\begin{bmatrix} f \\ f_* \end{bmatrix}} \left\{ \begin{bmatrix} \mathbf{0}_n \\ \mathbf{0}_m \end{bmatrix}, \begin{bmatrix} k(X,X) & k(X,X_*) \\ k(X_*,X) & k(X_*,X_*) \end{bmatrix} \right\}$$
Goal:
$$\in \mathbb{R}^{(m+n)\times(m+n)}$$

We want to calculate the posterior distribution $f_*|X_*,X,f$

Lemma:



Proofs: a bit of calculation using the joint (n+m) dim density

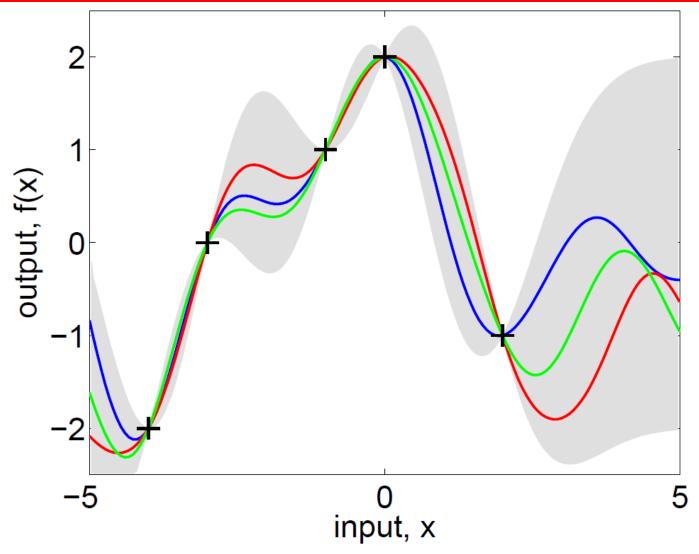
$$\begin{bmatrix} f \\ f_* \end{bmatrix} \sim \mathcal{N}_{\begin{bmatrix} f \\ f_* \end{bmatrix}} \left\{ \begin{bmatrix} \mathbf{0}_n \\ \mathbf{0}_m \end{bmatrix}, \begin{bmatrix} k(X,X) & k(X,X_*) \\ k(X_*,X) & k(X_*,X_*) \end{bmatrix} \right\}$$

Remarks:

- If $X_* = X \Rightarrow f_* = f$ and the cov is 0. (nosie free observations)
- $P(f_*|X_*,X,f)$ is similar to the previous results:

$$P(f_*|\mathbf{x}_*, X, f) =$$

$$\mathcal{N}_{f_*}\left((\phi_*^T \mathbf{\Sigma}_p \phi)(K + \sigma^2 \mathbf{I}_n)^{-1} f, (\phi_*^T \mathbf{\Sigma}_p \phi_*) - (\phi_*^T \mathbf{\Sigma}_p \phi)(K + \sigma^2 \mathbf{I}_n)^{-1} (\phi^T \mathbf{\Sigma}_p \phi_*)\right)$$



Picture is taken from Rasmussen and Williams

$$y = f(\mathbf{x}) + \epsilon \in \mathbb{R}$$

$$\epsilon \sim \mathcal{N}(0, \sigma^2) \in \mathbb{R}$$

(Homoscedastic noise, the same for all x)

$$\begin{bmatrix} f \\ f_* \end{bmatrix} \sim \mathcal{N}_{\begin{bmatrix} f \\ f_* \end{bmatrix}} \left\{ \begin{bmatrix} \mathbf{0}_n \\ \mathbf{0}_m \end{bmatrix}, \begin{bmatrix} k(X,X) & k(X,X_*) \\ k(X_*,X) & k(X_*,X_*) \end{bmatrix} \right\}$$

$$\Rightarrow cov(y_p, y_q) = k(\mathbf{x}_p, \mathbf{x}_q) + \sigma^2 \delta_{p,q}$$

$$\Rightarrow cov([y_1,\ldots,y_n]) = k(X,X) + \sigma^2 \mathbf{I}_n \in \mathbb{R}^{n \times n}$$

The joint distribution:

$$\Rightarrow \begin{bmatrix} y \\ f_* \end{bmatrix} \sim \mathcal{N}_{\begin{bmatrix} y \\ f_* \end{bmatrix}} \left\{ \begin{bmatrix} \mathbf{0}_n \\ \mathbf{0}_m \end{bmatrix}, \begin{bmatrix} k(X,X) + \sigma^2 \mathbf{I}_n & k(X,X_*) \\ k(X_*,X) & k(X_*,X_*) \end{bmatrix} \right\}$$

The posterior for the noisy observations:

$$P(f_*|X,\mathbf{y},X_*) = \mathcal{N}_{f_*}(\overline{f}_*,cov(f_*))$$
 where

$$\bar{f}_* = \mathbb{E}[f_*|X, \mathbf{y}, X_*] = k(X_*, X)[k(X, X) + \sigma^2 I_n]^{-1}\mathbf{y} \in \mathbb{R}^m$$
$$cov(f_*) = k(X_*, X_*) - k(X_*, X)[k(X, X) + \sigma^2 I_n]^{-1}K(X, X_*) \in \mathbb{R}^{m \times m}$$

In the weight space view we had:

$$\bar{f}_* = (\phi_*^T \Sigma_p \phi)(\phi^T \Sigma_p \phi + \sigma^2 \mathbf{I}_n)^{-1} \mathbf{y}$$

$$cov(f_*) = (\phi_*^T \Sigma_p \phi_*) - (\phi_*^T \Sigma_p \phi)(\phi^T \Sigma \phi + \sigma^2 \mathbf{I}_n)^{-1}(\phi^T \Sigma_p \phi_*)$$
If $k(\mathbf{x}, \tilde{\mathbf{x}}) = \phi(x)^T \Sigma_p \phi(\tilde{x})$, then they are the same.

Short notations:

$$K = k(X, X) \in \mathbb{R}^{n \times n}$$

$$K_* = k(X, X_*) \in \mathbb{R}^{n \times m}$$

$$k(\mathbf{x}_*) = k_* = k(X, \mathbf{x}_*) = \begin{bmatrix} k(\mathbf{x}_1, \mathbf{x}_*) \\ \vdots \\ k(\mathbf{x}_n, \mathbf{x}_*) \end{bmatrix} \in \mathbb{R}^n$$

 \Rightarrow for a single test point \mathbf{x}_* :

$$\overline{f}_* = \underbrace{k_*^T}_{\mathbb{R}^{1 \times n}} \underbrace{[K + \sigma^2 I_n]^{-1}}_{\mathbb{R}^{n \times n}} \underbrace{\mathbf{y}}_{\mathbb{R}^n} \in \mathbb{R}$$

$$cov(f_*) = \underbrace{k(\mathbf{x}_*, \mathbf{x}_*)}_{\mathbb{R}} - \underbrace{k_*^T}_{\mathbb{R}^{1 \times n}} \underbrace{[K + \sigma^2 I_n]^{-1}}_{\mathbb{R}^n} \underbrace{k_*}_{\mathbb{R}^n} \in \mathbb{R}$$

$$\bar{f}_* = \underbrace{k_*^T}_{\mathbb{R}^{1 \times n}} \underbrace{[K + \sigma^2 I_n]^{-1}}_{\mathbb{R}^{n \times n}} \underbrace{\mathbf{y}}_{\mathbb{R}^n} \in \mathbb{R}$$

Two ways to look at it:

Linear predictor

$$ar{f}_* = eta^T \mathbf{y} = eta_1 y_1 + \ldots + eta_n y_n$$
 where $eta^T = k_*^T [K + \sigma^2 I_n]^{-1} \in \mathbb{R}1 \times n$

Manifestation of the Representer Theorem

$$\bar{f}_* = \alpha^T k_* = \alpha_1 k(\mathbf{x}_1, \mathbf{x}_*) + \ldots + \alpha_n k(\mathbf{x}_n, \mathbf{x}_*)$$

where $\alpha = [K + \sigma^2 I_n]^{-1} \mathbf{y}$

 \bar{f}_* is a linear combination of n kernel values.

$$\bar{f}_* = \underbrace{k_*^T}_{\mathbb{R}^{1 \times n}} \underbrace{[K + \sigma^2 I_n]^{-1}}_{\mathbb{R}^{n \times n}} \underbrace{\mathbf{y}}_{\mathbb{R}^n} \in \mathbb{R}$$

Remarks:

- While the GP in general is quite complex, for the prediction of $\bar{f}_* = f(\mathbf{x}_*)$ we need only the (n+1) dimensional joint Gaussian distibution of $[y_1, \ldots, y_n, f(\mathbf{x}_*)]$
- The posterior covariance of

$$cov(f_*|X, \mathbf{y}, X_*) = k(X_*, X_*) - k(X_*, X)[k(X, X) + \sigma^2 I_n]^{-1}K(X, X_*)$$

does not depend on the observed targets y.

This is a peculiarity of GP.

GP pseudo code

Inputs:

$$X = \begin{bmatrix} \mathbf{x}_1^T \\ \vdots \\ \mathbf{x}_n^T \end{bmatrix} \in \mathbb{R}^{n \times D}$$
, n training inputs

$$\mathbf{y} = egin{bmatrix} y_1 \ dots \ y_n \end{bmatrix} \in \mathbb{R}^n$$
, n training targets

 $k(\cdot,\cdot):\mathbb{R}^{D imes D} o\mathbb{R}$ covariance function (kernel)

 \mathbf{x}_* test input

$$\sigma^2$$
 noise level on the observations $[y(\mathbf{x}) = f(\mathbf{x}) + \epsilon, \ \epsilon \sim \mathcal{N}(0, \sigma^2)]$

GP pseudo code (continued)

1., $K \in \mathbb{R}^{n \times n}$ Gram matrix. $K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$

$$k(\mathbf{x}_*) = k_* = k(X, \mathbf{x}_*) = \begin{bmatrix} k(\mathbf{x}_1, \mathbf{x}_*) \\ \vdots \\ k(\mathbf{x}_n, \mathbf{x}_*) \end{bmatrix} \in \mathbb{R}^n$$

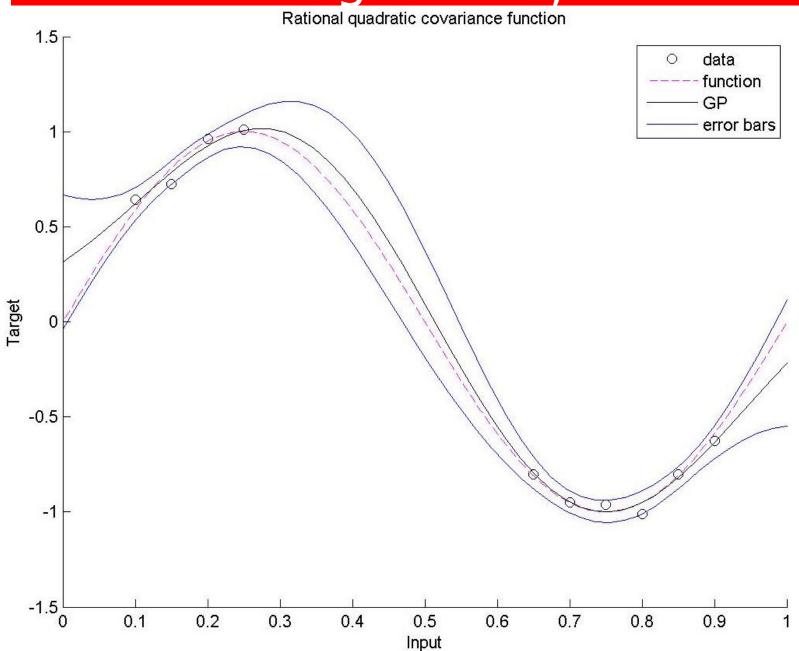
2.,
$$\alpha = (K + \sigma^2 \mathbf{I}_n)^{-1} \mathbf{y}$$

3.,
$$ar{f}_* = k_*^T lpha \in \mathbb{R}$$

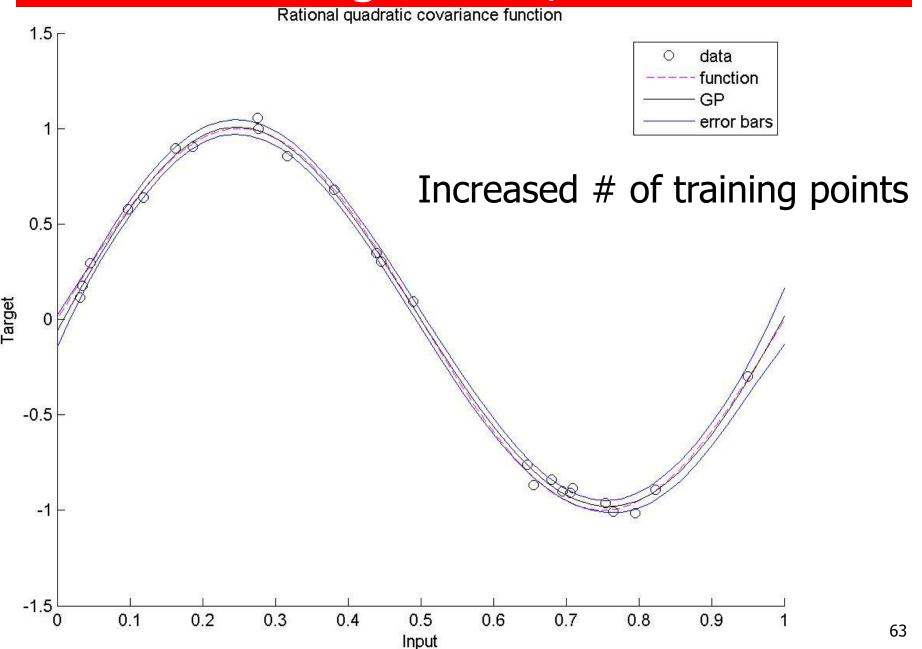
4.,
$$cov(f_*) = \underbrace{k(\mathbf{x}_*, \mathbf{x}_*)}_{\mathbb{R}} - \underbrace{k_*^T}_{\mathbb{R}^{1 \times n}} \underbrace{[K + \sigma^2 I_n]^{-1}}_{\mathbb{R}^{n \times n}} \underbrace{k_*}_{\mathbb{R}^n} \in \mathbb{R}$$

Outputs: \bar{f}_* , $cov(f_*)$

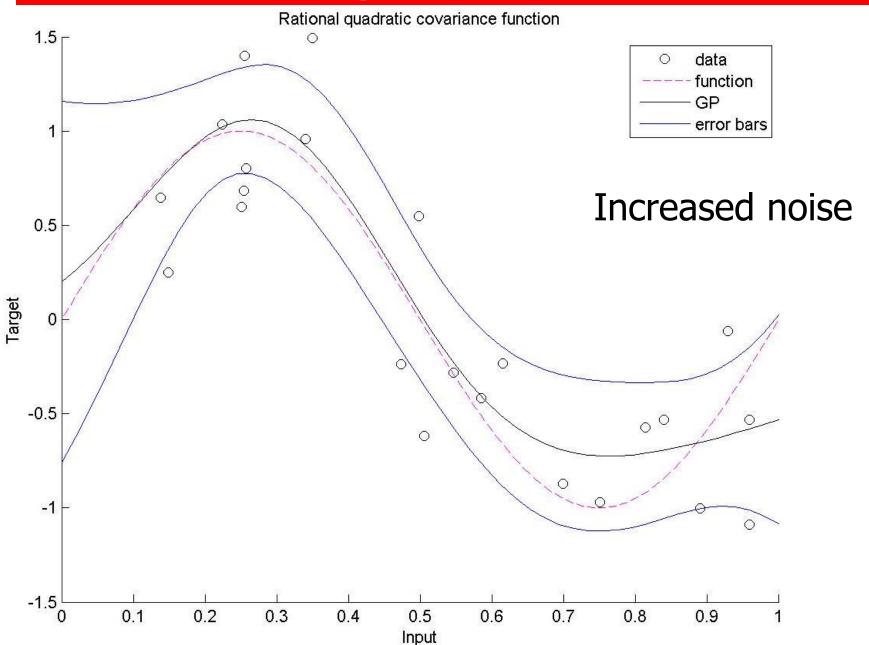
Results using Netlab, Sin function



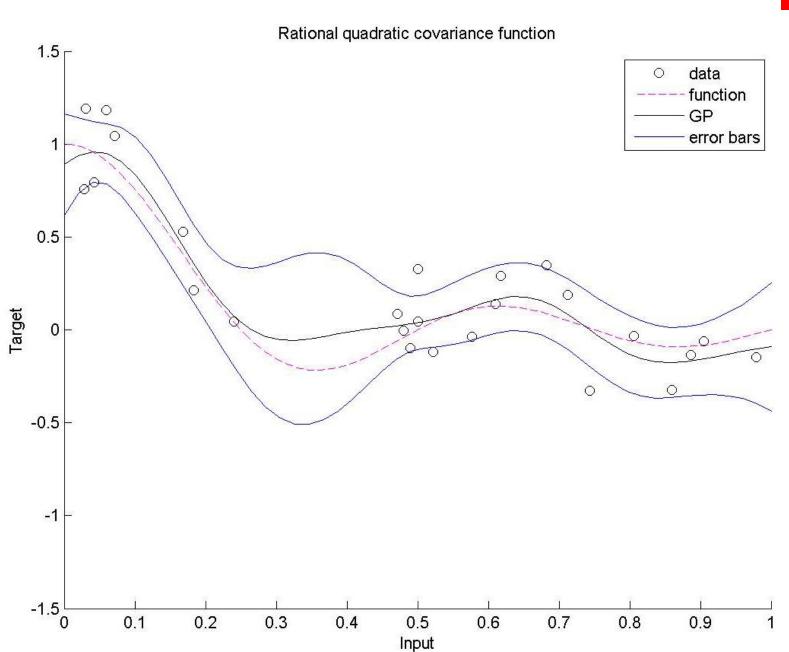
Results using Netlab, Sin function



Results using Netlab, Sin function



Results using Netlab, Sinc function



Thanks for the Attention! ©