Advanced Introduction to Machine Learning CMU-10715

Independent Component Analysis

Barnabás Póczos

Independent Component Analysis

Independent Component Analysis

Independent Component Analysys

Model

$$x_1(t) = a_{11}s_1(t) + a_{12}s_2(t)$$

$$x_2(t) = a_{21}s_1(t) + a_{22}s_2(t)$$

We observe

$$\begin{pmatrix} x_1(1) \\ x_2(1) \end{pmatrix}, \begin{pmatrix} x_1(2) \\ x_2(2) \end{pmatrix}, \dots, \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix}$$

We want

$$\begin{pmatrix} s_1(1) \\ s_2(1) \end{pmatrix}, \begin{pmatrix} s_1(2) \\ s_2(2) \end{pmatrix}, \dots, \begin{pmatrix} s_1(t) \\ s_2(t) \end{pmatrix}$$

But we don't know $\{a_{ij}\}$, nor $\{s_i(t)\}$

Goal: Estimate $\{s_i(t)\}$, (and also $\{a_{ij}\}$)

The Cocktail Party Problem SOLVING WITH PCA

The Cocktail Party Problem SOLVING WITH ICA

ICA vs PCA, Similarities

- Perform linear transformations
- Matrix factorization

PCA: *low rank* matrix factorization for *compression*

ICA: *full rank* matrix factorization to *remove dependency* among the rows

ICA vs PCA, Similarities

- PCA: X=US, U^TU=I
 ICA: X=AS, A is invertible
- □ PCA **does** compression
 - M<N
- □ ICA does **not** do compression
 - same # of features (M=N)
- PCA just removes correlations, **not** higher order dependence
 ICA removes correlations, **and** higher order dependence
- PCA: some components are more important than others (based on eigenvalues)
- □ ICA: components are **equally important**

Note

- PCA vectors are orthogonal
- ICA vectors are **not** orthogonal

ICA vs PCA

ICA basis vectors extracted from natural images

PCA basis vectors extracted from natural images

Some ICA Applications

STATIC

- Image denoising
- Microarray data processing
- Decomposing the spectra of galaxies
- Face recognition
- Facial expression recognition
- Feature extraction
- Clustering
- Classification
- Deep Neural Networks

TEMPORAL

- Medical signal processing fMRI, ECG, EEG
- Brain Computer Interfaces
- Modeling of the hippocampus, place cells
- Modeling of the visual cortex
- Time series analysis
- Financial applications
- Blind deconvolution

ICA Application, Removing Artifacts from EEG

EEG ~ Neural cocktail party Severe contamination of EEG activity by

- eye movements
- blinks
- muscle
- heart, ECG artifact
- vessel pulse
- electrode noise
- line noise, alternating current (60 Hz)

ICA can improve signal

 effectively *detect, separate and remove* activity in EEG records from a wide variety of artifactual sources. (Jung, Makeig, Bell, and Sejnowski)

□ ICA weights (mixing matrix) help find **location** of sources

ICA Application, Removing Artifacts from EEG

15

Removing Artifacts from EEG

Summed Projection of Selected Components

ICA for Image Denoising

original

ICA denoised (Hoyer, Hyvarinen)

median filtered

Wiener filtered

ICA for Motion Style Components

- Method for analysis and synthesis of human motion from motion captured data
- □ Provides perceptually meaningful "style" components
- □ 109 markers, (327dim data)
- $\hfill\square$ Motion capture \Rightarrow data matrix

Goal: Find motion style components.

ICA \Rightarrow 6 independent components (emotion, content,...)

(Mori & Hoshino 2002, Shapiro et al 2006, Cao et al 2003)

walk

walk with sneaky

sneaky

sneaky with walk

Statistical (in)dependence

Definition (Independence)

 Y_1 , Y_2 are independent $\Leftrightarrow p(y_1, y_2) = p(y_1) p(y_2)$

Definition (Shannon entropy)

 $H(\mathbf{Y}) \doteq H(Y_1, \ldots, Y_m) \doteq -\int p(y_1, \ldots, y_m) \log p(y_1, \ldots, y_m) d\mathbf{y}.$

Definition (KL divergence)

$$0 \le KL(f||g) = \int f(x) \log \frac{f(x)}{g(x)} dx$$

Definition (Mutual Information)

 $0 \leq I(Y_1, ..., Y_M) \doteq \int p(y_1, ..., y_M) \log \frac{p(y_1, ..., y_M)}{p(y_1) ... p(y_M)} dy_{21}$

Solving the ICA problem with i.i.d. sources

ICA problem: $\mathbf{x} = \mathbf{As}$, $\mathbf{s} = [s_1; \ldots; s_M]$ are jointly independent.

Proof:

- P = arbitrary permutation matrix,
- $\Lambda =$ arbitrary diagonal scaling matrix.

$$\Rightarrow \mathbf{x} = [\mathbf{A}\mathbf{P}^{-1}\mathbf{\Lambda}^{-1}][\mathbf{\Lambda}\mathbf{P}\mathbf{s}]$$

Solving the ICA problem

Lemma:

We can assume that E[s] = 0.

Proof:

Removing the mean does not change the mixing matrix. $\mathbf{x} - E[\mathbf{x}] = \mathbf{A}(\mathbf{s} - E[\mathbf{s}]).$

In what follows we assume that $E[ss^T] = I_M$, E[s] = 0.

Whitening

• Let $\Sigma \doteq cov(\mathbf{x}) = E[\mathbf{x}\mathbf{x}^T] = \mathbf{A}E[\mathbf{s}\mathbf{s}^T]\mathbf{A}^T = \mathbf{A}\mathbf{A}^T$. (We assumed centered data)

• Do SVD: $\Sigma \in \mathbb{R}^{N \times N}$, $rank(\Sigma) = M$, $\Rightarrow \Sigma = UDU^{T}$, where $U \in \mathbb{R}^{N \times M}$, $U^{T}U = I_{M}$, Signular vectors $D \in \mathbb{R}^{M \times M}$, diagonal with rank M. Singular values

Whitening (continued)

- Let $\mathbf{Q} \doteq \mathbf{D}^{-1/2} \mathbf{U}^T \in \mathbb{R}^{M \times N}$ whitening matrix
- Let $A^* \doteq QA$
- $\mathbf{x}^* \doteq \mathbf{Q}\mathbf{x} = \mathbf{Q}\mathbf{A}\mathbf{s} = \mathbf{A}^*\mathbf{s}$ is our new (*whitened*) ICA task.

We have,

$$E[x^*x^{*T}] = E[Qxx^TQ^T] = Q\Sigma Q^T = (D^{-1/2}U^T)UDU^T(UD^{-1/2}) = I_M$$

$$\Rightarrow E[\mathbf{x}^*\mathbf{x}^{*T}] = \mathbf{I}_M$$
, and $\mathbf{A}^*\mathbf{A}^{*T} = \mathbf{I}_M$.

Whitening solves half of the ICA problem

Note:

The number of free parameters of an N by N orthogonal matrix is (N-1)(N-2)/2.

 \Rightarrow whitening solves **half** of the ICA problem

original mixed whitened After whitening it is enough to consider **orthogonal matrices** for separation.

Solving ICA

ICA task: Given x,

- \Box find **y** (the estimation of **s**),
- □ find W (the estimation of A⁻¹)

ICA solution: y=Wx

- ☐ Remove mean, E[x]=0
- \Box Whitening, $E[\mathbf{x}\mathbf{x}^T] = \mathbf{I}$
- □ Find an orthogonal **W** optimizing an objective function
 - Sequence of 2-d Jacobi (Givens) rotations

Optimization Using Jacobi Rotation Matrices

$$\mathbf{G}(p,q,\theta) \doteq \begin{pmatrix} 1 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & & \vdots & & \vdots & \vdots \\ 0 & \dots & \cos(\theta) & \dots & -\sin(\theta) & \dots & 0 \\ \vdots & \ddots & \vdots & & \vdots & & \vdots & \vdots \\ 0 & \dots & \sin(\theta) & \dots & \cos(\theta) & \dots & 0 \\ \vdots & \ddots & \vdots & & \vdots & & \vdots \\ 0 & \dots & 0 & \dots & 0 & \dots & 1 \end{pmatrix} \leftarrow \mathbf{q}$$

Observation : $\mathbf{x} = \mathbf{As}$ Estimation : $\mathbf{y} = \mathbf{Wx}$ $\mathbf{W} = \arg\min_{\tilde{\mathbf{W}} \in \mathcal{W}} J(\tilde{\mathbf{W}}\mathbf{x}),$ where $\mathcal{W} = \{\mathbf{W} | \mathbf{W} = \prod G(p_i, q_i, \theta_i)\}$

ICA Cost Functions

Let $y \doteq Wx$, $y = [y_1; ...; y_M]$, and let us measure the dependence using Shannon's mututal information:

$$\int J_{ICA_1}(\mathbf{W}) \doteq I(y_1, \dots, y_M) \doteq \int p(y_1, \dots, y_M) \log \frac{p(y_1, \dots, y_M)}{p(y_1) \dots p(y_M)} d\mathbf{y},$$

Let
$$H(\mathbf{y}) \doteq H(y_1, \ldots, y_m) \doteq -\int p(y_1, \ldots, y_m) \log p(y_1, \ldots, y_m) d\mathbf{y}$$
.

Lemma

 $H(\mathbf{W}\mathbf{x}) = H(\mathbf{x}) + \log |\det \mathbf{W}|$ Proof: Homework

Therefore,

$$I(y_1, \dots, y_M) = \int p(y_1, \dots, y_M) \log \frac{p(y_1, \dots, y_M)}{p(y_1) \dots p(y_M)}$$

= $-H(y_1, \dots, y_M) + H(y_1) + \dots + H(y_M)$
= $-H(x_1, \dots, x_M) - \log |\det \mathbf{W}| + H(y_1) + \dots + H(y_M).$

ICA Cost Functions

$$I(y_1, \dots, y_M) = \int p(y_1, \dots, y_M) \log \frac{p(y_1, \dots, y_M)}{p(y_1) \dots p(y_M)}$$

= $-H(y_1, \dots, y_M) + H(y_1) + \dots + H(y_M)$
= $-H(x_1, \dots, x_M) - \log |\det \mathbf{W}| + H(y_1) + \dots + H(y_M).$
 $H(x_1, \dots, x_M)$ is constant, $\log |\det \mathbf{W}| = 0.$

Therefore,

$$J_{ICA_2}(\mathbf{W}) \doteq H(y_1) + \ldots + H(y_M)$$

The covariance is fixed: I. Which distribution has the largest entropy?

 \Rightarrow go away from normal distribution

Central Limit Theorem

The sum of independent variables converges to the normal distribution

 \Rightarrow For separation go far away from the normal distribution

 \Rightarrow Negentropy, |kurtozis| maximization

ICA Algorithms

Maximum Likelihood ICA Algorithm

 $\mathbf{x}(t) = \mathbf{As}(t), \ \mathbf{s}(t) = \mathbf{Wx}(t), \ \text{where} \ \mathbf{A}^{-1} = \mathbf{W} = [\mathbf{w}_1; \dots; \mathbf{w}_M] \in \mathbb{R}^{M \times M}$

Maximum Likelihood ICA Algorithm

$$\Rightarrow \Delta \mathbf{W} \propto [\mathbf{W}^T]^{-1} + \frac{1}{T} \sum_{t=1}^T g(\mathbf{W} \mathbf{x}(t)) \mathbf{x}^T(t), \text{ where } g_i = f_i'/f_i$$

ICA algorithm based on Kurtosis maximization

The Fast ICA algorithm (Hyvarinen)

- \bullet Given whitened data \mathbf{z}
- Estimate the 1^{st} ICA component:

Probably the most famous ICA algorithm

$$\star y = \mathbf{w}^T \mathbf{z}, \; \|\mathbf{w}\| = 1, \qquad \Leftarrow \mathbf{w}^T = \mathbf{1}^{st} \; \mathsf{row} \; \mathsf{of} \; \mathbf{W}$$

* maximize kurtosis $f(\mathbf{w}) \doteq \kappa_4(y) \doteq \mathbb{E}[y^4]$ -3 with constraint $h(\mathbf{w}) = \|\mathbf{w}\|^2 - 1 = 0$

* At optimum $f'(\mathbf{w}) + \lambda h'(\mathbf{w}) = 0^T$ (λ Lagrange multiplier) $\Rightarrow 4\mathbb{E}[(\mathbf{w}^T \mathbf{z})^3 \mathbf{z}] + 2\lambda \mathbf{w} = 0$

Solve this equation by Newton–Raphson's method.

Newton method for finding a root

Newton Method for Finding a Root

Goal:
$$\phi : \mathbb{R} \to \mathbb{R}$$

 $\phi(x^*) = 0$
 $x^* = ?$

Linear Approximation (1st order Taylor approx**)**:

$$\phi(x + \Delta x) = \phi(x) + \phi'(x)\Delta x + o(|\Delta x|)$$

Therefore,

$$0 \approx \phi(x) + \phi'(x) \Delta x$$
$$x^* - x = \Delta x = -\frac{\phi(x)}{\phi'(x)}$$
$$x_{k+1} = x_k - \frac{\phi(x)}{\phi'(x)}$$

Illustration of Newton's method

Example: Finding a Root

http://en.wikipedia.org/wiki/Newton%27s_method

Newton Method for Finding a Root

This can be generalized to multivariate functions $F: \mathbb{R}^n \to \mathbb{R}^m$

 $0_m = F(x^*) = F(x + \Delta x) = F(x) + \nabla F(x) \Delta x + o(|\Delta x|)$

Therefore,

$$0_m = F(x) + \nabla F(x) \Delta x$$

$$\Delta x = -[\nabla F(x)]^{-1} F(x)$$

[Pseudo inverse if there is no inverse]

$$\Delta x = x_{k+1} - x_k$$
, and thus
$$x_{k+1} = x_k - [\nabla F(x_k)]^{-1} F(x_k)$$

Newton method: Start from x_0 and iterate.

Newton method for FastICA

The Fast ICA algorithm (Hyvarinen)

Solve:
$$F(\mathbf{w}) = 4\mathbb{E}[(\mathbf{w}^T \mathbf{z})^3 \mathbf{z}] + 2\lambda \mathbf{w} = 0$$

Note:

$$y = \mathbf{w}^T \mathbf{z}$$
, $\|\mathbf{w}\| = 1$, \mathbf{z} white $\Rightarrow \mathbb{E}[(\mathbf{w}^T \mathbf{z})^2] = 1$

The derivative of *F* :

$$F'(\mathbf{w}) = 12\mathbb{E}[(\mathbf{w}^T \mathbf{z})^2 \mathbf{z} \mathbf{z}^T] + 2\lambda \mathbf{I}$$

$$\sim 12\mathbb{E}[(\mathbf{w}^T \mathbf{z})^2]\mathbb{E}[\mathbf{z} \mathbf{z}^T] + 2\lambda \mathbf{I}$$

$$= 12\mathbb{E}[(\mathbf{w}^T \mathbf{z})^2]\mathbf{I} + 2\lambda \mathbf{I}$$

$$= 12\mathbf{I} + 2\lambda \mathbf{I}$$

The Fast ICA algorithm (Hyvarinen)

The Jacobian matrix becomes diagonal, and can easily be inverted.

$$w(k+1) = w(k) - [F'(w(k))]^{-1} F(w(k))$$

$$\mathbf{w}(k+1) = \mathbf{w}(k) - \frac{4\mathbb{E}[(\mathbf{w}(k)^T \mathbf{z})^3 \mathbf{z}] + 2\lambda \mathbf{w}(k)}{12 + 2\lambda}$$

$$(12+2\lambda)\mathbf{w}(k+1) = (12+2\lambda)\mathbf{w}(k) - 4\mathbb{E}[(\mathbf{w}(k)^T\mathbf{z})^3\mathbf{z}] - 2\lambda\mathbf{w}(k)$$

$$-\frac{12+2\lambda}{4}\mathbf{w}(k+1) = -3\mathbf{w}(k) + \mathbb{E}[(\mathbf{w}(k)^T\mathbf{z})^3\mathbf{z}]$$

Therefore,

Let \mathbf{w}_1 be the fix pont of: $\tilde{\mathbf{w}}(k+1) = \mathbb{E}[(\mathbf{w}(k)^T \mathbf{z})^3 \mathbf{z}] - 3\mathbf{w}(k)$ $\mathbf{w}(k+1) = \frac{\tilde{\mathbf{w}}(k+1)}{\|\tilde{\mathbf{w}}(k+1)\|}$

• Estimate the 2nd ICA component similarly using the $\mathbf{w} \perp \mathbf{w}_1$ additional constraint... and so on ...

Other Nonlinearities

Other Nonlinearities

Newton method:

Algorithm:

Fast ICA for several units