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Motivation 
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The human brain confronts the same problem in perception:   

 30,000 auditory nerve fibers  

 106 optic nerve fibers 

  
 ) extract small number of perceptually relevant features. 

 Find meaningful low-dimensional structures 

hidden in high-dimensional observations.  

   

 Difficult to visualize data in dimensions greater 

than three. 



Manifolds 

Informal definition:  

 Manifold = any object which is nearly "flat" on small scales. 

1dim manifolds: 

2dim manifolds: 
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Manifold Learning 
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 PCA (1901), kernel PCA 

 Multi-dimensional Scaling (1952) 

 Maximum Variance Unfolding, Colored MVU 

 Mixture of PCA, Mixture of Factor Analyzers 

 Local Linear Embedding (2000) 

 Isomap (2000), C-Isomap 

 Hessian Eigenmaps 

 Laplacian Eigenmaps (2003) 

 Local Tangent Space Alignment 

 

 … and many more 

Algorithms 
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PCA 

PCA is a linear method: 

  it fails to find the nonlinear structure in the data 
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Nonlinear Manifolds.. 
A 

Unroll the manifold 

PCA uses the Euclidean 

distance 

What is important is the geodesic distance 

Issues with PCA 
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Multi-dimensional Scaling 
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MultiDimensional 

Scaling.. 
 In PCA we are given a set of points 

 

 

 

 In MDS we are given pairwise distances instead 

of the actual data points. 

 

 Question: If we only 

preserve the pairwise 

distances do we preserve 

the structure? 
 

Multi-dimensional Scaling 
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How to get dot product matrix from pairwise 

distance matrix? 
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From Distances to Inner Products 
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MDS.. 
Similarly:  

  

Center the data and then calculate  
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From Distances to Inner Products 

MDS cost function: 



MDS.. 
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From Distances to Inner Products 

MDS algorithm:  
 

Step 1: Build a Gram matrix of inner products 

Step 2: Find the top k eigenvectors of G 

with the top k eigenvalues:  

Step 3: 



Though based on a somewhat different geometric 

intuition, metric MDS yields the same solution as PCA. 

There are many different versions of MDS  

which are different from PCA! 
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Metric MDS = PCA 

Observation: If the data is centered, then the Gram matrix can 

 be found  this way: 



Example of MDS… 
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Isomap 
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A Global Geometric Framework for Nonlinear  

Dimensionality Reduction 

 

 

J. B. Tenenbaum, V. de Silva and J. C. Langford  

Science 290 (5500): 2319-2323, 22 December 2000  



ISOMAP 

Comes from Isometric feature mapping 

  

Step1: Take a data matrix as input. 

 

Step2: Estimate geodesic distance between any two points by 

“a chain of short paths” Approximate the geodesic distance 

by Euclidean distances. 

 

Step3: Perform MDS  
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Geodesic: the shortest curve on a manifold that connects 

two points on the manifold 

small circle 

great circle 
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Differential Geometry 

Example (3D sphere) 



Euclidean distance needs not be a good measure between 

two points on a manifold 

Length of geodesic is more appropriate 
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Geodesic distance 



The Swiss-role Dataset 
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Isomap 
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ISOMAP Interpolation 
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ISOMAP Interpolation 
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ISOMAP Interpolation 
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ISOMAP Summary 

 Build graph from kNN or epsilon neighbors 

 Run MDS 

 

 Since MDS is slow, ISOMAP will be very slow. 

 Need estimate of k or epsilon. 

 Assumes data set is convex (no holes). 
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Local Linear Embedding 
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Nonlinear dimensionality reduction by locally 

linear embedding. 

Sam Roweis & Lawrence Saul. 

Science, v.290 no 5500, Dec.22, 2000. pp.2323--

2326. 



Local Linear Embedding 

1. select neighbors 

(epsilon or kNN) 

2. reconstruct with linear weights 

Assumption: manifold is approximately “linear” when 

viewed locally. Data: 
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Local Linear Embedding 

 Step 1. 

 

 

    

 

 

Without the constraints the weights that minimize 
the reconstruction errors are invariant to rotation, 

rescaling and translation of the data points. 
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Local Linear Embedding 

 Step 2. Given the weights W, find the embedded 

points: 

The same weights that reconstruct the 
datapoints in D dimensions should reconstruct it 

in the manifold in d dimensions. 
 

The weights characterize the intrinsic geometric properties 
of each neighborhood. 
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Locally Linear Embedding 

Fit Locally , Think Globally 
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Maximum Variance Unfolding 
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K. Q. Weinberger and L. K. Saul.  

Unsupervised learning of image manifolds by semidefinite 

programming. 
International Journal of Computer Vision, Volume 70 Issue 1, 

October 2006, Pages 77 - 90   



Maximum Variance Unfolding 
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Formally, 

Build a graph from kNN or epsilon neighbors. 



Maximum Variance Unfolding 
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Consider the constraint 

From this, we have 



Maximum Variance Unfolding 

39 

Consider the cost function: 



Maximum Variance Unfolding 
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The final problem is a semi-definite problem  (SDP) : 



Maximum Variance Unfolding 

D= 76*101*3 

d=3 

N=400 images 
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Maximum Variance Unfolding 

Swiss roll “unfolded” by maximizing variance subject to 

constraints that preserve local distances and angles.  

 

The middle snap-shots show various feasible (but non-optimal) 

intermediate solutions. 
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Maximum Variance Unfolding 
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Laplacian Eigenmap 
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M. Belkin and P. Niyogi. “Laplacian eigenmaps for dimensionality 

reduction and data representation,”  

Neural Comput.,15(6):1373–1396, 2003. 
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Laplacian Eigenmap 

Step 1. Build graph from kNN or epsilon neighbors 

 

Step 2. Choose weights: 

Special case:  
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Laplacian Eigenmap 

Step 3. Assume the graph is connected, otherwise 

proceed with Step 3 for each connected component: 

Lemma: 

Solve the eigenvector problem: 
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Laplacian Eigenmap 

Solve the eigenvector problem: 

The first m+1 smallest eigenvalues: 

The embedding: 
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Laplacian Eigenmap 

(Explanation) 
Let us embed the neighborhood graph to 1 dim first. 

A reasonable cost function is:  

subject to appropriate constraints to avoid y=0. 

Lemma 

Proof: 
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Laplacian Eigenmap 

(Explanation) 
Therefore, our minimization problem is  

Subject to:   

Embedding the neighborhood graph to m dimension: 

Subject to:   Solution: 



Variational Variational Inference for Bayesian 

Mixtures of Factor Analysers 
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Zoubin Ghahramani, Matthew J. Beal, NIPS 1999 



MANI Matlab demo 

MANIfold learning demonstration GUI 

Contains a couple of methods and examples. 

http://www.math.ucla.edu/~wittman/mani 

Todd Wittman: 

The following results are taken from Todd Wittman 
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How do we compare the methods? 

 Speed 

 Manifold Geometry 

 Non-convexity 

 Curvature 

 Corners 

 

 High-Dimensional Data: Can the method process 

image manifolds? 

 

 Sensitivity to Parameters 

 K Nearest Neighbors: Isomap, LLE, Hessian, 

Laplacian, KNN Diffusion 

 Sigma: Diffusion Map, KNN Diffusion 

 Noise 

 Non-uniform Sampling 

 Sparse Data 

 Clustering 
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Testing Examples 

 Swiss Roll 

 Swiss Hole 

 Punctured Sphere 

 Corner Planes 

 3D Clusters 

 

 

 

Twin Peaks 

Toroidal Helix 

Gaussian 

Occluded Disks 

We’ll compare the speed 

and sensitivity to 

parameters throughout. 
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Manifold Geometry 

First, let’s try to unroll the Swiss Roll. 

We should see a plane. 
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Hessian LLE is pretty slow, MDS is very slow, and ISOMAP is extremely slow. 

MDS and PCA don’t can’t unroll Swiss Roll, use no manifold information. 

LLE and Laplacian can’t handle this data. 

Diffusion Maps could not unroll Swiss Roll for any value of Sigma. 
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Non-Convexity 

Can we handle a data set with a hole? 

Swiss Hole: Can we still unroll the Swiss Roll when it 

has a hole in the middle?  
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Only Hessian LLE can handle non-convexity. 

ISOMAP, LLE, and Laplacian find the hole but the set is distorted. 57 



Manifold Geometry 
Twin Peaks: fold up the corners of a plane. 

LLE will have trouble because it introduces curvature to 

plane. 

58 



PCA, LLE, and Hessian LLE distort the mapping the most. 
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Curvature & Non-uniform Sampling 

Gaussian: We can randomly sample a Gaussian 

distribution. 

We increase the curvature by decreasing the standard 

deviation. 

Coloring on the z-axis, we should map to concentric 

circles. 
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For std = 1 (low curvature), MDS and PCA can project accurately. 

Laplacian Eigenmap cannot handle the change in sampling. 
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For std = 0.4 (higher curvature), PCA projects from the side rather than top-down. 

Laplacian looks even worse. 
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For std = 0.3 (high curvature), none of the methods can project correctly. 
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Corners 

Corner Planes: We bend a plane with a lift angle A. 

We want to bend it back down to a plane. 

 

 

 

 

 

 

 

If A > 90, we might see the data points written on top of 

each other. 

A 

64 



For angle A=75, we see some disortions in PCA and Laplacian. 
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For A = 135, MDS, PCA, and Hessian LLE overwrite the data points. 

Diffusion Maps work very well for Sigma < 1. 

LLE handles corners surprisingly well. 66 



Clustering 

A good mapping should preserve clusters in the original 

data set. 

3D Clusters: Generate M non-overlapping clusters with 

random centers.  Connect the clusters with a line. 
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For M = 3 clusters, MDS and PCA can project correctly. 

Diffusion Maps work well with large Sigma. 

LLE compresses each cluster into a single point. 

Hessian LLE has trouble with the sparse connecting lines. 
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For M=8 clusters, MDS and PCA can still recover. 

Diffusion Maps do quite well. 

LLE and ISOMAP are decent, but Hessian and Laplacian fail. 69 



Noise & Non-uniform Sampling 

Can the method handle changes from dense to sparse regions? 

Toroidal Helix should be unraveled into a circle parametrized by t.   

 

We can change the sampling rate along the helix by changing the 

exponent R on the parameter t and we can add some noise. 70 



With no noise added, ISOMAP, LLE, Laplacian, and Diffusion Map are correct. 

MDS and PCA project to an asterisk. 

What’s up with Hessian and KNN Diffusion? 
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Adde noise to the Helix sampling. 

LLE cannot recover the circle. 

ISOMAP emphasizes outliers more than the other methods. 
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When the sampling rate is changed along the torus, Laplacian starts  

to mess up and Hessian is completely thrown off. 

Hessian LLE code crashed frequently on this example. 

Diffusion maps handle it quite well for carefully chosen Sigma=0.3. 73 



Sparse Data & Non-uniform Sampling 

Of course, we want as much data as possible.  But can 

the method handle sparse regions in the data? 

Punctured Sphere: the sampling is very sparse at the 

bottom and dense at the top. 
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Only LLE and Laplacian get decent results. 

PCA projects the sphere from the side.  MDS turns it inside-out. 

Hessian and Diffusion Maps get correct shape, but give too much emphasis 

to the sparse region at the bottom of the sphere. 
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High-Dimensional Data 

All of the examples so far have been 3D. 

But can the data handle high-dimensional data sets, like images? 

 

Disks: Create 20x20 images with a disk of fixed radius and random 

center. 

 

We should recover the centers of the circles. 
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??? 

LLE 

Crashed 

LLE crashed on high-dimensional data set. 

Number of images was not high enough, but ISOMAP did a very good job. 
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Occluded Disks 

We can add a second disk of radius R in the center of 

every image. 
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??? 

LLE 

Crashed 

Hessian 

Crashed 

Both LLE and Hessian crashed, possibly # points is too small. 

Laplacian failed completely. 

Is ISOMAP the best for high-dimensional data? 
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Sensitivity to Parameters 

When the number of points is small or the data geometry is 

complex, it is important to set K appropriately, neither too big 

nor small. 

 

But if the data set is dense enough, we expect K around 8 or 10 

to suffice. 

 

For Diffusion Maps, the method is very sensitive to the Sigma 

in Gaussian kernel.  Varies from example to example. 
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X 

Diffusion Map Sigma depends on manifold. 

Helix 

Clusters 

Sigma = 0.2 Sigma = 10 
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So what have you learned, Dorothy? 

MDS PCA ISOMAP LLE Hessian Laplacian Diffusion 

Map 

KNN 

Diffusion 

Speed Very 

slow 

Extremely 

fast 

Extremely 

slow 

Fast Slow Fast Fast Fast 

Infers 

geometry? 

NO NO YES YES YES YES MAYBE MAYBE 

Handles non-

convex? 

NO NO NO MAYBE YES MAYBE MAYBE MAYBE 

Handles non-

uniform 

sampling? 

YES YES YES YES MAYBE NO YES YES 

Handles 

curvature? 

NO NO YES MAYBE YES YES YES YES 

Handles 

corners? 

NO NO YES YES NO YES YES YES 

Clusters? YES YES YES YES NO NO YES YES 

Handles 

noise? 

YES YES MAYBE NO YES YES YES YES 

Handles 

sparsity? 

YES YES YES YES NO 
may crash 

YES NO NO 

Sensitive to 

parameters? 

NO NO YES YES YES YES VERY VERY 
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Some Notes on using MANI 
Hard to set K and Sigma just right. 

 

MDS and ISOMAP are very slow.   

 

Hessian LLE is pretty slow.  Since Hessian needs a 

dense data set, this means it takes even longer when the 

# points is large. 

 

Occluded Disks is 400-dimensional data, which takes a 

long time and a lot of data points to correctly map. 

 

 

Matlab GUIs seem to run better on PC than Linux. 
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Credits 

M. Belkin, 

P. Niyogi, 

Todd Wittman 

 



Thanks for your attention  
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