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Linear classifiers 

which line is better?
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Pick the one with the largest margin!

Class 1
Class 2

Margin

Data:

w · x + b < 0

w · x + b > 0
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Scaling

Classify as.. +1 if w · x + b ≥ 1

–1 if w · x + b ≤ –1

Universe 
explodes

if -1 < w · x + b < 1

Plus-Plane

Minus-Plane

Classifier Boundary

Classification rule:

Goal: Find the maximum margin classifier

How large is the margin of this classifier?
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Computing the margin width

Let x+ and x
- be such that

• w · x+ + b = +1 

• w · x- + b = -1 

• x
+ = x- + λ w

• |x+ – x
-| = M=? (Margin) 

M = Margin Width

x-

x+
ww ⋅

=
2

5
Maximize  M ≡ minimize  w·w !



The Primal Hard SVM

This is a QP problem (m-dimensional)  
(Quadratic cost function, linear constraints)
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Quadratic Programming

Find

and to

Subject to
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Efficient Algorithms exist for QP. 

They often solve the dual problem instead of the primal.



Constrained Optimization
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Lagrange Multiplier 

Moving the constraint to objective function
Lagrangian:

Solve:

Constraint is active when αααα > 0
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Lagrange Multiplier – Dual 

Variables
Solving:

When αααα > 0, constraint is tight 10



From Primal to Dual

Lagrange function:
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Primal problem:



Proof cont.

The Lagrange problem:

The Lagrange Problem
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Proof cont.
The Dual Problem
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The Dual Hard SVM

Quadratic Programming (n-dimensional)

Lemma
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The Problem with Hard SVM

It assumes samples are linearly separable...
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What can we do if data is 
not linearly separable???



Hard 1-dimensional Dataset

If the data set is not linearly separable, then adding new 
features (mapping the data to a larger feature space) the 

data might become linearly separable
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Hard 1-dimensional Dataset
Make up a new feature!

Sort of… 
… computed from 
original feature(s)

x=0

),(
2

kkk
xx=z

Separable! MAGIC!

Now drop this “augmented” data into our linear SVM.
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Feature mapping

• n general! points in an n-1 dimensional space is always 
linearly separable by a hyperspace!

⇒ it is good to map the data to high dimensional spaces

• Having n training data, is it always enough to map the 
data into a feature space with dimension n-1?

• Nope... We have to think about the test data as well!
Even if we don’t know how many test data we have and what 

they are...

•We might want to map our data to a huge (∞) dimensional 
feature space

•Overfitting? Generalization error?... 
We don’t care now...
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∞

How to do feature mapping?

Use features of features 
of features of features….
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The Problem with Hard SVM

Solutions:

1. Use feature transformation to a larger space
⇒ each training samples are linearly separable 

in the feature space 
⇒ Hard SVM can be applied ☺

⇒ overfitting... �

2. Soft margin SVM instead of Hard SVM

• Slack variables... We will discuss them now

It assumes samples are linearly separable...
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Hard SVM

The Hard SVM problem can be rewritten:

where

Misclassification, or inside the margin

Correct classification and outside of the margin
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From Hard to Soft constraints

We can try solve the soft version of it:. Introduce a λ parameter!

(Your loss is only 1 instead of ∞ if you misclassify an instance)

Instead of using hard constraints (points are linearly separable)

where
Misclassification

Correct classification
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Problems with l0-1 loss

It is not convex in yf(x) ⇒ It is not convex in w, either...

... and we only like convex functions...

Let us approximate it with convex functions!
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Approximation of the Heaviside step 

function

Picture is taken from R. Herbrich 24



Approximations of l0-1 loss

• Piecewise linear approximations (hinge loss, llin)

• Quadratic approximation (lquad)
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The hinge loss approximation of l0-1

Where,
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The Slack Variables
M =

2

w⋅ w

ξ7

ξ 1

ξ2
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The Primal Soft SVM problem
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Equivalently,

where



The Primal Soft SVM problem

We can use this form, too...
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Equivalently,

What is the dual form of primal soft SVM?



The Dual Soft SVM (using hinge loss)

where
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The Dual Soft SVM (using hinge loss)
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The Dual Soft SVM (using hinge loss)

32



SVM classification in the dual space

Solve the dual problem
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Why is it called 

Support Vector Machine?

KKT conditions



Dual SVM Interpretation: 

Sparsity

Only few αjs can be 

non-zero : where 

constraint is tight

(<w,xj> + b)yj = 1

Support vectors –

training points j whose 

αjs are non-zero

ααααj > 0

ααααj > 0

ααααj > 0

ααααj = 0

ααααj = 0

ααααj = 0
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Support Vectors
w.x + b > 0 w.x + b < 0

γ γ

Linear hyperplane defined 

by “support vectors”

Moving other points a little 

doesn’t effect the decision 

boundary 

only need to store the 

support vectors to predict 

labels of new points
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Support vectors in Soft SVM



Support vectors in Soft SVM

� Margin support vectors

� Nonmargin support vectors



SVM classification in the dual space
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“Without b”

“With b”



SVM with Linear Programs

QP:

LP:

Max margin

Min support vectors



SVM for Regression
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Ridge Regression

Primal:

Dual for a given λλλλ: ...after some calculations...

This can be solved in closed form:

Linear regression:



Kernel Ridge Regression Algorithm



SVM vs. Logistic Regression

SVM : Hinge loss

0-1 loss

0-1 1

Logistic Regression : Log loss ( log conditional likelihood)

Hinge lossLog loss
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Difference between SVMs and Logistic 

Regression

SVMs Logistic

Regression

Loss function Hinge loss Log-loss

High dimensional 
features with 
kernels

Yes! No
(but there is kernel 

logistic regression 

too)

Solution sparse Often yes! Almost always no!

Semantics of 
output

“Margin” “Real probabilities”



Constructing Kernels



• Polynomials of degree d

• Polynomials of degree up to d

• Gaussian/Radial kernels

• Sigmoid

Common Kernels
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Designing new kernels from kernels

are also kernels.

Picture is taken from R. Herbrich



Designing new kernels from kernels

Picture is taken from R. Herbrich



Designing new kernels from kernels



Higher Order Polynomials
m – input features d – degree of polynomial

grows fast!
d = 6, m = 100

about 1.6 billion terms
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Dot Product of Polynomials

d=1

d=2

d
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Picture is taken from R. Herbrich



The RBF kernel

Note:

Note:

Proof:



Overfitting

• Huge feature space with kernels, what about 

overfitting???

• Maximizing margin leads to sparse set of 

support vectors 

• Some interesting theory says that SVMs 

search for simple hypothesis with large margin

• Often robust to overfitting

55



String kernels

P-spectrum kernel:

P=3: s=“statistics” t=“computation”

They contain the following substrings of length 3

“sta”, “tat”, “ati”, “tis”, “ist”, “sti”, “tic”, “ics”

“com”, “omp”, “mpu”, “put”, “uta”, “tat”, “ati”, “tio”, “ion”

Common substrings: “tat”, “ati”

k(s,t)=2



Distribution kernels

Bhattacharyya's affinity:

Euclidean:

Mean map:



Set kernels

Mean map:

Intersection kernel:

Union complement kernel:



What about multiple classes?

59



One against all
Learn 3 classifiers 

separately: 
Class k vs. rest

(wk, bk)k=1,2,3

y = arg max wk.x + bk

k

But wks may not be 

based on the same 

scale.

Note: (aw).x + (ab) is 

also a solution
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Learn 1 classifier: Multi-class SVM

Simultaneously learn 3 sets of weights

y = arg max w(k).x + b(k)

Margin - gap between 

correct class and nearest 

other class
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Learn 1 classifier: Multi-class SVM

Simultaneously learn 3 sets of weights

y = arg max w(k).x + b(k)

Joint optimization: wks 

have the same scale.
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Steve Gunn’s svm toolbox

Results, Iris 2vs13, Linear kernel
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Results, Iris 1vs23, 2nd order kernel
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Results, Iris 1vs23, 2nd order kernel
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Results, Iris 1vs23, RBF kernel
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Results, Iris 1vs23, RBF kernel
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Results, Iris 1vs23, RBF kernel
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Results, Chessboard, Poly kernel
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Results, Chessboard, Poly kernel
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Results, Chessboard, Poly kernel
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Results, Chessboard, Poly kernel
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Results, Chessboard, poly kernel
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Results, Chessboard, RBF kernel
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Sinc=sin(π x)/ (π x), RBF kernel



Sinc=sin(π x)/ (π x), RBF kernel



Sinc=sin(π x)/ (π x), RBF kernel



Sinc=sin(π x)/ (π x), RBF kernel



Sinc=sin(π x)/ (π x), RBF kernel



Sinc=sin(π x)/ (π x), RBF kernel



Sinc=sin(π x)/ (π x), poly kernel



Sinc=sin(π x)/ (π x), poly kernel



Sinc=sin(π x)/ (π x), poly kernel



Sinc=sin(π x)/ (π x), poly kernel



Sinc=sin(π x)/ (π x), poly kernel



Sinc=sin(π x)/ (π x), poly kernel



What you need to know…

�Dual SVM formulation 

� How it’s derived

�Common kernels

�Differences between SVMs and logistic 

regression
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Thanks for your attention ☺
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