Advanced Introduction to Machine Learning CMU-10715

Support Vector Machines

Barnabás Póczos, 2014 Fall

Linear classifiers which line is better?

Pick the one with the largest margin!

Scaling

Classification rule:

Classify as.. +1 if
$$w \cdot x + b \ge 1$$

-1 if $w \cdot x + b \le -1$
Universe if $-1 < w \cdot x + b < 1$
explodes

How large is the margin of this classifier?

Goal: Find the maximum margin classifier

Computing the margin width

Let x⁺ and x be such that

•
$$\mathbf{W} \cdot \mathbf{X}^+ + b = +1$$

•
$$\mathbf{W} \cdot \mathbf{X} + b = -1$$

•
$$X^+ = X^- + \lambda W$$

•
$$|x^+ - x^-| = M = ? (Margin)$$

$$A = \overline{w} \overline{w}$$

$$M = |x^{+} \cdot x^{-}| = |x \cdot w| = |x \cdot w|$$

$$= \frac{2}{\sqrt{w} \cdot w}$$

Maximize $M \equiv minimize w \cdot w!$

The Primal Hard SVM

- Given $D = \{(\mathbf{x}_i, y_i), i = 1, \dots, n\}$ training data set.
- Assume that *D* is **linearly separable**.

$$\widehat{\mathbf{w}} = \arg\min_{\mathbf{w} \in \mathbb{R}^m} \frac{1}{2} \|\mathbf{w}\|^2$$
 subject to $y_i \langle \mathbf{x}_i, \mathbf{w} \rangle \geq 1$, $\forall i = 1, \dots, n$

Prediction: $f_{\widehat{\mathbf{w}}}(\mathbf{x}) = \text{sign}(\langle \widehat{\mathbf{w}}, \mathbf{x} \rangle)$

This is a QP problem (m-dimensional) (Quadratic cost function, linear constraints)

Quadratic Programming

Find
$$ARG$$
 MIN $WTHW + WTQT + e$

Subject to

$$AW = U$$

$$A \in \mathbb{R}^{n \times m} \quad W \in \mathbb{R}^{n}$$
and to
$$CW = d$$

$$C \in \mathbb{R}^{5 \times m} \quad d \in \mathbb{R}^{5}$$

Efficient Algorithms exist for QP.

They often solve the dual problem instead of the primal.

Constrained Optimization

$$\min_x x^2$$
 s.t. $x \ge b$

Lagrange Multiplier

$$\min_x x^2$$
 s.t. $x > b$

Moving the constraint to objective function Lagrangian:

$$L(x, \alpha) = x^2 - \alpha(x - b)$$

s.t. $\alpha \ge 0$

Solve:

$$\min_x \max_{\alpha} L(x, \alpha)$$

s.t. $\alpha \ge 0$

Constraint is active when $\alpha > 0$

Lagrange Multiplier – Dual Variables

 $L(x,\alpha)$

Solving:

$$\min_x \max_{\alpha} x^2 - \alpha(x - b)$$
 s.t. $\alpha \ge 0$

$$\frac{\partial L}{\partial x} = 0 \Rightarrow x^* = \frac{\alpha}{2} \qquad 2 \times - \alpha = 0 \Rightarrow x^* = \frac{\alpha}{2}$$

$$L(x^*, \alpha) = \frac{\alpha^2}{2} - \lambda (\frac{\alpha}{2} - b)$$

$$\frac{\partial L}{\partial \alpha} = 0 \Rightarrow \alpha^* = \max(2b, 0)$$

$$\frac{\partial L}{\partial \alpha} = -\frac{\alpha^2}{2} + b - \lambda$$

$$\frac{\partial L}{\partial \alpha} = -\frac{\alpha^2}{2} + b - \lambda$$

$$\frac{\partial L}{\partial \alpha} = -\frac{\alpha^2}{2} + b - \lambda$$

From Primal to Dual

Primal problem:

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w} \in \mathbb{R}^m} \frac{1}{2} \|\mathbf{w}\|^2$$
 subject to $y_i \langle \mathbf{x}_i, \mathbf{w} \rangle \geq 1$, $\forall i = 1, \dots, n$

Lagrange function:

$$\alpha = (\alpha_1, \dots, \alpha_n)^T \ge 0$$
 Largrange multipliers

$$L(\mathbf{w}, \boldsymbol{\alpha}) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^n \alpha_i (y_i \langle \mathbf{x}_i, \mathbf{w} \rangle - 1)$$

The Lagrange Problem

$$L(\mathbf{w}, \boldsymbol{\alpha}) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^n \alpha_i (y_i \langle \mathbf{x}_i, \mathbf{w} \rangle - 1)$$

The Lagrange problem:

$$(\widehat{\mathbf{w}}, \widehat{\boldsymbol{\alpha}}) = \arg\min_{\mathbf{w} \in \mathbb{R}^m} \max_{\mathbf{0} \le \boldsymbol{\alpha} \in \mathbb{R}^n} L(\mathbf{w}, \boldsymbol{\alpha})$$

$$0 = \frac{\partial L(\mathbf{w}, \alpha)}{\partial \mathbf{w}} \Big|_{\mathbf{w} = \hat{\mathbf{w}}} = \hat{\mathbf{w}} - \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

$$\Rightarrow \hat{\mathbf{w}} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

The Dual Problem

$$L(\mathbf{w}, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i (y_i \langle \mathbf{x}_i, \mathbf{w} \rangle - 1)$$
$$\Rightarrow \hat{\mathbf{w}} = \sum_{i=1}^n \alpha_i y_i \mathbf{x}_i$$

$$\Rightarrow L(\hat{\mathbf{w}}, \alpha) = \frac{1}{2} ||\hat{\mathbf{w}}||^2 - \sum_{i=1}^n \alpha_i \left(y_i \langle \mathbf{x}_i, \hat{\mathbf{w}} \rangle - 1 \right)$$

$$= \frac{1}{2} ||\sum_{i=1}^n \alpha_i y_i \mathbf{x}_i||^2 + \alpha^T \mathbf{1}_n - \sum_{i=1}^n \alpha_i y_i \langle \mathbf{x}_i, \sum_{j=1}^n \alpha_j y_j \mathbf{x}_j \rangle$$

$$= \alpha^T \mathbf{1}_n - \frac{1}{2} \alpha^T \mathbf{Y} \mathbf{G} \mathbf{Y} \alpha$$

$$= \alpha^T \mathbf{1}_n - \frac{1}{2} \alpha^T \mathbf{Y} \mathbf{G} \mathbf{Y} \alpha$$

$$Y \doteq diag(y_1, ..., y_n), \ y_i \in \{-1, 1\}^n$$

 $G \in \mathbb{R}^{n \times n} \doteq \{G_{ij}\}_{i,j}^{n,n}$, where $G_{ij} \doteq \langle \mathbf{x}_i, \mathbf{x}_j \rangle$ Gram matrix.

The Dual Hard SVM

$$Y \doteq diag(y_1, ..., y_n), \ y_i \in \{-1, 1\}^n$$

 $G \in \mathbb{R}^{n \times n} \doteq \{G_{ij}\}_{i,j}^{n,n}$, where $G_{ij} \doteq \langle \mathbf{x}_i, \mathbf{x}_j \rangle$ Gram matrix.

$$\hat{lpha}=rg\max_{oldsymbol{lpha}\in\mathbb{R}^n}oldsymbol{lpha}^T\mathbf{1}_n-rac{1}{2}oldsymbol{lpha}^Toldsymbol{Y}oldsymbol{lpha}$$
 subject to $lpha_i\geq 0$, $orall i=1,\ldots,n$

Quadratic Programming (n-dimensional)

Lemma
$$\hat{\mathbf{w}} = \sum_{i=1}^{n} \hat{\alpha}_i y_i \mathbf{x}_i$$

Prediction:
$$f_{\widehat{\mathbf{w}}}(x) = \text{sign}(\langle \widehat{\mathbf{w}}, \mathbf{x} \rangle) = \text{sign}(\sum_{i=1}^{n} \widehat{\alpha}_{i} y_{i} \underbrace{\langle \mathbf{x}_{i}, \mathbf{x} \rangle}_{k(\mathbf{x}_{i}, \mathbf{x})})$$

The Problem with Hard SVM

It assumes samples are linearly separable...

What can we do if data is not linearly separable???

Hard 1-dimensional Dataset

If the data set is **not** linearly separable, then adding new features (mapping the data to a larger feature space) the data might become linearly separable

Hard 1-dimensional Dataset

Now drop this "augmented" data into our linear SVM.

Feature mapping

- *n* general! points in an *n-1* dimensional space is always linearly separable by a hyperspace!
 - ⇒ it is good to map the data to high dimensional spaces
- Having n training data, is it always enough to map the data into a feature space with dimension n-1?
 - Nope... We have to think about the test data as well! Even if we don't know how many test data we have and what they are...
 - We might want to map our data to a huge (∞) dimensional feature space
 - Overfitting? Generalization error?...

 We don't care now...

How to do feature mapping?

Let us have n training objects: $\vec{x}_i = [\vec{x}_{i,1}, \vec{x}_{i,2}] \in \mathbb{R}^2$, $i = 1, \ldots, n$

The possible test objects are denoted by $\vec{x} = [\vec{x}_1, \vec{x}_2] \in \mathbb{R}^2$

The Problem with Hard SVM

It assumes samples are linearly separable...

Solutions:

- 1. Use feature transformation to a larger space
 - ⇒ each training samples are linearly separable in the feature space
 - ⇒ Hard SVM can be applied ☺
 - ⇒ overfitting... ⊗
- Soft margin SVM instead of Hard SVM
 - Slack variables... We will discuss them now

Hard SVM

The Hard SVM problem can be rewritten:

$$\hat{\mathbf{w}}_{hard} = \arg\min_{\mathbf{w} \in \mathbb{R}^m} \frac{1}{2} \|\mathbf{w}\|^2$$

subject to
$$y_i\langle \mathbf{x}_i, \mathbf{w} \rangle \geq 1$$
, $\forall i = 1, \ldots, n$

$$\widehat{\mathbf{w}}_{hard} = \arg\min_{\mathbf{w} \in \mathbb{R}^m} \sum_{i=1}^n l_{0-\infty}(\langle \mathbf{x}_i, \mathbf{w} \rangle, y_i) + \frac{1}{2} ||\mathbf{w}||^2$$

where

$$l_{0-\infty}(a,b) \doteq \left\{ \begin{array}{l} \infty : ab < 1 & \text{Misclassification, or inside the margin} \\ \text{O} : ab \geq 1 \text{ Correct classification and outside of the margin} \end{array} \right._{\scriptscriptstyle{21}}$$

From Hard to Soft constraints

Instead of using hard constraints (points are linearly separable)

$$\widehat{\mathbf{w}}_{hard} = \arg\min_{\mathbf{w} \in \mathbb{R}^m} \sum_{i=1}^n l_{0-\infty}(\langle \mathbf{x}_i, \mathbf{w} \rangle, y_i) + \frac{1}{2} \|\mathbf{w}\|^2$$

We can try solve the soft version of it:. Introduce a λ parameter! (Your loss is only 1 instead of ∞ if you misclassify an instance)

$$\widehat{\mathbf{w}}_{soft} = \arg\min_{\mathbf{w} \in \mathbb{R}^m} \sum_{i=1}^n l_{0-1}(\langle \mathbf{x}_i, \mathbf{w} \rangle, y_i) + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

where

$$l_{0-1}(y, f(\mathbf{x})) =$$
 $\begin{cases} 1: yf(\mathbf{x}) < 0 & \text{Misclassification} \\ 0: yf(\mathbf{x}) > 0 & \text{Correct classification} \end{cases}$

Problems with I₀₋₁ loss

$$\hat{\mathbf{w}}_{soft} = \arg\min_{\mathbf{w} \in \mathbb{R}^m} \sum_{i=1}^n l_{0-1}(\langle \mathbf{x}_i, \mathbf{w} \rangle, y_i) + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

$$l_{0-1}(y, f(\mathbf{x})) = \begin{cases} 1 : yf(\mathbf{x}) < 0 \\ 0 : yf(\mathbf{x}) > 0 \end{cases}$$

It is not convex in $yf(x) \Rightarrow$ It is not convex in **w**, either... and we only like convex functions...

Let us approximate it with convex functions!

Approximation of the Heaviside step function

Approximations of I₀₋₁ loss

Piecewise linear approximations (hinge loss, l_{lin})

$$l_{lin}(f(\mathbf{x}), y) = \max\{1 - yf(\mathbf{x}), 0\}\}$$
[We want $yf(\mathbf{x}) > 1$]

Quadratic approximation (I_{quad})

$$l_{quad}(f(\mathbf{x}), y) = \max\{1 - yf(\mathbf{x}), 0\}\}^2$$

The hinge loss approximation of I₀₋₁

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w} \in \mathbb{R}^m} \sum_{i=1}^n \underbrace{l_{lin}(\langle \mathbf{x}_i, \mathbf{w} \rangle, y_i)}_{\xi_i \geq 0} + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

Where,

$$\xi_i \doteq l_{lin}(f(\mathbf{x}_i), y_i) = \max\{1 - y_i f(\mathbf{x}_i), 0\}\}$$

$$\geq 1 - y_i \underbrace{\langle \mathbf{w}, \mathbf{x}_i \rangle}_{f(\mathbf{x}_i)} \geq l_{0-1}(y_i, f(\mathbf{x}_i))$$

The Slack Variables

The Primal Soft SVM problem

$$\widehat{\mathbf{w}}_{soft} = \arg\min_{\mathbf{w} \in \mathbb{R}^m} \sum_{i=1}^n \underbrace{l_{lin}(\langle \mathbf{x}_i, \mathbf{w} \rangle, y_i)}_{\xi_i \geq 0} + \frac{\lambda}{2} ||\mathbf{w}||^2$$

where

$$\xi_i \doteq l_{lin}(f(\mathbf{x}_i), y_i) = \max\{1 - y_i(\mathbf{w}^T\mathbf{x}_i), 0\}$$

Equivalently,

$$\begin{split} \widehat{\mathbf{w}}_{soft} &= \arg \min_{\mathbf{w} \in \mathbb{R}^m, \boldsymbol{\xi} \in \mathbb{R}^n} \sum_{i=1}^n \xi_i + \frac{\lambda}{2} \|\mathbf{w}\|^2 \\ \text{subject to } y_i \langle \mathbf{x}_i, \mathbf{w} \rangle \geq 1 - \xi_i, \ \forall i = 1, \dots, n \\ \xi_i \geq 0, \ \forall i = 1, \dots, n \\ \xi_i \colon \text{Slack variables} \end{split}$$

The Primal Soft SVM problem

$$\begin{split} \widehat{\mathbf{w}}_{soft} &= \arg \min_{\mathbf{w} \in \mathbb{R}^m, \boldsymbol{\xi} \in \mathbb{R}^n} \sum_{i=1}^n \xi_i + \frac{\lambda}{2} \|\mathbf{w}\|^2 \\ &\text{subject to } y_i \langle \mathbf{x}_i, \mathbf{w} \rangle \geq 1 - \xi_i, \ \forall i = 1, \dots, n \\ & \boldsymbol{\xi}_i \geq 0, \ \forall i = 1, \dots, n \end{split}$$
 Equivalently,

We can use this form, too... where $C = \frac{1}{\lambda}$

$$\widehat{\mathbf{w}}_{soft} = \arg\min_{\mathbf{w} \in \mathcal{R}^m, \boldsymbol{\xi} \in \mathbb{R}^n} C \underbrace{\sum_{i=1}^n \xi_i + \frac{1}{2} \|\mathbf{w}\|^2}_{\boldsymbol{\xi}^T \mathbf{1}_n}$$

subject to
$$y_i\langle \mathbf{x}_i, \mathbf{w} \rangle \geq 1 - \xi_i$$
, $\forall i = 1, \dots, n$ $\xi_i \geq 0$, $\forall i = 1, \dots, n$

What is the dual form of primal soft SVM?

The Dual Soft SVM (using hinge loss)

$$\begin{split} \widehat{\mathbf{w}}_{soft} &= \arg \min_{\mathbf{w} \in \mathcal{R}^m, \boldsymbol{\xi} \in \mathbb{R}^n} C \sum_{i=1}^n \xi_i + \frac{1}{2} \|\mathbf{w}\|^2 \\ \text{subject to } y_i \langle \mathbf{x}_i, \mathbf{w} \rangle \geq 1 - \xi_i, \ \forall i = 1, \dots, n \\ \xi_i \geq 0, \ \forall i = 1, \dots, n \end{split}$$

$$\alpha = (\alpha_1, \dots, \alpha_n)^T \ge 0$$
 Largrange multipliers $\beta = (\beta_1, \dots, \beta_n)^T \ge 0$ Largrange multipliers

$$(\widehat{\mathbf{w}}, \widehat{\boldsymbol{\xi}}, \widehat{\boldsymbol{\alpha}}, \widehat{\boldsymbol{\beta}}) = \operatorname{arg} \quad \min \quad \max_{\mathbf{w} \in \mathbb{R}^m} \quad 0 \leq \boldsymbol{\alpha} \\ \mathbf{0} \leq \boldsymbol{\xi} \in \mathbb{R}^n \quad 0 \leq \boldsymbol{\beta}$$

where

$$L(\mathbf{w}, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n \alpha_i (y_i \langle \mathbf{x}_i, \mathbf{w} \rangle - 1 + \xi_i) - \sum_{i=1}^n \beta_i \xi_i$$

The Dual Soft SVM (using hinge loss)

$$L(\mathbf{w}, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \frac{1}{2} ||\mathbf{w}||^2 + C\boldsymbol{\xi}^T \mathbf{1}_n - \sum_{i=1}^n \alpha_i y_i \langle \mathbf{x}_i, \mathbf{w} \rangle + \boldsymbol{\alpha}^T \mathbf{1}_n - \boldsymbol{\xi}^T (\boldsymbol{\alpha} + \boldsymbol{\beta})$$

$$0 = \frac{\partial L(\mathbf{w}, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta})}{\partial \mathbf{w}} \bigg|_{\mathbf{w} = \hat{\mathbf{w}}} = \hat{\mathbf{w}} - \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i \Rightarrow \widehat{\mathbf{w}} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

$$0 = \frac{\partial L(\mathbf{w}, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta})}{\partial \boldsymbol{\xi}} \bigg|_{\boldsymbol{\xi} = \hat{\boldsymbol{\xi}}} = C\mathbf{1}_n - \boldsymbol{\alpha} - \boldsymbol{\beta} \Rightarrow \boldsymbol{\beta} = C\mathbf{1}_n - \boldsymbol{\alpha} \ge 0$$

$$\Rightarrow 0 \le \boldsymbol{\alpha} \le C$$

$$\Rightarrow (\hat{\alpha}, \hat{\beta}) = \arg \max_{0 \le \alpha \le C} L(\hat{\mathbf{w}}, \hat{\xi}, \alpha, \beta)$$

$$0 \le \alpha \le C$$

$$0 \le \beta$$

$$\Rightarrow \hat{\alpha} = \arg\max_{0 \leq \alpha \leq C} \alpha^T \mathbf{1}_n - \frac{1}{2} \alpha^T Y G Y \alpha$$

The Dual Soft SVM (using hinge loss)

$$m{Y} \doteq diag(y_1,\ldots,y_n) \in \{-1,1\}^n$$
 $m{G} \in \mathbb{R}^{n \times n} \doteq \{G_{ij}\}_{i,j}^{n,n}$, where $G_{ij} \doteq \overbrace{\langle \mathbf{x}_i, \mathbf{x}_j \rangle}^{k(\mathbf{x}_i, \mathbf{x}_j)}$, Gram matrix.

$$\widehat{\alpha} = \arg\max_{\pmb{\alpha} \in \mathbb{R}^n} \pmb{\alpha}^T \mathbf{1}_n - \tfrac{1}{2} \pmb{\alpha}^T \pmb{Y} \pmb{G} \pmb{Y} \pmb{\alpha}$$
 subject to $0 \le \alpha_i \le C$

where
$$C = \frac{1}{\lambda}$$

If
$$\lambda \to 0 \Rightarrow \mathsf{soft}\text{-}\mathsf{SVM} \to \mathsf{hard}\text{-}\mathsf{SVM}$$

This is the same as the dual hard-SVM problem, but now we have the additional $0 \le \alpha_i \le C$ constraints.

SVM classification in the dual space

Solve the dual problem

$$\hat{\alpha} = \arg\max_{\boldsymbol{\alpha} \in \mathbb{R}^n} \boldsymbol{\alpha}^T \mathbf{1}_n - \frac{1}{2} \boldsymbol{\alpha}^T \boldsymbol{Y} \boldsymbol{G} \boldsymbol{Y} \boldsymbol{\alpha}$$
 subject to $0 \leq \alpha_i \leq C$

where
$$C = \frac{1}{\lambda}$$
. Let $\hat{\mathbf{w}} = \sum_{i=1}^{n} \hat{\alpha}_i y_i \mathbf{x}_i$.

On test data x:
$$f_{\widehat{\mathbf{w}}}(\mathbf{x}) = \langle \widehat{\mathbf{w}}, \mathbf{x} \rangle = \sum_{i=1}^{n} \widehat{\alpha}_{i} y_{i} \underbrace{\langle \mathbf{x}_{i}, \mathbf{x} \rangle}_{k(\mathbf{x}_{i}, \mathbf{x})}$$

Why is it called Support Vector Machine?

$$\alpha = (\alpha_1, \dots, \alpha_n)^T \ge 0$$
 Lagrange multipliers

$$L(\mathbf{w}, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i (y_i \langle \mathbf{x}_i, \mathbf{w} \rangle - 1)$$

KKT conditions

COMPLEMENTARY SLACKNESS CONDITION

$$di>0 =$$
 $mi(Xi,W) = 1$
 $(Xi,W) = -1$
 $(Xi,W) = -1$

Dual SVM Interpretation: Sparsity

$$\mathbf{w} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}$$

Only few α_j s can be non-zero : where constraint is tight

$$(\langle \mathbf{w}, \mathbf{x}_{j} + \mathbf{b}) \mathbf{y}_{j} = 1$$

Support vectors – training points j whose α_is are non-zero

Support Vectors

Support vectors in Soft SVM

$$\hat{\mathbf{w}}_{soft} = \arg\min_{\mathbf{w} \in \mathbb{R}^m, \boldsymbol{\xi} \in \mathbb{R}^n} C \sum_{i=1}^n \xi_i + \frac{1}{2} \|\mathbf{w}\|^2$$

$$|\mathbf{x}_{i}| = 1 \quad \text{s.t.} \quad y_i \langle \mathbf{x}_i, \mathbf{w} \rangle \geq 1 - \xi_i, \ \forall i = 1, \dots, n$$

$$|\mathbf{x}_{i}| \geq 0, \ \forall i = 1, \dots, n$$

$$|\mathbf{x}_{i}| \geq 0, \ \forall i = 1, \dots, n$$

$$|\mathbf{x}_{i}| = 0 \quad |\mathbf{x}_{i}| = 0$$

$$|\mathbf{x}_{i}| = 0 \quad |\mathbf{x}_{i}| = 0$$

Support vectors in Soft SVM

$$\widehat{\mathbf{w}}_{soft} = \arg\min_{\mathbf{w} \in \mathbb{R}^m, \boldsymbol{\xi} \in \mathbb{R}^n} C \sum_{i=1}^n \xi_i + \frac{1}{2} \|\mathbf{w}\|^2$$

- s.t. $y_i\langle \mathbf{x}_i, \mathbf{w} \rangle \geq 1 \xi_i$, $\forall i = 1, \dots, n$
 - $\xi_i \geq 0$, $\forall i = 1, \ldots, n$

- Margin support vectors $y_i \langle \mathbf{x}_i, \mathbf{w} \rangle = 1$
- Nonmargin support vectors $\xi_i > 0$

SVM classification in the dual space

"Without b"

$$\widehat{\alpha} = \arg\max_{\pmb{\alpha} \in \mathbb{R}^m} \pmb{\alpha}^T \pmb{1}_m - \tfrac{1}{2} \pmb{\alpha}^T \pmb{Y} \pmb{G} \pmb{Y} \pmb{\alpha}$$
 subject to $0 \le \alpha_i \le C$

"With b"
$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i (y_i(\mathbf{x}_i \cdot \mathbf{w} + b) - 1)$$

$$\hat{lpha}=rg\max_{m{lpha}\in\mathbb{R}^n}m{lpha}^T\mathbf{1}_n-rac{1}{2}m{lpha}^Tm{Y}m{G}m{Y}m{lpha}$$
 subject to $0\leq lpha_i\leq C$
$$\sum_i lpha_i y_i=0$$

SVM with Linear Programs

QP:

$$\min_{\mathbf{w} \in \mathbb{R}^m, \boldsymbol{\xi} \in \mathbb{R}^n} C \sum_{i=1}^n \xi_i + \frac{1}{2} ||\mathbf{w}||^2$$

Max margin

subject to
$$y_i\langle \mathbf{x}_i, \mathbf{w} \rangle \geq 1 - \xi_i$$
, $\forall i=1,\ldots,n$ $\xi_i \geq 0$, $\forall i=1,\ldots,n$

LP: $\min_{\boldsymbol{\alpha} \in \mathbb{R}^n, \boldsymbol{\xi} \in \mathbb{R}^n} C \sum_{i=1}^n \xi_i + \sum_{i=1}^n \alpha_i$

Min support vectors

subject to
$$y_i\langle \mathbf{x}_i, \mathbf{w} \rangle \geq 1-\xi_i$$
, $\forall i=1,\ldots,n$
$$\xi_i \geq 0, \ \forall i=1,\ldots,n$$

$$\alpha_i \geq 0, \ \forall i=1,\ldots,n$$

$$\mathbf{w} = \sum_{j=1}^n \alpha_j y_j \mathbf{x}_j$$

SVM for Regression

LOSS (M, WTX) =
$$(M - WTX)^2$$

O IF $[M - WTX] \le E$
 $[M - WTX]$

OTHERWISE

 $[M - WTX]$

Ridge Regression

Linear regression: $f(x) = \langle \mathbf{w}, \phi(x) \rangle$

$$\widehat{\mathbf{w}} = \arg\min_{\mathbf{w} \in \mathcal{K}} \sum_{i=1}^{n} \xi_i^2$$

subject to
$$y_i - \langle \underbrace{\phi(x_i)}_{\mathbf{x}_i}, \mathbf{w} \rangle = \xi_i$$
, $\forall i = 1, \dots, n$ and $\|\mathbf{w}\| \leq B$

$$L(\mathbf{w}, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \sum_{i=1}^{n} \xi_i^2 + \sum_{i=1}^{n} \alpha_i (y_i - \langle \phi(x_i), \mathbf{w} \rangle - \xi_i) + \lambda (\|\mathbf{w}\|^2 - B^2)$$

Dual for a given λ **:** ...after some calculations...

$$\hat{\alpha} = \arg\max_{\alpha \in \mathbb{R}^n} \lambda \sum_{i=1}^n \alpha_i^2 - 2 \sum_{i=1}^n \alpha_i y_i + \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j k(x_i, x_j)$$

This can be solved in closed form:

Kernel Ridge Regression Algorithm

Given $D = \{(x_i, y_i), i = 1, ..., n\}$ training data set. $k(\cdot, \cdot)$ kernel, $\lambda > 0$ parameter. $\mathbf{y} \doteq (y_1, ..., y_n)^T \in \{-1, 1\}^n$

•
$$G \in \mathbb{R}^{n \times n} \doteq \{G_{ij}\}_{i,j}^{n,n}$$
, where $G_{ij} \doteq \overbrace{\langle \mathbf{x}_i, \mathbf{x}_j \rangle_{\mathcal{K}}}$, Gram matrix.

$$\bullet \ \hat{\alpha} = (G + \lambda I_n)^{-1} \mathbf{y}$$

•
$$\hat{\mathbf{w}} = \sum_{i=1}^{n} \hat{\alpha}_i \phi(x_i)$$
.

•
$$f(x) = \langle \hat{\mathbf{w}}, \phi(x) \rangle = \sum_{i=1}^{n} \hat{\alpha}_i k(x_i, x)$$

SVM vs. Logistic Regression

SVM: Hinge loss

$$loss(f(x_j), y_j) = (1 - (\mathbf{w} \cdot x_j + b)y_j))_{+}$$

Logistic Regression: Log loss (log conditional likelihood)

$$loss(f(x_j), y_j) = -\log P(y_j \mid x_j, \mathbf{w}, b) = \log(1 + e^{-(\mathbf{w} \cdot x_j + b)y_j})$$

Difference between SVMs and Logistic Regression

	SVMs	Logistic Regression
Loss function	Hinge loss	Log-loss
High dimensional features with kernels	Yes!	No (but there is kernel logistic regression too)
Solution sparse	Often yes!	Almost always no!
Semantics of output	"Margin"	"Real probabilities"

Constructing Kernels

Common Kernels

Polynomials of degree d

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^d$$

Polynomials of degree up to d

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + 1)^d$$

Gaussian/Radial kernels

$$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||^2}{2\sigma^2}\right)$$

Sigmoid

$$K(\mathbf{u}, \mathbf{v}) = \tanh(\eta \mathbf{u} \cdot \mathbf{v} + \nu)$$

Designing new kernels from kernels

$$k_1: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$$
, $k_2: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ are kernels \Rightarrow

- 1. $k(x, \tilde{x}) = k_1(x, \tilde{x}) + k_2(x, \tilde{x}),$
- 2. $k(x, \tilde{x}) = c \cdot k_1(x, \tilde{x})$, for all $c \in \mathbb{R}^+$,
- 3. $k(x, \tilde{x}) = k_1(x, \tilde{x}) + c$, for all $c \in \mathbb{R}^+$,
- 4. $k(x, \tilde{x}) = k_1(x, \tilde{x}) \cdot k_2(x, \tilde{x}),$
- 5. $k(x, \tilde{x}) = f(x) \cdot f(\tilde{x})$, for any function $f: \mathcal{X} \to \mathbb{R}$

are also kernels.

Designing new kernels from kernels

1.
$$k(x, \tilde{x}) = (k_1(x, \tilde{x}) + \theta_1)^{\theta_2}$$
, for all $\theta_1 \in \mathbb{R}^+$ and $\theta_2 \in \mathbb{N}$

2.
$$k(x, \tilde{x}) = \exp\left(\frac{k_1(x, \tilde{x})}{\sigma^2}\right)$$
, for all $\sigma \in \mathbb{R}^+$,

3.
$$k(x, \tilde{x}) = \exp\left(-\frac{k_1(x, x) - 2k_1(x, \tilde{x}) + k_1(\tilde{x}, \tilde{x})}{2\sigma^2}\right)$$
, for all $\sigma \in \mathbb{R}^+$

4.
$$k(x, \tilde{x}) = \frac{k_1(x, \tilde{x})}{\sqrt{k_1(x, x) \cdot k_1(\tilde{x}, \tilde{x})}}$$

Designing new kernels from kernels

The meaning of

$$k(x,\tilde{x}) = \frac{k_1(x,\tilde{x})}{\sqrt{k_1(x,x)k_1(\tilde{x},\tilde{x})}}$$

is that we can normalize the data in the feature space without performing the explicit mapping.

Use the normalized kernel k_{norm} :

$$k_{norm}(x,\tilde{x}) \doteq \frac{k(x,\tilde{x})}{\sqrt{k(x,x)k(\tilde{x},\tilde{x})}} = \frac{\langle x,\tilde{x}\rangle}{\sqrt{\|x\|^2 \|\tilde{x}\|^2}} = \langle \frac{x}{\|x\|^2}, \frac{\tilde{x}}{\|\tilde{x}\|^2} \rangle$$

Higher Order Polynomials

m – input features d – degree of polynomial

num. terms
$$= \begin{pmatrix} d+m-1 \\ d \end{pmatrix} = \frac{(d+m-1)!}{d!(m-1)!} \sim m^d$$

grows fast! d = 6, m = 100about 1.6 billion terms

Dot Product of Polynomials

 $\Phi(x)$ = polynomials of degree exactly d

$$\mathbf{x} = \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] \quad \mathbf{z} = \left[\begin{array}{c} z_1 \\ z_2 \end{array} \right]$$

d=1
$$\Phi(\mathbf{x}) \cdot \Phi(\mathbf{z}) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = x_1 z_1 + x_2 z_2 = \mathbf{x} \cdot \mathbf{z}$$

d=2
$$\Phi(\mathbf{x}) \cdot \Phi(\mathbf{z}) = \begin{bmatrix} x_1^2 \\ x_1 x_2 \\ x_2^2 \end{bmatrix} \cdot \begin{bmatrix} z_1^2 \\ z_1 z_2 \\ z_2^2 \end{bmatrix} = x_1^2 z_1^2 + x_2^2 z_2^2 + x_1 x_2 z_1 z_2$$

$$= (x_1 z_1 + x_2 z_2)^2$$

$$= (\mathbf{x} \cdot \mathbf{z})^2$$

d
$$\Phi(\mathbf{x}) \cdot \Phi(\mathbf{z}) = K(\mathbf{x}, \mathbf{z}) = (\mathbf{x} \cdot \mathbf{z})^d$$

Name	Kernel function	$\dim (\mathcal{K})$
pth degree polynomial	$k(\vec{u}, \vec{v}) = (\langle \vec{u}, \vec{v} \rangle_{\mathcal{X}})^{p}$ $p \in \mathbb{N}^{+}$	$\binom{N+p-1}{p}$
complete polynomial	$k(\vec{u}, \vec{v}) = (\langle \vec{u}, \vec{v} \rangle_{\mathcal{X}} + c)^{p}$ $c \in \mathbb{R}^{+}, \ p \in \mathbb{N}^{+}$	$\binom{N+p}{p}$
RBF kernel	$k(\vec{u}, \vec{v}) = \exp\left(-\frac{\ \vec{u} - \vec{v}\ _{\mathcal{X}}^2}{2\sigma^2}\right)$ $\sigma \in \mathbb{R}^+$	∞
Mahalanobis kernel	$k(\vec{u}, \vec{v}) = \exp\left(-(\vec{u} - \vec{v})' \mathbf{\Sigma} (\vec{u} - \vec{v})\right)$ $\mathbf{\Sigma} = \operatorname{diag}\left(\sigma_1^{-2}, \dots, \sigma_N^{-2}\right),$ $\sigma_1, \dots, \sigma_N \in \mathbb{R}^+$	∞

Picture is taken from R. Herbrich

The RBF kernel

Note:

The RBF kernel maps the input space \mathcal{X} onto the surface of an infinite dimensional hypersphere.

Proof:

$$\|\phi(x)\| = \sqrt{k(x,x)} = \sqrt{\exp(0)} = 1$$

Note:

The RBF kernel is shift invariant:

$$k(u+a,v+a) = k(u,v), \ \forall a$$

Overfitting

- Huge feature space with kernels, what about overfitting???
 - Maximizing margin leads to sparse set of support vectors
 - Some interesting theory says that SVMs search for simple hypothesis with large margin
 - Often robust to overfitting

String kernels

P-spectrum kernel:

P=3: s="statistics" t="computation"

They contain the following substrings of length 3

```
"sta", "tat", "ati", "tis", "ist", "sti", "tic", "ics"
"com", "omp", "mpu", "put", "uta", "tat", "ati", "tio", "ion"
```

Common substrings: "tat", "ati"

$$k(s,t)=2$$

Distribution kernels

Euclidean:

$$K(P, q) < \int P(x) q(x) dx$$

Bhattacharyya's affinity:
$$\{(P, \varphi) = \{(P, \varphi) \} \in \{(P,$$

Mean map:

$$\Phi(P) = F \times K(\cdot, x)$$

$$X \sim P$$

$$X \mid P, q \rangle = F \times F \times K(x, y)$$

$$\times P = y - q$$

Set kernels

Mean map:

Mean map:

$$\frac{1}{1} \sum_{i=1}^{n} \sum_{j=1}^{n} \left(X_{i}, Y_{j} \right) = \left(X_{i} - Y_{i} \right) \left(X_{i} - Y_{i} \right)$$

Intersection kernel:

What about multiple classes?

One against all

Learn 3 classifiers separately:

Class k vs. rest $(\mathbf{w}_k, b_k)_{k=1,2,3}$

$$y = arg max w_k.x + b_k$$

But \mathbf{w}_k s may not be based on the same scale.

Note: (aw).x + (ab) is also a solution

Learn 1 classifier: Multi-class SVM

Simultaneously learn 3 sets of weights

$$\mathbf{w}^{(y_j)}.\mathbf{x}_j + b^{(y_j)} \ge \mathbf{w}^{(y')}.\mathbf{x}_j + b^{(y')} + 1, \ \forall y' \ne y_j, \ \forall j$$

Learn 1 classifier: Multi-class SVM

Simultaneously learn 3 sets of weights

Steve Gunn's sym toolbox Results, Iris 2vs13, Linear kernel

Results, Iris 1vs23, 2nd order kernel

$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||^2}{2\sigma^2}\right)$ Gaussian RBF Sigma .1

$\frac{||\mathbf{u} - \mathbf{v}||^2}{2\sigma^2}$ 6+0 =) MORE SUPPORT VECTORS

No. of Support Vectors: 183 (61.0%)

Results, Chessboard, RBF kernel

No. of Support Vectors: 37 (72.5%)

No. of Support Vectors: 31 (60.8%)

No. of Support Vectors: 35 (68.6%)

No. of Support Vectors: 41 (80.4%)

No. of Support Vectors: 15 (29.4%)

No. of Support Vectors: 15 (29.4%)

No. of Support Vectors: 17 (33.3%)

What you need to know...

- □ Dual SVM formulation
 - How it's derived
- □ Common kernels
- □ Differences between SVMs and logistic regression

Thanks for your attention ©

