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Independent Component Analysis 



3 

Observations (Mixtures) 

original signals 

Model 

ICA estimated signals 

Independent Component Analysis  
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We observe 

Model 

We want 

Goal: 

Independent Component Analysys  
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PCA Estimation 
Sources Observation 

x(t) = As(t) 
s(t) 

Mixing 

y(t)=Wx(t) 

The Cocktail Party Problem 
SOLVING WITH PCA 
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ICA Estimation 
Sources Observation 

x(t) = As(t) 
s(t) 

Mixing 

y(t)=Wx(t) 

The Cocktail Party Problem 
SOLVING WITH ICA 
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• Perform linear transformations 

• Matrix factorization 

X U S 

X A S 

PCA: low rank matrix factorization for compression 

ICA: full rank matrix factorization to remove dependency among the rows 

= 

= 

N 

N 

N 

M 

M<N 

ICA vs PCA, Similarities  

Columns of U = PCA vectors 

Columns of A = ICA vectors 
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 PCA: X=US, UTU=I 

 ICA: X=AS, A is invertible 

 

 PCA does compression  
• M<N 

 

 ICA does not do compression  
• same # of features (M=N) 

 

 PCA just removes correlations, not higher order dependence 

 ICA removes correlations, and higher order dependence 

 

 PCA: some components are more important than others  
 (based on eigenvalues) 

 ICA: components are equally important 

ICA vs PCA, Similarities  
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Note 
• PCA vectors are orthogonal  

• ICA vectors are not orthogonal 

ICA vs PCA 
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ICA vs PCA 
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Gabor wavelets,  

edge detection,  

receptive fields of V1 cells..., deep neural networks  

ICA basis vectors extracted from 
natural images 
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PCA basis vectors extracted from 
natural images 
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STATIC 

• Image denoising 

• Microarray data processing 

• Decomposing the spectra of 
galaxies 

• Face recognition 

• Facial expression recognition 

• Feature extraction 

• Clustering 

• Classification 

• Deep Neural Networks 

TEMPORAL 
 

• Medical signal processing – fMRI, 
ECG, EEG  

• Brain Computer Interfaces 

• Modeling of the hippocampus, 
place cells  

• Modeling of the visual cortex 

• Time series analysis  

• Financial applications 

• Blind deconvolution 

Some ICA Applications 
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 EEG ~ Neural cocktail party 
 Severe contamination of EEG activity by  

• eye movements  
• blinks 
• muscle 
• heart, ECG artifact 
• vessel pulse  
• electrode noise 
• line noise, alternating current (60 Hz) 
 

 ICA can improve signal  
• effectively detect, separate and remove activity in EEG records 

from a wide variety of artifactual sources.  
(Jung, Makeig, Bell, and Sejnowski) 

 

 ICA weights (mixing matrix) help find location of sources 

ICA Application, 
Removing Artifacts from EEG 
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Fig from Jung 

ICA Application, 
Removing Artifacts from EEG 
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Fig from Jung 

Removing Artifacts from EEG 
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original noisy Wiener filtered 

median filtered 

ICA denoised 

ICA for Image Denoising 

(Hoyer, Hyvarinen) 
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 Method for analysis and synthesis of human motion from 
motion captured data 

 Provides perceptually meaningful “style” components 

 109 markers, (327dim data) 

 Motion capture ) data matrix  

 

Goal: Find motion style components. 

  
  ICA ) 6 independent components (emotion, content,…) 

ICA for Motion Style Components 

(Mori & Hoshino 2002, Shapiro et al 
2006, Cao et al 2003) 



19 

walk sneaky 

walk with sneaky sneaky with walk 
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ICA Theory 
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Definition (Independence) 

Statistical (in)dependence 

Definition (Mutual Information) 

Definition (Shannon entropy) 

Definition (KL divergence) 
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Solving the ICA problem with i.i.d. 
sources 
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Solving the ICA problem 
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Whitening  

(We assumed centered data) 
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Whitening (continued) 

We have, 
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whitened original mixed 

Whitening solves half of the ICA 
problem 

Note:  

 The number of free parameters of an N by N orthogonal 

 matrix is (N-1)(N-2)/2.  
 

  ) whitening solves half of the ICA problem 
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 Remove mean, E[x]=0 

 Whitening, E[xxT]=I 

 Find an orthogonal W optimizing an objective function 
• Sequence of 2-d Jacobi (Givens) rotations 

 find y (the estimation of s),  

 find W (the estimation of A-1) 

ICA solution: y=Wx 

ICA task: Given x,  

original mixed whitened rotated 

(demixed) 

Solving ICA 
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p q 

p 

q 

Optimization Using Jacobi Rotation 
Matrices 
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ICA Cost Functions 

Proof: Homework 
Lemma 

Therefore, 
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) go away from normal distribution 

ICA Cost Functions 

Therefore, 

The covariance is fixed: I. Which distribution has the largest entropy?  
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The sum of independent variables converges to the normal distribution 

) For separation go far away from the normal distribution 

) Negentropy, |kurtozis| maximization 

Figs from Ata Kaban 

Central Limit Theorem 
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ICA Algorithms 
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rows of W 

Maximum Likelihood ICA Algorithm 

David J.C. MacKay (97) 
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Maximum Likelihood ICA Algorithm 
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Kurtosis = 4th order cumulant 

Measures  

•the distance from normality 

•the degree of peakedness 

ICA algorithm based on Kurtosis 
maximization 
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Probably the most famous 
ICA algorithm 

The Fast ICA algorithm (Hyvarinen) 

(¸ Lagrange multiplier) 

Solve this equation by Newton–Raphson’s method. 
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Newton method for finding a root 
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Newton Method for Finding a Root 

Linear Approximation (1st order Taylor approx): 

Goal: 

Therefore, 
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Illustration of Newton’s method 

Goal: finding a root 

In the next step we will linearize here in x 
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Example: Finding a Root 

http://en.wikipedia.org/wiki/Newton%27s_method 
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Newton Method for Finding a Root 

This can be generalized to multivariate functions 

Therefore, 

[Pseudo inverse if there is no inverse] 
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Newton method for FastICA 
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The Fast ICA algorithm (Hyvarinen) 

Solve: 

The derivative of F : 

Note: 
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The Fast ICA algorithm (Hyvarinen) 

Therefore, 

The Jacobian matrix becomes diagonal, and can easily be inverted. 
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Other Nonlinearities 
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Other Nonlinearities 

Newton method: 

Algorithm: 
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Fast ICA for several units 


