Advanced Introduction to

Machine Learning, CMU-10715

Perceptron, Multilayer Perceptron

Barnabas Poczos, Sept 17

MACHINE LEARNING DEPARTMENT

L

Carnegie Mellon.

 History of Artificial Neural Networks
 Definitions: Perceptron, MLP

1 Representation questions

1 Perceptron algorithm

J Backpropagation algorithm

Short History

d Progression (1943-1960)

* First mathematical model of neurons
" Pitts & McCulloch (1943)

* Beginning of artificial neural networks
* Perceptron, Rosenblatt (1958)

= A single layer neuron for classification
= Perceptron learning rule

= Perceptron convergence theorem

d Degression (1960-1980)

* Perceptron can’t even learn the XOR function
* We don‘t know how to train MLP

* 1969 Backpropagation... but not much attention...

Short History

d Progression (1980-)
* 1986 Backpropagation reinvented:

® Rumelhart, Hinton, Williams:

Learning representations by back-propagating
errors. Nature, 323, 533—536, 1986

* Successful applications:
® Character recognition, autonomous cars,...

* Open questions: Overfitting? Network structure?
Neuron number? Layer number? Bad local minimum
points? When to stop training?

* Hopfield nets (1982), Boltzmann machines,...

Short History

O Degression (1993-)

* SVM: Vapnik and his co-workers developed the Support
Vector Machine (1993). It is a shallow architecture.

* SVM almost kills the ANN research.
* Training deeper networks consistently yields poor results.

* Exception: deep convolutional neural networks, Yann
LeCun 1998. (discriminative model)

Short History

Progression (2006-)

Deep Belief Networks (DBN)

« Hinton, G. E, Osindero, S., and Teh, Y. W. (2006).
A fast learning algorithm for deep belief nets.
Neural Computation, 18:1527-1554.

» Generative graphical model
« Based on restrictive Boltzmann machines

« Can be trained efficiently

Deep Autoencoder based networks

Bengio, Y., Lamblin, P., Popovici, P., Larochelle, H. (2007).
Greedy Layer-Wise Training of Deep Networks,
Advances in Neural Information Processing Systems 19

ﬂ' oo -~

/ SYNAPSES (to other neuronsz) I
|
DENDRITES (of other neurons) SYNAPSES (from other neurons)

— Each neuron has a body, axon, and many dendrites
— A neuron can fire or rest

— If the sum of weighted inputs larger than a threshold, then
the neuron fires.

— Synapses: The gap between the axon and other neuron’s
dendrites. It determines the weights in the sum.

The Mathematical Model of a Neuron

T2 flune, + ... + wez,)

y= f(wyiz1 + ...+ wnxn)

Typical activation functions

e Identity function finet net = » w;z;
I (N’
e Threshold function] (ON)
oo N @
(perceptron) o b
A ’
! Y - net
;."(*.mst]]'l
e Ramp function IS S , (ON)
182 5 I P Eb

! 1"' - Tl

Typical activation functions

e Logistic function

y(r) = (1+e %)~ !

e Hiperbolic tangent function
el _ o~ 8258 1 1 8—235'

y(.’E) — tanh(:c) — R — o T — T —F

10

Structure of Neural Networks

11

Fully Connected Neural Network

Cutput node
0.2 : 0.2

Hidden node

(Output
node

0.4 0.3

Input neurons, Hidden neurons, Output neurons

12

LAY ER O LAY ER 1 LAYER 2 LAY ER 3
(Imput Laver) b L (Output Layer)

I.-'
'H.__. ..-‘"‘
HL"\.. -

Hidden Lavers

Convention: The input layer is Layer 0.

13

Feedforward neural networks

e Connections only between Layer i and Layer i+1
e = Multilayer perceptron
e The most popular architecture.

LAYER O LAYER 1 LAY ER 2 LAY ER 3
(Input Laver) o AT [OQutput Laver)

-y
-h.\.'-l F-‘
S

Hidden Lawers

Recurrent NN: there are connections backwards too. 14

What functions can

multi-layer perceptrons represent?

15

Perceptrons cannot represent the

XOR function

f(0,0)=1, f(1,1)=1, f(0,1)=0, f(1,0)=0

f(x1,20) = sgn(wix1 + woxo + wo). wo, w1, wo =7,

What functions can multilayer perceptrons represent?

16

Hilbert’s 13t Problem

“Solve 7-th degree equation using continuous functions of two parameters.”

Related conjecture:
Let £ be a function of 3 arguments such that

f(a,b,¢) =z, where 2" +az3+bz?2 +cx+1=0.

Prove that f cannot be rewritten as a composition of finitely many
functions of two arguments.

Another rewritten form:

Prove that there is a nonlinear continuous system of three variables that
cannot be decomposed with finitely many functions of two variables.

17

Function decompositions

f(x,Y,2)=®(W;(X), Wy(y))+D,(C;Ws(Y)+CW4(2),X)

18

Function decompositions

1957, Arnold disproves Hilbert’s conjecture.

Let f:[0,1]"Y — R be an arbitrary continuous function.

Then there exisist N(2N + 1) functions g, s.t.

Ypq - [0,1] > R, p=1,2...N, ¢=0,1,..2N,
* they are monotone increasing
x don't depend on f (only on N)

and there exisist 2N + 1 functions cb{;:
¢! R — R, ¢=0,1,2..2N, they can depend on f, s.t.

2N N
f(z1,...,zN) = Z ¢£ (lbpq(l’p))
1

q=0 p—
19

Function decompositions

Corollary:

Any f:[0,1]Y — R function can be represented exactly with an
MLP of two hidden layers.

2N N
flz1,...,zN) = Z ¢§ (lbpq(fp))
1

q=0 p=

Issues: This statement IS not constructive.
For a given N we don’t know ¢pq
and for a given N and f, we don’t know qbg

20

Universal Approximators

Kur Hornik, Maxwell Stinchcombe and Halber White: “"Multilayer
feedforward networks are universal approximators”, Neural Networks,
Vol:2(3), 359-366, 1989

Definition: 2V(g) neural network with 1 hidden layer:

>N (q) :{f RN —>9%| f (X;yens Xyy) :icig(aiTXeri)}

Theorem:

If 0>0, g arbitrary sigmoid function, fis continuous on a
compact set A, then

3f 2" (g),such that H f(x)— f(x)H <5 Vx e Aesetén

21

Universal Approximators

Theorem: (Blum & Li, 1991)

SgnNet?(x,w) with two hidden layers and sgn activation
function is uniformly dense in L2.

Definition: .) .
sgn Net@(x, W)=Y w,* sgns > w, @ sgnd > w, Vx, |

i L] \ I J
Formal statement:

If f(x)eL?, i.e.\/
(1)\2
jj{ f(x)-Y w¥sgn. Zwij(z)sgn{Zle(l)xl} >J dx,...dx <e¢
i L) |)

22

f2(X)dx < o0, and & >0, then IW, such that

X ey

Integral approximation in 1-dim:

_—

Integral approximation in 2-dim:

X, =X XX, =2 [.. j|(Za,lx)‘d(x) <e

23

The indicator function of X. polygon can be learned by this neural network:

(

sgn< > a;sgnq > bix,

\

3

3\

p

J

1if x is in X,

-1 otherwise

The weighted linear combination of these indicator functions will be a

good approximation of the original function 7

24

LEARNING
The Perceptron Algorithm

25

N
he Perceptro
T

wo
Xpg =

TX)
— sgn(w
y p—

26

The training set

Let the training set be
X1 = {x4|x;, € Class I}

X? = {xi|x; € Class II}

Assume that the classes are linearly separable.

Let w* be the normal vector of the separating hyperplane.

wlx>0ifxe X!

wlx <0 if x e X2

27

The perceptron algorithm

w(k) =w(k — 1) + p(y(k) — y(k))x(k) (1)

w(k) = w(k — 1) 4 pe(k)x(k) (2)

e This is an LMS algoritm. We change w(k — 1) with x=x(k)

e 11 > 0 learning rate. It doesn’'t need to go to zero!

o If y(k),y(k) € {-1,1} = e(k) €{0,2, -2}

o If y(k),y(k) €{0,1} = (k) € {0,1,-1}

28

N

The perceptron algorithm

If k=1, let w(0) be arbitrary.

Let x(k) € X1 |JX? be atraining point misclassified by w(k — 1)

If there is no such vector = 5.

If 4 a misclassified vector = ¢

END

a(k) = p(y(k) — y(k))

w(k) =w(k —1) + a(k)x(k)
k=k+1

Back to 2-re

29

Perceptron convergence theorem

Theorem:

If the training samples were linearly separable, then the algorithm finds a
separating hyperplane in finite steps.

The upper bound on the number of steps is “independent” from the
number of training samples, but depends on the dimension.

Proof: [homework]

30

Multilayer Perceptron

(M
— 2
xo 1 _ x() —_—

sgm

sgm

The gradient of the error

The current error:

e =ces+e5= (g1 —y1)° + (G2 — y2)? (1)

More generally:

Np N
2= 2= (Gp—w) (2)
p=1 p=1

We want to calculate

Oe (k)2 _ -
OWL(k)

32

Wz-lj(k): At time step k, the stength of connection from neu-
ron 5 on layer [— 1 to neuron ¢ on layer /[.
(’iz 1"'Nlr j= 1"'Nl—1)

sé(k): The summed input of neuron 7 on layer [before func-
tion f attimestep k (i=1...N)).

x!(k) € RNi-1: The input of layer | at time step k
y'(k) € RYi: The output of layer [at time step k

N1,No,...,N;,...N;: Number of nuronsinlayers1,2,...,1,...,L

Some observations

N1 l Nj_q l 1)
=Wy = I =3 Wl G 2
S = Wy s Z WZJ j Z i]
1 7 = = -
9
al [+1 [
I+1
3j+ - Z Wji f(sz) (3)

34

The backpropagated error

Introduce the notation

88%(1€) =1 68%(1&) (1)

where 1 = 1..N;

As a special case, we have that

L —9(yp(k) — F(sE(K)))?
Loy — p p
o (k) == 2, dsL (k)

p=1

= 2¢;(k) f'(s7 (k)| (2)

The backpropagated error

Lemma

I+1 I+1 :
dg(k) can be calculated from {51+ (k),...,dj\};l(k)} using Back-
ward recursion.

NL §e2 Np Nit1 g2 pghtl
[_ P __ p J
0i(k) = — Zl osl Zl Zl _&SH_l Py (1)
b= ¢ p=17J= J —_—t
Wi (sh)
Niy1 Ny 52
— p [+1 [
- Z Z 6 l-I—l sz f,(z) (2)
j:]_ p=]

The backpropagated error

Therefore,

Ni4q

SL(k) = (5f,-+1<k)wjj1(k>)f’<sé(k))
=1

J

where 5§(k) is the backpropagated error.

Now using that

Ni—1
k) = 30 Wik (k) (1)
=

37

The backpropagation algorithm

e (k)? _86(k)2 asg(k)

— = UK (K 1
OWL (k) — dsl(k) oWl (k) (k) (k) (1)
S— N -~ .
—0i(k) ol (k)
The Backpropagation algorithm:
Wik + 1) = Wi;(k) + uéi(k)h (k) (2)

In vector form:

W, (k+ 1) = WE(k) + u5(k)x (k) (3)

38

