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 Progression (1943-1960) 

• First mathematical model of neurons  

 Pitts & McCulloch (1943) 

• Beginning of artificial neural networks 

• Perceptron, Rosenblatt (1958) 

 A single layer neuron for classification 

 Perceptron learning rule 

 Perceptron convergence theorem 

 

  Degression (1960-1980) 

• Perceptron can’t even learn the XOR function 

• We don’t know how to train MLP 

• 1969 Backpropagation… but not much attention… 

Short  History  
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 Progression (1980-) 

• 1986 Backpropagation reinvented: 

 Rumelhart, Hinton, Williams:  
Learning representations by back-propagating 
errors. Nature, 323, 533—536, 1986 

• Successful applications:  

 Character recognition, autonomous cars,… 

 

• Open questions: Overfitting? Network structure? 
Neuron number? Layer number? Bad local minimum 
points? When to stop training? 

 

• Hopfield nets (1982), Boltzmann machines,… 

Short  History  
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 Degression (1993-) 

 

• SVM: Vapnik and his co-workers developed the Support 
Vector Machine (1993). It is a shallow architecture.  

• SVM almost kills the ANN research. 

 

• Training deeper networks consistently yields poor results. 

 

• Exception: deep convolutional neural networks, Yann 
LeCun 1998. (discriminative model) 

 

 

Short  History  
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Short  History  

  

Deep Belief Networks (DBN) 

• Hinton, G. E, Osindero, S., and Teh, Y. W. (2006).  
A fast learning algorithm for deep belief nets.  
Neural Computation, 18:1527-1554. 

• Generative graphical model 

• Based on restrictive Boltzmann machines 

• Can be trained efficiently 

 

Deep Autoencoder based networks 

Bengio, Y., Lamblin, P., Popovici, P., Larochelle, H. (2007).  
Greedy Layer-Wise Training of Deep Networks,  
Advances in Neural Information Processing Systems 19 

Progression (2006-) 
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– Each neuron has a body, axon, and many dendrites 

– A neuron can fire or rest 

– If the sum of weighted inputs larger than a threshold, then 

the neuron fires. 

– Synapses: The gap between the axon and other neuron’s 

dendrites. It determines the weights in the sum. 

The Neuron 
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The Mathematical Model of a Neuron 
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• Identity function 

 

• Threshold function 

(perceptron) 

 

 

 

• Ramp function 

Typical activation functions 
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• Logistic function 

 

 

• Hiperbolic tangent function 

Typical activation functions 
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Structure of Neural Networks 
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Input neurons, Hidden neurons, Output neurons 

Fully Connected Neural Network 
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Layers 

Convention: The input layer is Layer 0. 
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• Connections only between Layer i and Layer i+1 

• = Multilayer perceptron 

• The most popular architecture. 

Feedforward neural networks 

Recurrent NN: there are connections backwards too. 
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What functions can  
multi-layer perceptrons represent? 
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Perceptrons cannot represent the 
XOR function 

f(0,0)=1, f(1,1)=1, f(0,1)=0, f(1,0)=0 

What functions can multilayer perceptrons represent? 
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“Solve 7-th degree equation using continuous functions of two parameters.” 

Related conjecture: 

Let f  be a function of 3 arguments such that 

 

Prove that f cannot be rewritten as a composition of finitely many 
functions of two arguments. 

 

Another rewritten form:  

Prove that there is a nonlinear continuous system of three variables that 
cannot be decomposed with finitely many functions of two variables.  

Hilbert’s 13th Problem 
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f(x,y,z)=Φ1(ψ1(x), ψ2(y))+Φ2(c1ψ3(y)+c2ψ4(z),x) 

x 

z 

y 

Σ 

Φ1 

Φ2 

ψ1 

ψ2 
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ψ4 

Σ 

f(x,y,z) 

c1 

c2 

Function decompositions 
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1957, Arnold disproves Hilbert’s conjecture. 

Function decompositions 
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Issues: This statement is not constructive.  

   For a given N we don’t know 

   and for a given N and f, we don’t know 

  

Function decompositions 

Corollary:  
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Kur Hornik, Maxwell Stinchcombe and Halber White: “Multilayer 
feedforward networks are universal approximators”, Neural Networks, 
Vol:2(3), 359-366, 1989  

Universal Approximators 

Definition: ΣN(g) neural network with 1 hidden layer: 
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Theorem: (Blum & Li, 1991) 

SgnNet2(x,w) with two hidden layers and sgn activation 
function is uniformly dense in L2. 
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Integral approximation in 1-dim: 
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xi

xi xi

The indicator function of Xi polygon can be learned by this neural network: 
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LEARNING 
The Perceptron Algorithm 
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-1 

The Perceptron 
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The training set 
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The perceptron algorithm 
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The perceptron algorithm 



30 

Perceptron convergence theorem 

Theorem: 

 

If the training samples were linearly separable, then the algorithm finds a 
separating hyperplane in finite steps.  

 

The upper bound on the number of steps is “independent” from the 
number of training samples, but depends on the dimension.   

 
Proof: [homework] 
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Multilayer Perceptron 
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The gradient of the error 
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Notation 
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Some observations 
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The backpropagated error 
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The backpropagated error 

Lemma 
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The backpropagated error 

Therefore,  
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The backpropagation algorithm 


