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Independent Component Analysis

.CCQ(t) — ansl(t) T 02232@) 4[—4[—4/%—4[—/\/—]\/—%
Model

original signals

2 . . .
1 . ’
1
0.5
o)
o ]
-1
-0.5 ]
) | i !
A ; ‘ i
o 50 100 150 200 o 60 100 159 200
4 . 4 | , ,
51: | 2
5 o)
<2 2| -2
-4 L 1 L -4 ! L L
o 50 150 200 o 5 200

Observations (Mixtures) ICA estimated signals




Independent Component Analysys

Model 21 (%)

zo (1)
We observe

r1(1)) (z1(2) (m(ﬂ)
r2(1)) "\z2(2) )7 " \@2(t)

s1(1)) [s1(2) (81(75))
(82(1)) ’ (32(2)) T\ s2(t)

But we don't know {a;;}, nor {s;(t)}

a1151(t) + a1os2(t)
an151(t) + anosa(t)

We want

Goal:  Estimate {s;(¢t)}, (and also {a;;})



The Cocktail Party Problem

SOLVING WITH PCA
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x(t) = As(t) y(t)=Wx(t)




The Cocktail Party Problem

SOLVING WITH ICA

Sources ‘ . .
Mixing Observation ICA Estimation
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e Perform linear transformations
e Matrix factorization

PCA: low rank matrix factorization for compression

"

X

U

S

}M<N

—

M

Columns of U = PCA vectors

|CA: full rank matrix factorization to remove dependency among the rows
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Columns of A = ICA vectors 7
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PCA: X=US, UTU=I
ICA: X=AS, A is invertible

PCA does compression
e M<N

ICA does not do compression
e same # of features (M=N)

PCA just removes correlations, not higher order dependence
ICA removes correlations, and higher order dependence

PCA: some components are more important than others
(based on eigenvalues)

ICA: components are equally important



Note

e PCA vectors are orthogonal

e [CA vectors are not orthogonal
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| (@A ba5|s vectors extracted from
natural Images

Gabor wavelets, .
edge detection,

receptive fields of V1 cells..., deep neural networks




PCA basis vectors extracted from

natural images
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STATIC

Image denoising
Microarray data processing

Decomposing the spectra of
galaxies

Face recognition

Facial expression recognition
Feature extraction
Clustering

Classification

Deep Neural Networks

Some ICA Applications

TEMPORAL

e Medical signal processing — fMRI,
ECG, EEG

e Brain Computer Interfaces

e Modeling of the hippocampus,
place cells

e Modeling of the visual cortex
e Time series analysis
 Financial applications

e Blind deconvolution
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ICA Application,

Removing Artifacts from EEG

Q EEG ~ Neural cocktail party

 Severe contamination of EEG activity by
eye movements

blinks

muscle

heart, ECG artifact

vessel pulse

electrode noise

line noise, alternating current (60 Hz)

Q ICA can improve signal

o effectively detect, s foarate and remove activity in EEG records

from a wide varlety of artifactual sources.
(Jung, Makeig, Bell, and Sejnowski)

[ ICA weights (mixing matrix) help find location of sources
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ICA Application,

Removing Artifacts from EEG

Independent Components
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Fig from Jung
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Removing Artifacts from EEG

Summed Projection of Selected Components

Antifact—corrected EEG

Fig from Jung
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ICA for Image Denoising
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ICA for Motion Style Components

d Method for analysis and synthesis of human motion from
motion captured data

d Provides perceptually meaningful “style” components
Q 109 markers, (327dim data)
O Motion capture = data matrix

Goal: Find motion style components.

ICA = 6 independent components (emotion, content,...)

(Mori & Hoshino 2002, Shapiro et al
2006, Cao et al 2003)
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ICA Theory



Statistical (in)dependence

Definition (Independence) ®
Y1, Yo are independent < p(y1,y2) = p(y1) p(y2)

Definition (Shannon entropy)
H(Y)=H({Y1,....,Ym) = — [ p(y1,-- -, ym) 109 p(y1, . . ., ym)dy.

Definition (KL divergence)

f(x)
g(w)

0 < KL(fllg) = | f(x)log
Definition (Mutual Information)

0 <I(Y1,...,Yn) = [p(y1,---,ym) 109 pﬁgﬁﬁjjj{é“’ﬁbdyu




Solving the ICA problem with i.i.d.

SOUrces

ICA problem: x = As, s = [s1;...;sy] are jointly independent.

Proof:
o P
o A

arbitrary permutation matrix,
arbitrary diagonal scaling matrix.

= x = [AP 1A 1][APs]
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Solving the ICA problem

Lemma:
We can assume that E[s] = 0.

Proof:
Removing the mean does not change the mixing matrix.
x — F[x] = A(s — E[s]).

In what follows we assume that E[ss!] =1,;, E[s] = 0.
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o Let ¥ = cov(x) = E[xx!] = AE[ss!]AT = AAL. ‘
(We assumed centered data)

e DO SVD: X € RVXN  rank(X) = M,
= 3 =UDUT,
where U € RVXM UTyU =1,,, Signular vectors
D € RMXM diagonal with rank M. Singular values
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Whitening (continued)

e Let Q =D 1/2UT ¢ RMXN whitening matrix ®
o Let A* =QA
e x* =Qx = QAs = A*s is our new (whitened) ICA task.

We have,

Elz*z*T) = E[Qz2TQT) = Q=qQT = (D Y2uTYupuT(uD12) = 1y,

— E[X*X*T] = IM, and A*A*T — IM
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Whitening solves half of the ICA

broblem

Note:
The number of free parameters of an N by N orthogonal
matrix is (N-1)(N-2)/2.

= whitening solves half of the ICA problem

; 2
0 O IR I
-1 1 S ¢
-2 | 2
2 0 2
original mixed whitened

After whitening it is enough to consider
orthogonal matrices for separation. 26




Solving ICA

ICA task: Given X,
d find y (the estimation of s),

A find W (the estimation of A1)
ICA solution: y=Wx

d Remove mean, E[x]=0

A Whitening, E[xxT]=I

A Find an orthogonal W optimizing an objective function
e Sequence of 2-d Jacobi (Givens) rotations

1.0
original mixed whitened rotated
(demixed)



Optimization Using Jacobi Rotation

Matrices
1 ... o ... 0 ... O\
0 ... cos(0) ... —sin(0) ... Ol-p

Gp,g,0)=1|: . ; | e RMxM

O ... sin(@) ... cos(#) ... 0|«Q
PR T S

! t

P q

Observation : x = As
Estimation .y = Wx

W = arg min J(Wx),
WwWeWw

where W = {W|W = [ G(p;, q;,9;) }
1
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ICA Cost Functions

using Shannon's mututal information:

Let H(y) =Ha1,---,ym) = — [ p(W1,--.,ym) 109 p(y1, - . ., ym ) dy.

Lemma
H(Wx) = H(x) + log | det W/| Proof: Homework
Therefore, ( )
P\Y1,---yYpr
I(yr,...,yp) = ..., Yar) log
(y1 YM ) /p(y1 YM ) ow1) - p(un)

= —H(y1,...,ypm) +Hw1)+ ...+ H(ym)
—H(xy,...,xp) —10g|det W[+ H(y1) + ...+ H(ypr)-
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ICA Cost Functions

B p(y1s- - YM)
i) = [plonun)log AP

= —H(y1,---»yp) +Hy1) + .-+ H(ypp)
= —H(z1,...,zp) —log|detW| 4+ H(y1) + ... + H(yn)-

H(xq,...,xzp7) is constant, log|det W| = 0.

Therefore,

D Jrca,(W) = H(y1) + ...+ H(yn) 7

The covariance is fixed: I. Which distribution has the largest entropy?

= go away from normal distribution

30



Central Limit Theorem

The sum of independent variables converges to the normal distribution

—> For separation go far away from the normal distribution
—> Negentropy, |kurtozis| maximization
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ICA Algorithms
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Maximum Likelihood ICA Algorithm

David J.C. MacKay (97)

e simplest approach
rows of W

e requires knowing densities of hidden sources {fi}./A/

x(t) = As(t), s(t) = Wx(t), where A=l = W = [wq;...;wy] € RMxM
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Maximum Likelihood ICA Algorithm

T
=AW o« (WT]-1 4 1 ) g(Wx(t))x"(t),| where g; = f//f;
=

34



ICA algorithm based on Kurtosis

maximization
Kurtosis = 4t order cumulant

Measures

the distance from normality

the degree of peakedness

e ry(y)=E{y*} -  B(E{s’})
=3 it E{y} =0 and whitened

2

raly) = —5 rely) =0 Fgly) =12
— 1_ — I:I"']:_ —, I:I"']:_
205 02— e
._|_J--. |:| '-I—h |:| | '-I—h |:|
-2 il 2 G N i — G N i

35



The Fast ICA algorithm (Hyvarinen)

e Given whitened data z Probably the most famous
e Estimate the 15¢ ICA component: ICA algorithm

xy=wlzg, ||w||=1, = wl = 15 row of W

x maximize kurtosis f(w) = k4(y) = E[y*]-3
with constraint h(w) = ||w|2 —1 =20

« At optimum f/(w) 4 Ah/(w) = 01 (X Lagrange multiplier)
= 4E[(w1z)3z] + 22w = 0

Solve this equation by Newton—Raphson’s method.

36



Newton method for finding a root




Newton Method for Finding a Root

Goal: q5 R—R
¢(z*) =0
r* =7

Linear Approximation (1st order Taylor approx):

¢(z + Az) = ¢(z) + ¢'(z) Az

Therefore, O ~ Qb(ﬂi’) —|—Q5,(£IZ)AZB

Th+1 — Tk =~ () .



Illustration of Newton’s method
Goal: finding a root f(:r:) = f(xo) + f’(ﬂi‘o)(ﬂ?‘ — z0)

In the next step we will linearize here in x
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Example: Finding a Root
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http://en.wikipedia.org/wiki/Newton%27s_method
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Newton Method for Finding a Root
This can be generalized to multivariate functions
F:R" —» R™

Om = F(x*) = F(x+ Ax) = F(x) + VF(x)Ax + o(|Ax]|)

Therefore,
Om = F(z) + VF(x)Ax

Azx = —[VF(z)] 1F(z)

[Pseudo inverse if there is no inverse]

Axr = Tl+4+1 — Tk and thus
Tpt1 = 7 — [VF(xp)] "1 F(xp)

Newton method: Start from xg and iterate. a1



Newton method for FastICA




The Fast ICA algorithm (Hyvarinen)

Solve: F(w) =4E[(wTz)3z] +2\xw =0 -

Note:
y=wlz, |[w||=1, z white = E[(wlz)?] =1

The derivative of F:
F'(w) = 12E[(w12)2zz1] + 21
~ 12E[(w12)2|E[zz!] + 2]
= 12E[(w12z)2]I 4 2)I
= 121 + 21
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The Fast ICA algorithm (Hyvarinen)

The Jacobian matrix becomes diagonal, and can easily be inverted.
w(k+1) = w(k) — [F'(w(k)]~! F(w(k))

W TZ 3Z W
w(k+ 1) = w(k) — 4E[( (k)122_2])\+2>\ (k)

(12 4+ 2wk + 1) = (12 + 20)w(k) — 4E[(w(k)T2)3z] — 22w (k)

—1272w(k + 1) = —3w(k) + E[(w(k)Tz)]

Therefore,

Let wq be the fix pont of:

w(k 4+ 1) = E[(w(k)L2z)3z] — 3w(k)

_ w(k+1
w(k +1) = ot e

e Estimate the 2% ICA component similarly
using the w L wq additional constraint... and so on ... 44



Other Nonlinearities
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Other Nonlinearities

Newton method:

Algorithm:

46



Fast ICA for several units
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