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Learning Theory

We have explored many ways of learning from data
But...

— How good Is our classifier, really?

— How much data do we need to make it “"good enough™?




Review of what we have

learned so far



Notation

This is what the learning algorithm produces

We will need these definitions, please copy it!

R(f) = Risk R* = Bayes risk

En(f) — Empricial risk f* — Bayes classifier

[, = = the classifier that the learning algorithm produces



Big Picture

Ultimate goal: R(f*) —R*=0
ERM: fF = f;';,}- = argminscr Rn(f) = arg MiN¢cr %Z%Ll L(Y;, f(X3))




Big Picture: lllustration of RISkS

S
[R(f7) — R(FP)| < 2sup |Ru(f) — R(f)| = 2¢ -
JEF

1Rn(f2) — R(fE)| < 3sup |Rn(f) — R(f)| = 3¢
feF

Rn(f2) — R(f3)| < sup |Rn(f) — R(f)| =«

Goal of Learning:
For a fixed F, make the |R(f;) — R(f%)| estimation error small

Rn(f)
R(f)

R(f5) \

R(f.*F) |

Rn(fs) — — —




Learning Theory



From Hoeffding's inequality, we have seen that

These results are useless if N is big, or infinite. (e.g. all possible hyper-planes)

Today we will see how to fix this with the
Shattering coefficient and VC dimension




Outline

From Hoeffding's inequality, we have seen that

After this fix, we can say something meaningful about this too:
IR(f%) — R(f5)| < 2sup |Rn(f) — R(f)| = 2¢
fEF
s
Best true risk in F

This Iis what the learning algorithm produces and its true risk




Hoeffding inequality

~ 1
Definition: () =7 2. Liviz sy

Observation!
It does not matter how many elements F has. All that matters

In the union bound is how many elements

{[f(X1),..., f(Xn)] f €F}

has. (The effective size of F). It can't even be more than 2™. 1w



McDiarmid's
Bounded Difference Inequality

Suppose X1, Xo,..., X, are independent and assume that

(Bounded Difference Assumption: replacing the -th coordi-

nate x; changes the value of f by at most ¢;.)
It follows that




Bounded Difference Condition

Lemma:

Proof: _ 1 2
Ro(f)==> 1 VLY
Let g denote the following function: R A

9(Z1,..., Zn) = g((X1,Y1), ..., (Xn,Yn)) = supser |Rn(f) — R(f)|

Observation:
If we change Z; = (X;,Y;), then g can change ¢; = 1/n at most.

(Look at how much R,(f) can change if we change either X, or Y;!)

= McDiarmid can be applied for g!
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Bounded Difference Condition

P {1 5up 1Ra(1) ~ RDI = Blsup [Ra() ~ AU 2 ¢ < 2exp (~2:2n)
JEF JEF

= supser |Ra(f) — R(f)| is concentrated around its mean!

Therefore, it is enough to study how E[sup |f2n(f) — R(f)|] behaves.
fer

The Vapnik-Chervonenkis inequality does that
with the shatter coefficient (and VC dimension)!
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Concentration and
Expected Value




Vapnik-ChervonenkKis inequality

Our main goal is to bound supsecr [Bn(f) — R(f)]

We already know:
Pr { sup |[Rn(f) — R(f)| — Elsup |Rn(f) = R()]| > e} < 2exp (—2¢2n)
feF feEF

Vapnik-Chervonenkis inequality:

l0g(2S£(n))

T

E |sup |Rn(f) — R(f)| 32\/
| JEF ]

Corollary: Vapnik-Chervonenkis theorem:

Pr (sup Ru(f) ~ R()| > t) < 453 (n) exp(—ni?/8)
feF

We will define Sx(n) later.







How many points can a linear
boundary classify exactly in 1D?

The answer IS 2




How many points can a linear
boundary classify exactly in 2D?

The answer Is 3




How many points can a linear

boundary classify exactly in 3D?

The answer Is 4 +

: _

tetraeder

How many points can a linear

boundary classify exactly in d-dim?

The answer iIs d+1



Growth function,
Shatter coefficient

Definition
Sr(x1,...,zn) = |{f(z1),..., f(zn)}, f € F]

(=5 In this example)

Growth function, Shatter coefficient
Sr(n) = max [{f(z1),..., f(zn)}; f € F]

Pseeos In,
maximum number of behaviors on n points
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Growth function,
Shatter coefficient

.
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VC-dimension

27’L
2 SF(n)
O
=
-
)
o
H
. Sample size n
L . . Vr '
Definition: VC-dimension
V]: = max{n : S]:(n) = 2”}
Definition: Shattering
F shatters the sample zq,...,x, iff 7 has all the 2™ behaviors on

the sample.

Note: Vr is the size of largest shattered sample
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VC-dimension

# behaviors

Vr

o If the VC dimension is n, then we can find n points that can be
shattered, i.e. show 2™ behaviours.

® n 1+ 1 points never show 2" T1 behaviours.

Sr(n)

I Sample size n
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VC-dimension

® You pick set of points zq1,...,xn

® Adversary assigns labels y1,...,yn

® If VCr > n, then you find a hypothesis f in F consistent with
the labels, i.e. f(x;) =vy; (1 <i<n)

o If VCr =n, then for any n+1 points, there exists a labeling that
cannot be shattered (can’t find a hypothesis f in F consistent
with it)

he VC dimension measures how rich F is.

If the VC dimension is high, e.g. oo, then it is easy to overfit!
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VC dim of decision stumps

-+ - |+ + o+
O @ O @ O O O O
O .+ B o~

There Is a placement of 3 pts that can be shattered = VC dim = 3




VC dim of decision stumps

axis aligned linear separator

What's the VC dim. of decision stumps in 2d?

If VC dim = 3, then for all placements of 4 pts, there exists a labeling that
can’'t be shattered

1 in convex hull

: uadrilateral
3 collinear of other 3 9
- n ) N ) = +
® o o o ° ¢ o
+ +
o o o
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VC dim. of axis parallel

rectanagles in 2d

What's the VC dim. of axis parallel rectangles in 2d?
f(z) =sign(1 — 2 1 rectanglel)

- + - +
O o O O 0 O
O ot ~e

There is a placement of 3 pts that can be shattered = VC dim = 3
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VC dim. of axis parallel

rectanagles in 2d

There is a placement of 4 pts that can be shattered = VC dim =4



VC dim. of axis parallel

rectanagles in 2d

What's the VC dim. of axis parallel rectangles in 2d?
f(z) =sign(1 — 2 1 rectanglel)

If VC dim = 4, then for all placements of 5 pts, there exists a labeling that
can’t be shattered

4 collinear

2 In convex hull

1 In convex hull

+ o

pentagon
+ °
®
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Sauer’s Lemma

We already know that Sx(n) < 2" [Exponential in n]

The VC dimension can be used to upper bound
the shattering coefficient.

31



Proof of Sauer’s Lemma

Write all different behaviors on a sample
(X1,X5,...X,) IN @ matrix:




Proof of Sauer’s Lemma

Shattered subsets of columns:
{0}, {z1}, {z2}, {23}, {z1, 20}, {z1, 23}

We will prove that Ve
Sr(xq,...,on) = # rows(A) < # shattered subsets of columns of A < 37 (’z)
k=0
Therefore, VCr

L]y:e9Lmn

Sf(n) = max Sr(x1,...,xn) < kz_:o (:)
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Proof of Sauer’s Lemma

Shattered subsets of columns:
{0}, {z1}, {z2}, {23}, {z1, 20}, {z1, 23}

VCr n

Lemma 1 # shattered subsets of columns of A < kz—:o (k)

In this example: 6< 1+3+3=7
Lemma 2 # rows(A) < # shattered subsets of columns of A

for any binary matrix with no repeated rows.
In this example: 5< 6
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Proof of Lemma 1l

Shattered subsets of columns:
{@},{xl},{xQ},{x3},{m1,m2},{x1,m3}

In this example: 6< 1+3+3=7

VCr
| emma 1 # shattered subsets of columns of A < kz—:o (’Z)

Proof
VCr is the size of largest imaginable shattered sample. VCr = max{n : Sr(n) = 2"}

If a shattered subsets of columns has d elements, then VCr > d

For example if {z1,x3} are shattered in A, then VCr > 2.
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Proof of Lemma 2

# rows(A) < # shattered subsets of columns of A
Lemma 2

for any binary matrix with no repeated rows.

Proof |nduction on the number of columns

Base case: A has one column. There are three cases:

A=(0) = 1<1 shattered subsets of columns: {0}

A=) = 1 <1 shattered subsets of columns: {0}

A= (?) = 2 S 2 shattered subsets of columns: {0}, {x1}
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Proof of Lemma 2

Inductive case: A has at least two columns. zm

Let A’ be A minus its last column z,, removed C
In A” each row can occure once or twice. A’ . A
If "twice” = move one of them to B the other to T
It "once” = move them to C B
We have,

# rows(A) = # rows(B) + # rows((C)

< # shattered subsets of columns of (B)
+ # shattered subsets of columns of (C)

By induction (less columns)

R Ok O O




Proof of Lemma 2

{0} {0}, {z1}, {z2H{z1, 22}
# shattered subsets of columns of (B) # shattered subsets of columns of (C)
< # shattered subsets of columns of (A)

{0}, {z1},{zo}, {z3}, {z1, 2}, {z1, 23}
because ()

"once” = move them to C A, — A

Therefore, if C' shatters S e.g. {z1,z2}, then A shatters S.

Lm,

"twice” = move one of them to B the other to B
Therefore, if B shatters S, then A shatters S U xzp,.

R O O O

38



Vapnik-ChervonenkKis inequality

When |F| = N < oo, we already know E [SUD Ra(f) — R(D|| < \/log§2N)
ferF n
Vapnik-Chervonenkis inequality: [We don’t prove this]

log(2S£(n))

mn

E [sup [Rn(f) — R(f)l} < 2\/
feF

From Sauer’s lemma:
09(257(n)) _ 2\/VO]:|Og(n—|— 1) + log 2
- <

n

E [suo [Rn(f) — R(f)@ < 2\/
ferF

Since |R(fY) — R(fE)| < 2J§L€Jg|1§n(f) — R(f)|

Therefore, El|R(f;) - (/3] < 4y CF 1080 D Flog QJ\/\\%

imation € =
Estimation error .



Linear (hyperplane) classifiers

We already know that
E[|R(fr) — R(fF)I] < 4\/

/
Estimation error

For linear classifiers in dimension when X =R%: VCr =d+ 1.

VCrlog(n+ 1)+ log?2
n

If we do feature map first, x = ¢(x) € Rd', then linear separation
(SVM) = VCr=d + 1.
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Vapnik-Chervonenkis Theorem

We already know from McDiarmid:
P sup [Ra() = RO~ Blsup [Ru() = RDII 2 ¢ < 2exp (~260)
fer fer

. 2\/|Og(28f(’n))

Vapnik-Chervonenkis inequality: [ 5
E ?ggan(f) R(f)]

Corollary: Vapnik-Chervonenkis theorem: [We don’t prove them]

Pr (sup [Bn(f) — R(H| > t) < 455(2n) exp(—nt*/8)
feF

Pr (Sup Rn(f) — R(f)| > t) < 8S7(n) exp(—nt?/32)
feF

Hoeffding + Union bound for finite function class:

When |F| = N < oo, =Pr (?gglﬁn(f) — R(f)] > t) < 2N exp (—2nt?)




PAC Bound for the Estimation

Error

VC theorem: p, (]Sfug,JRn(f) — R(f)] > t) < 857(n) exp(—nt?/32)
<

ne

VCr

>1—-9

Ve Vo 3
) F . (?ggﬁn(f) R < 8\] VCrlog (vcf) + log (5))

2n

Sr(n) < (

Don't forget that |R(f}) — R(f_*;.—)l < 2suUpfer |Rn(f) — R(f)]

Estimation error
= Pr [ |R(f}) — R(f$)| < 16

> 1-0

2n

log(VCxlog (V—Tg%) + log (%))
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Structoral Risk Minimization

So far we studied when
estimation error — 0, but we also want approximation error — 0

Let /7 C F> C ... C Fp C ... such that VCJ:l < VO]:2 < ... < VC}—H < ...

Many different variants...
penalize too complex models to avoid overfitting




What you need to know

Complexity of the classifier depends on number of points that can
be classified exactly

Finite case — Number of hypothesis
Infinite case — Shattering coefficient, VC dimension

PAC bounds on true error in terms of empirical/training error and
complexity of hypothesis space

Empirical and Structural Risk Minimization
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Thanks for your attention ©




