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http://www.gaussianprocess.org/ 

Some of these slides in the intro are taken from D. Lizotte, R. Parr, C. Guesterin 
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 Introduction  

 

 Ridge Regression 

 

 Gaussian Processes 

 

• Weight space view 
 Bayesian Ridge Regression + Kernel trick 

 

• Function space view 
 Prior distribution over functions 

 + calculation posterior distributions 

 

Contents 
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- I still have no idea. 

Why GPs for Regression? 
Here are some data points! What function did they come from? 

 

- I have no idea. 

Oh. Okay. Uh, you think this point is likely in the function, too? 
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You can’t get anywhere without making some 
assumptions 

 

GPs are a nice way of expressing this ‘prior on functions’ 
idea. 

 

Can be used in many applications: 

• Regression 

• Classification 

• Optimization 

Why GPs for Regression? 
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• Here’s where the function will most likely be. 
(expected function) 

 

• Here are some examples of what it might look like. 
(sampling from the posterior distribution) 

 

• Here is a prediction of what you’ll see if you evaluate 
your function at x’, with confidence 

Under certain assumptions GPs can answer the 
following questions 

Why GPs for Regression? 
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1D Gaussian Distribution 
Parameters 

• Mean,   

• Variance, 2 
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Multivariate Gaussian 
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 A 2-dimensional Gaussian is defined by 

•  a mean vector  = [ 1, 2 ] 
 

•  a covariance matrix: 
 
 
where    i,j

2
  =  E[ (xi – i) (xj – j) ] 

is  (co)variance 

 

 Note:   is symmetric, 

 “positive semi-definite”: x:   xT  x   0 
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Multivariate Gaussian examples 
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Marginal distributions of Gaussians are Gaussian 

 

Given: 

 

 

 

 

Marginal Distribution: 
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Marginal distributions of Gaussians are 
Gaussian 
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Conditional distributions of Gaussians are Gaussian 

Notation: 

 

 

Conditional Distribution: 
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Higher Dimensions 
 Visualizing > 3 dimensions is… difficult 

 

 Means and marginals are practical, but then we don’t see 
correlations between those variables 
 

 Marginals are Gaussian, e.g., f(6) ~ N(µ(6), σ2(6)) 

µ(6) 
σ2(6) 

Visualizing a multivariate Gaussian f: 

6 5 4 3 2 1 7 8 … 
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Yet Higher Dimensions 
Why stop there? 

Don’t panic: It’s just a function 
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Getting Ridiculous 

Why stop there? 



19 

Gaussian Process 

 Probability distribution indexed by an arbitrary set 
(integer, real, finite dimensional vector, etc) 

 

 Each element gets a Gaussian distribution over the reals 
with mean µ(x) 

 

 These distributions are dependent/correlated as defined 
by k(x,z) 

 

 Any finite subset of indices defines a multivariate Gaussian 
distribution 

Definition: 
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Gaussian Process 
 

Distribution over functions 

 

Domain (index set) of the functions can be pretty 
much whatever 

• Reals 

• Real vectors 

• Graphs 

• Strings 

• Sets 

• … 

 

Most interesting structure is in k(x,z), the ‘kernel.’ 
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Bayesian Updates for GPs 
 

• How do Bayesians use a Gaussian Process? 
 

• Start with GP prior 

• Get some data 

• Compute a posterior 

 

• Ask interesting questions about the posterior 
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Samples from the prior distribution 

Picture is taken from Rasmussen and Williams 
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Samples from the posterior distribution 

Picture is taken from Rasmussen and Williams 
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Prior 
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Data 
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Posterior 
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Ridge Regression 

Linear regression: 

Ridge regression: 

The Gaussian Process is a Bayesian Generalization  

of the Ridge regression 
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Weight Space View 

GP = Bayesian ridge regression in feature space 

+ Kernel trick to carry out computations 

The training data 
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Bayesian Analysis of Linear 
Regression with Gaussian noise 
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Bayesian Analysis of Linear 
Regression with Gaussian noise 

The likelihood: 
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Bayesian Analysis of Linear 
Regression with Gaussian noise 

The prior: 

Now, we can calculate the posterior: 
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Bayesian Analysis of Linear 
Regression with Gaussian noise 

After “completing the square” 

MAP estimation 

Ridge Regression 
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Bayesian Analysis of Linear 
Regression with Gaussian noise 

This posterior covariance matrix doesn’t depend on the observations y, 

A strange property of Gaussian Processes 
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Projections of Inputs into Feature 
Space 

The reviewed Bayesian linear regression suffers from  

limited expressiveness 

To overcome the problem )  

go to a feature space and do linear regression there 

a., explicit features 

b., implicit features (kernels) 
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Explicit Features 

Linear regression in the feature space 
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Explicit Features 

The predictive distribution after feature map: 
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Explicit Features 

Shorthands: 

The predictive distribution after feature map: 
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Explicit Features 
The predictive distribution after feature map: 

A problem with (*) is that it needs an NxN matrix inversion... 

(*) 

(*) can be rewritten:  
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Proofs 
• Mean expression. We need: 

• Variance expression. We need: 

Lemma: 

Matrix inversion Lemma: 
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From Explicit to Implicit Features 

The feature space always enters in the form of: 

Lemma: 



43 

 Introduction  

 

 Ridge Regression 

 

 Gaussian Processes 

 

• Weight space view 
 Bayesian Ridge Regression + Kernel trick 

 

• Function space view 
 Prior distribution over functions 

 + calculation posterior distributions 

 

Contents 



44 

Function Space View 
An alternative way to get the previous results 

 

Inference directly in function space 

Definition: (Gaussian Processes) 

 

 GP is a collection of random variables, s.t. any finite 
number of them have a joint Gaussian distribution 
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Function Space View 

Notations: 
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Function Space View 

Gaussian Processes: 
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Function Space View 

The Bayesian linear regression is an example of GP 



48 

Function Space View 

Special case 
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Function Space View 

Picture is taken from Rasmussen and Williams 
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Function Space View 

Observation 

Explanation 
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Prediction with noise free observations 

noise free observations 
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Prediction with noise free observations 

Goal: 
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Prediction with noise free observations 
Lemma: 

Proofs: a bit of calculation using the joint (n+m) dim density 

Remarks: 
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Prediction with noise free 
observations 

Picture is taken from Rasmussen and Williams 
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Prediction using noisy observations 

The joint distribution: 
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Prediction using noisy observations 

The posterior for the noisy observations: 

where 

In the weight space view we had: 
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Prediction using noisy observations 

Short notations: 
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Prediction using noisy observations 

Two ways to look at it: 

• Linear predictor 

• Manifestation of the Representer Theorem 
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Prediction using noisy observations 

Remarks: 
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GP pseudo code  
Inputs: 
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GP pseudo code (continued) 

Outputs: 
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Results using Netlab , Sin function 
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Results using Netlab, Sin function 

Increased # of training points 
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Results using Netlab, Sin function 

Increased noise 
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Results using Netlab, Sinc function 
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Thanks for the Attention!  


