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What have we seen so far?

Several classification & regression algorithms seem to work
fine on training datasets:

* Linear regression

* Logistic regression

» Gaussian Processes

* Naive Bayes classifier

» Support Vector Machines

= Learning Theory




» Risk and loss
—Loss functions
—Risk
—Empirical risk vs True risk
—Empirical Risk minimization

» Underfitting and Overfitting

 Classification
* Regression




Supervised Learning Setup

Features: X € X ¢ R¢
Labels: Y)Y CR




We want the loss L(X;, Y, f( X)) to be small for many (X;, Yz)
pairs in the test data.




Loss Examples

Regression: Predict house prices.

Price °
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The price of house with feature z is p(:|x)

L, loss for regression: L(z,y, f(z)) = (y — f(z))?
L, loss for regression: L(x,y, f(x)) = |y — f(x)




Squared loss, L, loss
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Huber’'s robust loss

(y — f(x)?  if |y — flz)] <1
ly — fx)| — % otherwise
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L(xz,y, f(x)): Loss function

P(x,y): Distribution of the data.

Why do we care about this?
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Why do we care about risk?

Our true goal Is to minimize the loss of the test points!
LY LKLY F(X)

m—=mn 1—=n—+1

f* = argmin

Usually we don’t know the test points and their labels in advance..., but

T Y B Vi FX)) TS Ryp(f) (LLN)

m—=mn 1=n—+1

That is why our goal is to minimize the risk.
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Risk Examples

Classification loss: L(z,y, f(z)) = {1 y 7 f(@)

0 y=f(z)
Risk of classification loss:

Ry p(f) = /XXyL(w:y: f(@))dP(z,y) = E[lrxy2y1] = Pr(f(X) #Y)

L, loss for regression:  L(z,y, f(z)) = (y — f(2))?

Risk of L, loss: Ri.p(f) = E[(Y = f(X))?]




Bayes Risk

Rop(f) = [ Ly f@)dP(zy) The expected loss

X XY

We don’t know P, but we have I.i.d. training data sampled from P!

The learning algorithm constructs this function f; from the training data.




Consistency of learning methods

Risk Is a random variable: Rr p(fp) =E[L(X,Y, fp(X)|D]

Yayyy!!ll ©

Wait! This doesn't tell us anything about the rates...




No Free Lunch!

Rr p(fp) LN RE,P as n — oo with slower rate than ap

®

What can we do now?
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What do we mean on rate?

Rr p(fp) LN RE,P as n — oo with slower rate than ap

Example: (cLT) Xn —u = 0p(-5p). but Xn # Op(-57) (unless = 0)
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Empirical Risk and True Risk




Empirical Risk

For simplicity, let L(z,vy, f(x)) = L(y, f(x))

We dont know P, and hence we don't know R(f) either.

Let us use the empirical counter part:

Empirical risk: Rn(f) = 1 En: L(Y:, f(X;))

T i=1
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Empirical Risk Minimization

Law of Large Numbers:
For each fixed f, Ro(f) =+ > L(Y;, f(X:)) == R(f)
=
Empirical risk is convezrging to the Bayes risk

We need inf¢ y g R(f), so let us claI%uIate inff:X%RRn(f)!
inf _Rn(f) = inf =" L(Y; f(X3))

f:X—R f:X—R n. 3

This is a terrible idea to optimize over all possible f : X — R
functions! [Extreme overfitting]




Overfitting In Classification with ERM
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Overfitting In Classification with ERM
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Overfitting In Regression with

ERM

Is the following predictor a good one? o )J&

/(@)

f(z) = Y r=X;fori=1,....n %
any value, otherwise w WAVZ
[
|

[ v E
What Is its empirical risk? (performance on training data)
zero !

What about true risk?
> 7Zero

WIll predict very poorly on new random test point:
Large generalization error !
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Overfitting In Regression

If we allow very complicated predictors, we could overfit

the training data.

Examples: Regression (Polynomial of order k-1 — degree k)

k=1
constant

k=3
guadratic
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Solutions to Overfitting

Empirical risk minimization over the function set F.

= argmin 13 LY, F(X)

ferF (]




Solutions to Overfitting
Structural Risk Minimization

feF n

Notation: & = inf E[L(Y,/(X)]  Fir=jof Ly > L0V S(XD)
Risk Emplrlcal risk

1st issue: Rr — R* > 0 needs to be small.
(Model error, Approximation error)

Risk in F - Bayes risk

Solution: Structural Risk Minimzation (SRM)

Let F, increase with the smaple size n (F,4+1 D Fn), and let
Fn41 Contain more complex functions than 7y,
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Approximation error, Estimation
error, PAC framework

Probably Approximately Correct (PAC) learning framework

Learning algorithm produces f; = f~ » classifier. For each ¢,6 >
0 we want to find n large enough such that Pr(R(f;) — inf R(f) >¢e) <

\ JeF )

Estimation error




Big Picture

Ultimate goal: R(f*) —R*=0
ERM: fF = f;';,}- = argminscr Rn(f) = arg MiN¢cr %Z%Ll L(Y;, f(X3))




Solution to Overtfitting

~ 1

nd 3 . R o= inf =S L(Y;, f(X;
2nd jssue: . }angl (Y;, f(X5))

in f Rn(f) might be a very difficult optimization problem in f

Jer It might be not even convex in f
Solution: R
Choose loss function L such that R,(f) will be convex in f
1 )
L(y, f(x)) = | y 7 1) = not convex Ru(f)
0 y=f(=z)

Hinge loss = convex Ry (f)
Quadratic loss = convex R,(f)
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Approximation with the

0SS

Hlne loss and quadratic loss

quadrahc oSS

quad(y f(x)) \

lin(y, f(x))

1:yf(x) <O
lo_ T)) = |
0 l(yaf( )) { 0 - yf(a:) > 0 hmge oSS
- .“. - ny(x)éo
—2|.0 —1|.5 —‘II.O —0|.5 O{O 0{5 ‘I{O
—yf(x) Picture is taken from R. Herbrich




Effect of Model Complexity

If we allow very complicated predictors, we could overfit the

training data.

-

Prediction
Error

fixed # training data

true risk

empirical risk ~ Prediction error on training data

-

- - _
underfitting Rect overfitting Complexity

Model @

Empirical risk is no longer a
good indicator of true risk
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Underfitting

Let F be the class of thresholded polynomials of degree at most one.

F={f: f(x) =sign(axz +b),a,b € R}

15 ' ' ' X ~ U[-1,1]

e e Pr(Y = +1]|X € (-0.5,0.5)) = 0.9
Pr(Y = —1|X € (-0.5,0.5)) = 0.1

Pr(Y = +1|X ¢ (-0.5,0.5)) = 0.1

J).5¢

o | Pr(Y = -1|X ¢ (~0.5,0.5)) = 0.9
0.5 ‘ . _ 1 if x ¢ (—0.5,0.5)
S R A |-1 ifze(-05,05)
15 05 0 0.5 1 R]: — j!"ngf R(f) = j!" E[L(Y, f(X))]

Bayes risk = 0.1
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Underfitting

F={f: f(x) =sign(axz +b),a,b € R}

Best linear classifier:

1.5

Ry = R(f3) = nf Prly # f(X)]
1

1 1 1
= — X 0.9 —x 0.1 — x 0.9 —x0.1=0.5
4 +4 +4 +4

| pemmannssmeann

).5¢

The empirical risk of the best linear classifier:
D_

Rn(f%) ~ 0.5
0.5
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Underfitting

F = {f ) f(il?) — Sign(amz + bz + C)aaa b,C < R}

Best quadratic classifier:

1.5

1

NV

0.5

fx = sign((z — 0.5)(z + 0.5))

R = R(fF) = inf Pr[Y # (X))
=%><O.1—|—%><O.l—l—ixo.l—l—%xo.l:O.l

Same as the Bayes risk = good fit!
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Classification

using the classification loss



The Bayes Classifier

1 y# f(x)
0 y= f(x)

L(y, f(x)) = {




Lemma |: Trivial from definition
Lemma lI: Surprisingly long calculation
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The Bayes Classifier

This is what the learning algorithm produces

We will need these definitions, please copy it!

R(f) = Risk R* = Bayes risk

En(f) — Empricial risk f* — Bayes classifier

fn = [, r = the classifier that the learning algorithm produces
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The Bayes Classifier

This is what the learning algorithm produces
Theorem |I: Bound on the Estimation error

supfeflﬁn(f)—R(fN can be used to get an upper bound for this
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The Bayes Classifier

This is what the learning algorithm produces
Theorem Il

supfeflﬁn(f)—R(fN can be used to get an upper bound for this
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Proofs

Theorem I. Not so long calculations.
Theorem Il: Trivial

Main message:

It's enough to derive upper bounds for

sup rer [Rn(f) — R(f)
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lllustration of the RiIsks

supfe}—@n(f) — R(f)| can be used to get an upper bound for
these. t L

Rn(f)
R(f)

R(f;:,]-")\

R(f7) -

Ru(fi 7)==
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It's enough to derive upper bounds for

sup rer [Rn(f) — R(f)

It IS a random variable that we need to bound!

We will bound 1t with tail bounds!
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Hoeffding's inequality (1963)

Special case

T
Z; is Bernoulli(p) = > Z; is Binomial(n,p)
i=1

n L 2
= Pr(| Y l(Zz-—E[ZZ-])| >e) < 2exp | — 2ne = 2exp (—2ne?)
i=1" 13 (1-0)2
1=1




Binomial distributions

Our goal is to bound sup ez |Rn(f) — R(f)|

Let Z;, = 1{Yﬁ5f(X@)} ~ Bernoulli(p)

= |Bn(f) = RNl =I5 & Lvzepoxy — Pl = Iy & Zi — E[Z])

Therefore, from Hoeffding we have:

Pr(|Rn(f) — R(f)| > ¢) < 2exp (—2ne?) | Yuppie!!!
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Inversion

From Hoeffding we have:

Pr(|Rn(f) — R(f)| > ¢) < 2exp (—2n€2)

Therefore,

Usually § = 0.05 (5%), and 1 — 6§ = 0.95 (95%)



Union Bound

Our goal is to bound: SuPfcr |[Rn(f) — R(f)
We already know: Pr(|Ra(f) — R(f)| > ) < 2exp (—2ne?)

Theorem: [tall bound on the ‘deviation’ in the worst case]
Let F={f: X —{0,1}}, and||F| <N

= Pr (sujpr\ﬁn(f) — R(f)| > 6) < 2N exp (—2n€2)

-
/ —_
Worst case error
This is not the worst classifier in terms of classification accuracy!
Worst case means that the empirical risk of classifier f is the furthest from its true risk!

Proof: Pr(AuB) <Pr(A)+ Pr(B)
Pr (ﬁgg\ﬁn(f) — R(f)| > e) = Pr ( U {1Ra(f) = R(H)| > s})

feF

Pr ( U {IBa(f) = R(P) >s}) < Y Pr(|Ra(f) — R(H)| > ¢)

feF fer
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Inversion of Union Bound

We already know: Let F={f:X — {0,1}}, and |F|< N

= Pr (sup Rn(f) — R(P)| > a) < 2N exp (—Qnsz)
feF

log(2N/6)

et 2N exp (—2ne2) <6 = —2ne? < log(§/(2N)) = 2 = =5,
Therefore,
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Inversion of Union Bound

*The larger the N, the looser the bound
*This results is distribution free: True for all P(X,Y) distributions
* It is useless if N is big, or infinite... (e.g. all possible hyperplanes)

We will see later how to fix that. (Hint: McDiarmid, VC dimension...)
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The Expected Error

Our goal is to bound: Sup rex |Bn(f) — R(f)

We already knOW Pr (?lejg |Rn(f) — R(f)| > 8) < 2N exp (—2?’),52)

(Tail bound, Concentration inequality)

Theorem: [Expected ‘deviation’ in the worst case]
Let F={f: X —>{0,1}}, and |F| <N

= E [smo |Rn(f) — R(f)\] < \/Iog(QN)

feF 2n

T—_Worst case deviation

This Is not the worst classifier in terms of classification accuracy!
Worst case means that the empirical risk of classifier f is the furthest from its true risk!

o0
Proof: we already know a tail bound. If Y >0, then E[Y] = [ Pr(Y > z)dz
0

(From that actually we get a bit weaker inequality... oh well)
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Thanks for your attention ©




