Advanced Introduction to Machine Learning, CMU-10715

Vapnik–Chervonenkis Theory

Barnabás Póczos

Learning Theory

We have explored many ways of learning from data But…

– How good is our classifier, really?

– How much data do we need to make it "good enough"?

Review of what we have learned so far

Notation

$$
R(f) = \Pr[Y \neq f(X)]
$$
\n
$$
R^* = R(f^*) = \inf_{f: \mathcal{X} \to \mathbb{R}} R(f)
$$
\n
$$
R^* = R(f^*) = \inf_{f: \mathcal{X} \to \mathbb{R}} R(f)
$$
\n
$$
R^* = R(f^*) = \inf_{f \in \mathcal{F}} R(f)
$$
\n
$$
f^* = \arg \inf_{f \in \mathcal{F}} R(f)
$$
\n
$$
\hat{R}^* = \arg \inf_{f \in \mathcal{F}} R(f)
$$
\n
$$
\hat{R}^* = \inf_{f \in \mathcal{F}} \hat{R}_n(f)
$$
\n
$$
f^* = \arg \min_{f \in \mathcal{F}} R(f)
$$
\n
$$
f^* = \arg \min_{f \in \mathcal{F}} \hat{R}_n(f)
$$

This is what the learning algorithm produces

We will need these definitions, please copy it!

 $R^* =$ Bayes risk $R(f) =$ Risk

 $f^* =$ Bayes classifier $\widehat{R}_n(f)$ = Empricial risk

 $f_{n,F}^*$ = the classifier that the learning algorithm produces

Big Picture

Ultimate goal: $R(f_n^*) - R^* = 0$ ERM: $f_n^* = f_{n,\mathcal{F}}^* = \arg\min_{f \in \mathcal{F}} \widehat{R}_n(f) = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n L(Y_i, f(X_i))$

Big Picture: Illustration of Risks

$$
|\hat{R}_n(f_n^*) - R(f_n^*)| \le \sup_{f \in \mathcal{F}} |\hat{R}_n(f) - R(f)| = \varepsilon
$$
 Upper bound

$$
|R(f_n^*) - R(f_{\mathcal{F}}^*)| \le 2 \sup_{f \in \mathcal{F}} |\hat{R}_n(f) - R(f)| = 2\varepsilon
$$

$$
|\hat{R}_n(f_n^*) - R(f_{\mathcal{F}}^*)| \le 3 \sup_{f \in \mathcal{F}} |\hat{R}_n(f) - R(f)| = 3\varepsilon
$$

Goal of Learning:

For a fixed F, make the $|R(f_n^*) - R(f_\mathcal{F}^*)|$ estimation error small

Learning Theory

Outline

From Hoeffding's inequality, we have seen that

Let $\mathcal{F} = \{f : \mathcal{X} \to \{0,1\}\}\$, and $|\mathcal{F}| \leq N$ Theorem:

$$
\sum_{f \in \mathcal{F}} \left(\sup_{f \in \mathcal{F}} |\widehat{R}_n(f) - R(f)| > \varepsilon \right) \leq 2N \exp\left(-2n\varepsilon^2 \right)
$$
\n
$$
\Pr\left(\sup_{f \in \mathcal{F}} |\widehat{R}_n(f) - R(f)| < \sqrt{\frac{\log(N) + \log(2/\delta)}{2n}} \right) \geq 1 - \delta
$$

These results are useless if N is big, or infinite. (e.g. all possible hyper-planes)

Today we will see how to fix this with the Shattering coefficient and VC dimension

Outline

From Hoeffding's inequality, we have seen that

Let $\mathcal{F} = \{f : \mathcal{X} \to \{0,1\}\}\$, and $|\mathcal{F}| \leq N$ Theorem:

$$
\sum_{f \in \mathcal{F}} \left(\sup_{f \in \mathcal{F}} |\widehat{R}_n(f) - R(f)| > \varepsilon \right) \le 2N \exp\left(-2n\varepsilon^2\right)
$$
\n
$$
\Pr\left(\sup_{f \in \mathcal{F}} |\widehat{R}_n(f) - R(f)| < \sqrt{\frac{\log(N) + \log(2/\delta)}{2n}}\right) \ge 1 - \delta
$$

After this fix, we can say something meaningful about this too:

$$
|R(f_n^*) - R(f_{\mathcal{F}}^*)| \le 2 \sup_{f \in \mathcal{F}} |\widehat{R}_n(f) - R(f)| = 2\varepsilon
$$

Best true risk in \mathcal{F}

This is what the learning algorithm produces and its true risk

Hoeffding inequality

Theorem: Let $\mathcal{F} = \{f : \mathcal{X} \to \{0,1\}\}\$, and $|\mathcal{F}| \leq N$

$$
\Rightarrow \Pr\left(\sup_{f \in \mathcal{F}} |\widehat{R}_n(f) - R(f)| > \varepsilon\right) \le 2N \exp\left(-2n\varepsilon^2\right)
$$

$$
\Pr\left(\sup_{f \in \mathcal{F}} |\widehat{R}_n(f) - R(f)| < \sqrt{\frac{\log(N) + \log(2/\delta)}{2n}}\right) \ge 1 - \delta
$$

Definition:
$$
\widehat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n 1_{\{Y_i \neq f(X_i)\}}
$$

 $f \in \mathcal{F}$

Observation!

It does not matter how many elements F has. All that matters in the union bound is how many elements

 $\{[f(X_1),\ldots,f(X_n)]\;f\in\mathcal{F}\}\;$

has. (The effective size of F). It can't even be more than 2^n . 10

McDiarmid's Bounded Difference Inequality

Suppose X_1, X_2, \ldots, X_n are independent and assume that

$$
\sup_{x_1, x_2, \dots, x_n, \hat{x}_i} |f(x_1, x_2, \dots, x_n) - f(x_1, x_2, \dots, x_{i-1}, \hat{x}_i, x_{i+1}, \dots, x_n)| \le c_i
$$
\nfor $1 < i < n$

(Bounded Difference Assumption: replacing the i -th coordinate x_i changes the value of f by at most c_i .) **It follows that**

$$
\Pr\left\{f(X_1, X_2, \dots, X_n) - E[f(X_1, X_2, \dots, X_n)] \ge \varepsilon\right\} \le \exp\left(-\frac{2\varepsilon^2}{\sum_{i=1}^n c_i^2}\right)
$$
\n
$$
\Pr\left\{E[f(X_1, X_2, \dots, X_n)] - f(X_1, X_2, \dots, X_n) \ge \varepsilon\right\} \le \exp\left(-\frac{2\varepsilon^2}{\sum_{i=1}^n c_i^2}\right)
$$
\n
$$
\Pr\left\{|E[f(X_1, X_2, \dots, X_n)] - f(X_1, X_2, \dots, X_n)| \ge \varepsilon\right\} \le 2\exp\left(-\frac{2\varepsilon^2}{\sum_{i=1}^n c_i^2}\right)
$$

11

Bounded Difference Condition

Our main goal is to bound $\sup_{f\in\mathcal{F}}|\widehat{R}_n(f)-R(f)|$

Lemma:

Proof:

The "bounded difference condition" is satisfied for $\sup_{f\in\mathcal{F}}|\widehat{R}_n(f)-R(f)|$

$$
\widehat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n 1_{\{f(X_i) \neq Y_i\}}
$$

$$
g(Z_1,...,Z_n) = g((X_1,Y_1),..., (X_n,Y_n)) = \sup_{f \in \mathcal{F}} |\widehat{R}_n(f) - R(f)|
$$

Observation:

Let *g* denote the following function:

If we change $Z_i = (X_i, Y_i)$, then g can change $c_i = 1/n$ at most. (Look at how much $\widehat{R}_n(f)$ can change if we change either X_i or $Y_i!$)

) McDiarmid can be applied for *g!*

Bounded Difference Condition

The "bounded difference condition" is satisfied for $\sup_{f\in\mathcal{F}}|\widehat{R}_n(f)-R(f)|$

Corollary:
\n
$$
\Pr\{g - \mathbb{E}[g] \ge \varepsilon\} \le \exp\left(-\frac{2\varepsilon^2}{\sum_{i=1}^n c_i^2}\right) \quad \text{for } g = \sup_{f \in \mathcal{F}} |\widehat{R}_n(f) - R(f)|
$$

$$
\Pr\left\{|\sup_{f\in\mathcal{F}}|\widehat{R}_n(f)-R(f)|-\mathbb{E}[\sup_{f\in\mathcal{F}}|\widehat{R}_n(f)-R(f)|]|\geq \varepsilon\right\}\leq 2\exp\left(-2\varepsilon^2 n\right)
$$

 \Rightarrow sup_{f $\in \mathcal{F}$} $|\widehat{R}_n(f) - R(f)|$ is concentrated around its mean!

Therefore, it is enough to study how $\mathbb{E}[\sup_{f \in \mathcal{F}} |\hat{R}_n(f) - R(f)|]$ behaves.

The Vapnik-Chervonenkis inequality does that with the *shatter coefficient* (and *VC dimension)!*

Concentration and Expected Value

Vapnik-Chervonenkis inequality

Our main goal is to bound $\sup_{f\in\mathcal{F}}|\widehat{R}_n(f)-R(f)|$

We already know:

$$
\Pr\left\{|\sup_{f\in\mathcal{F}}|\widehat{R}_n(f)-R(f)|-\mathbb{E}[\sup_{f\in\mathcal{F}}|\widehat{R}_n(f)-R(f)|]|\geq \varepsilon\right\}\leq 2\exp\left(-2\varepsilon^2 n\right)
$$

Vapnik-Chervonenkis inequality: $\mathbb{E}\left[\sup_{f\in\mathcal{F}}|\widehat{R}_n(f)-R(f)|\right]\leq 2\sqrt{\frac{\log(2S_{\mathcal{F}}(n))}{n}}$

Corollary: Vapnik-Chervonenkis theorem:

$$
\Pr\left(\sup_{f\in\mathcal{F}}|\widehat{R}_n(f)-R(f)|>t\right)\leq 4S_{\mathcal{F}}^2(n)\exp(-nt^2/8)
$$

We will define $S_{\mathcal{F}}(n)$ later.

How many points can a linear boundary classify exactly in 1D?

There exists placement s.t. all labelings can be classified

The answer is 2

How many points can a linear boundary classify exactly in 2D?

There exists placement s.t. all labelings can be classified

The answer is 3

How many points can a linear boundary classify exactly in 3D?

How many points can a linear boundary classify exactly in d-dim?

The answer is d+1

The answer is 4

Growth function, Shatter coefficient

Let $\mathcal{F} = \mathcal{X} \rightarrow \{0, 1\}$ How many different behaviour can we get with $[f(x_1),...,f(x_n)], f \in \mathcal{F}$?

Definition

 $S_{\mathcal{F}}(x_1,\ldots,x_n) = |\{f(x_1),\ldots,f(x_n)\};f \in \mathcal{F}|$ (=5 in this example)

Growth function, Shatter coefficient $S_{\mathcal{F}}(n) = \max_{x_1,...,x_n} |\{f(x_1),...,f(x_n)\}; f \in \mathcal{F}|$ maximum number of behaviors on *n* points

Growth function, Shatter coefficient

Definition

 $S_{\mathcal{F}}(x_1,...,x_n) = |\{f(x_1),...,f(x_n)\}; f \in \mathcal{F}|$

Growth function, Shatter coefficient $S_{\mathcal{F}}(n) = \max_{x_1,...,x_n} |\{f(x_1),...,f(x_n)\}; f \in \mathcal{F}|$

maximum number of behaviors on *n* points

Example: Half spaces in 2D \Rightarrow $S_{\mathcal{F}}(3) = 2^3 = 8$ (Although $\exists x_1, x_2, x_3$ such that $S_{\mathcal{F}}(x_1, x_2, x_3) = 6 < 8$)

 $\{\emptyset\}, \{x_1\}, \{x_3\}, \{x_1, x_2\}, \{x_2, x_3\}, \{x_1, x_2, x_3\}$ We can't get $\{x_2\}$ and $\{x_1, x_3\}$

 $-\left(\begin{array}{cc} + & + \\ 0 & \cdot \\ x_2 & x_3 \end{array}\right)$

VC-dimension

Definition

 $S_{\mathcal{F}}(x_1,...,x_n) = |\{f(x_1),...,f(x_n)\}; f \in \mathcal{F}|$

Growth function, Shatter coefficient $S_{\mathcal{F}}(n) = \max_{x_1, ..., x_n} |\{f(x_1), ..., f(x_n)\}; f \in \mathcal{F}|$

maximum number of behaviors on *n* points

Definition: VC-dimension

 $V_{\mathcal{F}} = \max\{n : S_{\mathcal{F}}(n) = 2^n\}$

Definition: Shattering

F shatters the sample x_1, \ldots, x_n iff F has all the 2^n behaviors on the sample.

Note: $V_{\mathcal{F}}$ is the size of largest shattered sample

VC-dimension

VC-dimension

The VC dimension measures how rich $\mathcal F$ is.

If the VC dimension is high, e.g. ∞ , then it is easy to overfit!

VC dim of decision stumps (axis aligned linear separator) in 2d

There is a placement of 3 pts that can be shattered \Rightarrow VC dim \geq 3

VC dim of decision stumps (axis aligned linear separator) in 2d

VC dim. of axis parallel rectangles in 2d

VC dim. of axis parallel rectangles in 2d

There is a placement of 4 pts that can be shattered \Rightarrow VC dim \geq 4

VC dim. of axis parallel rectangles in 2d

What's the VC dim. of axis parallel rectangles in 2d? $f(x) = sign(1 - 2 \cdot 1_{\{x \in \text{ rectangle}\}})$

If VC dim $= 4$, then for all placements of 5 pts, there exists a labeling that can't be shattered

Sauer's Lemma

We already know that
$$
S_{\mathcal{F}}(n) \leq 2^n
$$
 [Exponential in n]

The VC dimension can be used to upper bound the shattering coefficient.

 $S_{\mathcal{F}(n)} \leq (n+1)^{VC_{\mathcal{F}}}$ [Polynomial in *n*] Corollary: $S_{\mathcal{F}}(n) \leq \left(\frac{ne}{VC\tau}\right)^{VC_{\mathcal{F}}}$

Proof of Sauer's Lemma

Write all different behaviors on a sample $(x_1, x_2,...x_n)$ in a matrix:

$$
|\mathcal{F}| = 7 \quad x_1 \quad x_2 \quad x_3
$$

$$
f_1 \quad 0 \quad 0 \quad 0
$$

$$
f_2 \quad 0 \quad 1 \quad 0
$$

$$
f_3 \quad 1 \quad 1 \quad 1
$$

$$
f_4 \quad 1 \quad 0 \quad 0
$$

$$
f_7 \quad 0 \quad 1 \quad 1
$$

Proof of Sauer's Lemma

$$
|\mathcal{F}| = 7 \begin{array}{c} x_1 & x_2 & x_3 \\ f_1 & 0 & 0 & 0 \\ f_2 & 0 & 1 & 0 \\ f_3 & 1 & 1 & 1 \\ f_4 & 1 & 0 & 0 \\ f_7 & 0 & 1 & 1 \end{array} = A
$$

Shattered subsets of columns:

 $\{\emptyset\}, \{x_1\}, \{x_2\}, \{x_3\}, \{x_1, x_2\}, \{x_1, x_3\}$

We will prove that
 $S_{\mathcal{F}}(x_1,\ldots,x_n) = \# \text{ rows}(A) \leq \# \text{ shattered subsets of columns of } A \leq \sum_{i=0}^{VC_{\mathcal{F}}}{n \choose k}$ $S_{\mathcal{F}(n)} = \max_{x_1, ..., x_n} S_{\mathcal{F}}(x_1, ..., x_n) \le \sum_{k=0}^{V C_{\mathcal{F}}}(n_k)$ Therefore,

Proof of Sauer's Lemma

$$
|\mathcal{F}| = 7 \begin{array}{c|c} x_1 & x_2 & x_3 \\ f_1 & 0 & 0 & 0 \\ f_2 & 0 & 1 & 0 \\ f_3 & 1 & 1 & 1 \\ f_4 & 1 & 0 & 0 \\ f_7 & 0 & 1 & 1 \end{array} = A
$$

Shattered subsets of columns:

 $\{\emptyset\}, \{x_1\}, \{x_2\}, \{x_3\}, \{x_1, x_2\}, \{x_1, x_3\}$

shattered subsets of columns of $A \leq \sum_{k=0}^{VC_{\mathcal{F}}}{n \choose k}$ Lemma 1 In this example: $6 \le 1+3+3=7$ **Lemma 2** # rows(A) \leq # shattered subsets of columns of A for any binary matrix with no repeated rows. In this example: $5 < 6$

$$
|\mathcal{F}| = 7 \begin{array}{c|c} x_1 & x_2 & x_3 \\ f_1 & 0 & 0 & 0 \\ f_2 & 0 & 1 & 0 \\ f_3 & 1 & 1 & 1 \\ f_4 & 1 & 0 & 0 \\ f_7 & 0 & 1 & 1 \end{array} = A
$$

Shattered subsets of columns:

 $\{\emptyset\}, \{x_1\}, \{x_2\}, \{x_3\}, \{x_1, x_2\}, \{x_1, x_3\}$

In this example: $6< 1+3+3=7$

shattered subsets of columns of $A \n\t\leq \sum_{k=0}^{VC_{\mathcal{F}}}{n \choose k}$ Lemma 1 Proof

 $VC_{\mathcal{F}}$ is the size of largest imaginable shattered sample. $VC_{\mathcal{F}} = \max\{n : S_{\mathcal{F}}(n) = 2^n\}$

If a shattered subsets of columns has d elements, then $VC_{\mathcal{F}} \geq d$

For example if $\{x_1, x_3\}$ are shattered in A, then $VC_{\mathcal{F}} \geq 2$.

rows(A) \leq # shattered subsets of columns of A Lemma 2 for any binary matrix with no repeated rows. Proof Induction on the number of columns **Base case:** A has one column. There are three cases: $A = (0) \Rightarrow 1 < 1$ shattered subsets of columns: $\{\emptyset\}$ $A = (1) \Rightarrow 1 < 1$ shattered subsets of columns: $\{\emptyset\}$ $A = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \Rightarrow 2 < 2$ shattered subsets of columns: $\{\emptyset\}, \{x_1\}$

Inductive case: A has at least two columns. x_m

Let A' be A minus its last column x_m removed In A' each row can occure once or twice. If "twice" \Rightarrow move one of them to B the other to C If "once" \Rightarrow move them to C

0 0 0

0 1 0

1 | 1 <mark>| 1</mark>

1 0 0

0 | 1 <mark>| 1</mark>

We have,

 $\#$ rows(A) = $\#$ rows(B) + $\#$ rows(C)

 \leq # shattered subsets of columns of (B) $+$ # shattered subsets of columns of (C)

By induction (less columns)

 $\{\emptyset\}, \{x_1\}, \{x_2\}\{x_1, x_2\}$ $\{\emptyset\}$ # shattered subsets of columns of (B) + # shattered subsets of columns of (C) \leq # shattered subsets of columns of (A) x_m $\{\emptyset\}, \{x_1\}, \{x_2\}, \{x_3\}, \{x_1, x_2\}, \{x_1, x_3\}$ because

"once" \Rightarrow move them to C Therefore, if C shatters S e.g. $\{x_1, x_2\}$, then A shatters S.

" twice" \Rightarrow move one of them to B the other to C Therefore, if B shatters S, then A shatters $S \cup x_m$.

Vapnik-Chervonenkis inequality

When
$$
|\mathcal{F}| = N < \infty
$$
, we already know $\mathbb{E}\left[\sup_{f \in \mathcal{F}} |\hat{R}_n(f) - R(f)|\right] \le \sqrt{\frac{\log(2N)}{2n}}$

Vapnik-Chervonenkis inequality: $\mathbb{E}\left[\sup_{f\in\mathcal{F}}|\widehat{R}_n(f)-R(f)|\right]\leq 2\sqrt{\frac{\log(2S_{\mathcal{F}}(n))}{n}}$ [We don't prove this]

From Sauer's lemma:

$$
\mathbb{E}\left[\sup_{f\in\mathcal{F}}|\widehat{R}_n(f) - R(f)|\right] \le 2\sqrt{\frac{\log(2S_{\mathcal{F}}(n))}{n}} \le 2\sqrt{\frac{VC_{\mathcal{F}}\log(n+1) + \log 2}{n}}
$$
\nSince $|R(f_n^*) - R(f_{\mathcal{F}}^*)| \le 2\sup_{f\in\mathcal{F}}|\widehat{R}_n(f) - R(f)|$
\nTherefore, $\mathbb{E}[|R(f_n^*) - R(f_{\mathcal{F}}^*)|] \le 4\sqrt{\frac{VC_{\mathcal{F}}\log(n+1) + \log 2}{n}}$
\nEstimation error

Linear (hyperplane) classifiers

We already know that
$$
\mathbb{E}[|R(f_n^*) - R(f_\mathcal{F}^*)|] \le 4\sqrt{\frac{VC_\mathcal{F}\log(n+1) + \log 2}{n}}
$$

Estimation error

For linear classifiers in dimension when $\mathcal{X} = \mathbb{R}^d$: $VC_{\mathcal{F}} = d + 1$.

$$
\Rightarrow \mathbb{E}[|R(f_n^*) - R(f_{\mathcal{F}}^*)|] \le 4\sqrt{\frac{(d+1)\log(n+1) + \log 2}{n}}
$$

Estimation error

If we do feature map first, $x = \phi(x) \in \mathbb{R}^{d'}$, then linear separation $(SVM) \Rightarrow VC_{\mathcal{F}} = d' + 1.$

Estimation error
 $\Rightarrow \mathbb{E}[|R(f_n^*) - R(f_\mathcal{F}^*)|] \le 4\sqrt{\frac{(d'+1)\log(n+1)+\log 2}{n}}$

Vapnik-Chervonenkis Theorem

We already know from McDiarmid:

$$
\Pr\left\{|\sup_{f\in\mathcal{F}}|\hat{R}_n(f) - R(f)| - \mathbb{E}[\sup_{f\in\mathcal{F}}|\hat{R}_n(f) - R(f)|]|\geq \varepsilon\right\} \leq 2\exp\left(-2\varepsilon^2 n\right)
$$
\n
$$
\text{Vapnik-Chervonenkis inequality: } \mathbb{E}\left[\sup_{f\in\mathcal{F}}|\hat{R}_n(f) - R(f)|\right] \leq 2\sqrt{\frac{\log(2S_{\mathcal{F}}(n))}{n}}
$$

Corollary: Vapnik-Chervonenkis theorem: [We don't prove them]
Pr
$$
\left(\sup_{f \in \mathcal{F}} |\widehat{R}_n(f) - R(f)| > t\right) \leq 4S_{\mathcal{F}}(2n) \exp(-nt^2/8)
$$

Pr $\left(\sup_{f \in \mathcal{F}} |\widehat{R}_n(f) - R(f)| > t\right) \leq 8S_{\mathcal{F}}(n) \exp(-nt^2/32)$

Hoeffding + Union bound for finite function class:

When
$$
|\mathcal{F}| = N < \infty
$$
, \Rightarrow Pr $\left(\sup_{f \in \mathcal{F}} |\widehat{R}_n(f) - R(f)| > t \right) \le 2N \exp(-2nt^2)$

PAC Bound for the Estimation Error

VC theorem:
$$
Pr \left(\sup_{f \in \mathcal{F}} |\widehat{R}_n(f) - R(f)| > t \right) \leq 8S_{\mathcal{F}}(n) \exp(-nt^2/32)
$$

INversion:
$$
8S_{\mathcal{F}}(n) \exp(-nt^2/32) \le \delta \implies t^2 \ge \frac{32}{n} \log\left(\frac{8S_{\mathcal{F}}(n)}{\delta}\right)
$$

\n $\Rightarrow \Pr\left(\sup_{f \in \mathcal{F}} |\hat{R}_n(f) - R(f)| \le 8\sqrt{\frac{\log(S_{\mathcal{F}}(n)) + \log\left(\frac{8}{\delta}\right)}{2n}}\right) \ge 1 - \delta$
\n $S_{\mathcal{F}}(n) \le \left(\frac{ne}{VC_{\mathcal{F}}}\right)^{VC_{\mathcal{F}}} \Rightarrow \Pr\left(\sup_{f \in \mathcal{F}} |\hat{R}_n(f) - R(f)| \le 8\sqrt{\frac{VC_{\mathcal{F}} \log\left(\frac{ne}{VC_{\mathcal{F}}}\right) + \log\left(\frac{8}{\delta}\right)}{2n}}\right) \ge 1 - \delta$

Don't forget that $|R(f_n^*) - R(f_\mathcal{F}^*)| \leq 2 \sup_{f \in \mathcal{F}} |\widehat{R}_n(f) - R(f)|$

Estimation error
 $\Rightarrow Pr\left(|R(f_n^*) - R(f_\mathcal{F}^*)| \leq 16\sqrt{\frac{\log(VC_\mathcal{F} \log\left(\frac{ne}{VC_\mathcal{F}}\right) + \log\left(\frac{8}{\delta}\right)}{2n}}\right) \geq 1-\delta$

Structoral Risk Minimization

What you need to know

Complexity of the classifier depends on number of points that can be classified exactly

Finite case – Number of hypothesis Infinite case – Shattering coefficient, VC dimension

PAC bounds on true error in terms of empirical/training error and complexity of hypothesis space

Empirical and Structural Risk Minimization

Thanks for your attention \odot