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Hidden Markov Model ot

e Observation space

Alphabetic set: C=lc Co\or,C Yo Y3
Euclidean space: Rd { D>2 K} @ Q_>Q_* @
e Index set of hidden states @ @ @ @
X X
=12, ,M} - 3

e Transition probabilities between any two states ~ Graphical model
p(Ytj =1]y,,=1) =0
or  p(y, |y, =1)~ Multinomial(g, ,.q, ,,....a; , ) Vi €.
e Start probabillities
p(y,) ~ Multinomial(z,, z,,..., 7, )
e Emission probabilities associated with each state
p(x, |y, =1)~ Multinomial(b,.,l,b,.,2 ..... b « ),Vi e l.

or in general:

p(x, |)’ti :1)~f('|‘9i)1Vi el.

State automata
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Applications of HMMs .o

e Some early applications of HMMs

o finance, but we never saw them
° speech recognition
° modelling ion channels

¢ In the mid-late 1980s HMMs entered genetics and molecular
biology, and they are now firmly entrenched.

e Some current applications of HMMs to biology

° mapping chromosomes

° aligning biological sequences

° predicting sequence structure

° inferring evolutionary relationships
° finding genes in DNA sequence
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A Bio Application: gene finding ot

—

Startcodon  codons  ponor site

N

ATGCCCTTCTCCAACAG

Transcription
start

Promoter

- -

Exon

5'UTR

Acceptor site

Poly-A site
Ve

Stop codon GGCAGAAACAATAAATEW. e
GATCCCCATGCCTGAGGGCCCCTC f
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GENSCAN (Burge & Karlin)

Transition probabilities: p(y/ =1]y,;=1)=a,;,

pCly) =

RS S

orward (+ and

Reverse (-) strand

© Eric Xing @ CMU, 2014

GAGAACGTGTGAGAGAGAGGCAAGCCGAAAAATCAGCCGC

CGAAGGATACACTATCGTCGTCCTTGTCCGACGAACCGGT

ATACACAGCGCACACAT
ATAAGCTTGCACACTGATGCACACACACCGACACGTTGTC
ACCGAAATGAACGGGACGGCCATATGACTGGCTGGCGCTC

CCCTGCTGCGCCTC
GCGTGCACAATTTGCGCCAATTTCCCCCCTTTTCCAGTTT
TTTTCAACCCAGCACCGCTCGTCTCTTCCTCTTCTTAACG
TTAGCATTCGTACGAGGAACAGTGCTGTCATTGTGGCCGC
TGTGTAGCTAAAAAGCGTAATTATTCATTATCTAGCTATC
TTTTCGGATATTATTGTCATTTGCCTTTAATCTTGTGTAT
TTATATGGATGAAACGTGCTATAATAACAATGCAGAATGA
AGAACTGAAGAGTTTCAAAACCTAAAAATAATTGGAATAT
AAAGTTTGGTTTTACAATTTGATAAAACTCTATTGTAAGT
GGAGCGTAACATAGGGTAGAAAACAGTGCAAATCAAAGTA
CCTAAATGGAATACAAATTTTAGTTGTACAATTGAGTAAA
ATGAGCAAAGCGCCTATTTTGGATAATATTTGCTGTTTAC
AAGGGGAACATATTCATAATTTTCAGGTTTAGGTTACGCA
TATGTAGGCGTAAAGAAATAGCTATATTTGTAGAAGTGCA
TATGCACTTTATAAAAAATTATCCTACATTAACGTATTTT
ATTTGCTTTAAAACCTATCTGAGATATTCCAATAAGGTAA
GTGCAGTAATACAATGTAAATAATTGCAAATAATGTTGTA
ACTAAATACGTAAACAATAATGTAG,

GATAAACAGTTGCCTTTAGTTGCATGACTTCCCGCTGGAT




A “Financial” Application:
The Dishonest Casino 4+

A casino has two dice:
e Fair die

P(1) = P(2) = P(3) = P(5) = P(6) = 1/6
e Loaded die

P(1) =P(2) =P(3) =P(5) =1/10
P(6) = 1/2
Casino player switches back-&-forth

between fair and loaded die once
every 20 turns

Game:
1.You bet $1
2.You roll (always with a fair die)

3. Casino player rolls (maybe with fair
die, maybe with loaded die)

4. Highest number wins $2

© Eric Xing @ CMU, 2014 7
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The Dishonest Casino Model T
0.05
0.95 0.95
P(1|F) = 1/6 PA|L) = 1/10
P(2|F) = 1/6 P(2|L) = 1/10
P(3|F) = 1/6 0.05 P(3|L) = 1/10
P(4|F) = 1/6 P(4|L) = 1/10
P(5|F) = 1/6 P(5|L) = 1/10
P(6|F) = 1/6 P(6IL) = 1/2
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Puzzles Regarding the Dishonest | 382
Casino o

GIVEN: A sequence of rolls by the casino player

64621461461361366616646616366163661636165156 612356
QUESTION
e How likely is this sequence, given our model of how the casino
WOorks?

e Thisis the EVALUATION problem in HMMs

e What portion of the sequence was generated with the fair die, and

what portion with the loaded die?
e Thisis the DECODING question in HMMs

e How “loaded” is the loaded die? How “fair” is the fair die? How often

does the casino player change from fair to loaded, and back?
e Thisis the LEARNING question in HMMs

© Eric Xing @ CMU, 2014 9



Joint Probability

6462146146136136661664661636616366163616
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000
0000
8252
Probability of a Parse 4+
e Given a sequence x = Xj...... X1
and aparsey=yj, ...... v @ @@ @
e To find how likely is the parse: y y
(given our HMM and the sequence) @ @ @ @

px,y) = p(Xpeo Xy Yo YT) (Joint probability)
= ply) p(x1 | y2) p(ya | ) PO | y2) - plyr | yra) pOXr | )
= p(ys) P(y2 | y1) - PQyr | yra) X p(xy | y1) p(Xz | o) - p(Xr | yr)

T T
e Marginal probability:  p(x)=3 p(x,y)= Zyl Zyz ---ZyN r,]1a, .. [Py
t=1

t=2

e Posterior probability: p(y | x) = p(x,y)/p(x)
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Example: the Dishonest Casino

= e

e Letthe sequence of rolls be:
e x=1,2,1,56,2,1,6,2 4

e Then, what is the likelihood of
e y= Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair?
(say initial probs ape, = %2, 84 gaded = 72)

Yo x P(1 | Fair) P(Fair | Fair) P(2 | Fair) P(Fair | Fair) ... P(4 | Fair) =

15 x (1/6)10 x (0.95)? = .00000000521158647211 = 5.21 x 10

© Eric Xing @ CMU, 2014 12



Example: the Dishonest Casino

= e

e S0, the likelihood the die is fair in all this run
IS just 5.21 x 10°

e OK, but what is the likelihood of

e 7 = Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded,
Loaded, Loaded, Loaded?

2 x P(1 | Loaded) P(Loaded | Loaded) ... P(4 | Loaded) =

15 x (1/10)8 x (1/2)2 (0.95)? = .00000000078781176215 = 0.79 x 10

e Therefore, it is after all 6.59 times more likely that the die is fair
all the way, than that it is loaded all the way

© Eric Xing @ CMU, 2014 13



Example: the Dishonest Casino

e Letthe sequence of rolls be:

e x=1,6,6,56,2,6,6,3,6 ﬁ ﬁ
2

e Now, what is the likelihood n =F, F, ..., F~
e 2 x(1/6)1° x (0.95)° = 0.5 x 10, same as before

e What is the likelihood y =1L, L, ..., L?
5 x (1/10)* x (1/2)8 (0.95)° = .00000049238235134735 = 5 x 1077

e S50, Iitis 100 times more likely the die is loaded

© Eric Xing @ CMU, 2014 14



Joint Probability

6462146146136136661664661636616366163616
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Three Main Questions on HMMs

1. Evaluation

GIVEN an HMM M, and a sequence x,
FIND Prob (x| M)
ALGO. Forward
2. Decoding
GIVEN an HMM M, and a sequence x,
FIND the sequence y of states that maximizes, e.g., P(y | x, M),
or the most probable subsequence of states
ALGO. Viterbi, Forward-backward
3. Learning
GIVEN an HMM M, with unspecified transition/emission probs.,
and a sequence x,
FIND parameters 6 = (7, ay, 1) that maximize P(x | 0)
ALGO. Baum-Welch (EM)

© Eric Xing @ CMU, 2014
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The Forward Algorithm o

e We want to calculate P(x), the likelihood of x, given the HMM

e Sum over all possible ways of generating x:

p(x)= Zy p(x,y) = ZyIZyE”'ZyN ﬂYlHa)’t—I’Yt H p(X: [y.)

t=2
e To avoid summing over an exponential number of paths y, define

def
a(ytk =1)= Ottk =P (Xy.er, X, , ytk =1) (the forward probability)

e The recursion:
k k '
a; =p(X |y, = DZatl—lai,k
]
P(x)=> of
k

© Eric Xing @ CMU, 2014
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The Forward Algorithm — T
derivation oo

e Compute the forward probability:
()~
(x)

=P (x, |Ytk :1)2,- ati—lai,k

Chainrule: P(A,B,C)=P(A)P(B|A)P(C|A,B)

© Eric Xing @ CMU, 2014 18



The Forward Algorithm o

e \We can compute atk for all k, t, using dynamic programming!

Initialization: af =P(x,y =1
) . =P Iyf =DP (v =1)
a; =P (X |y; =17, =P(x, |y, ==,
lteration:

atk =P (x, |)/tk :1)2, atf—lai,k

Termination:

P(x):ZaTk
k

© Eric Xing @ CMU, 2014 19



The Backward Algorithm o
e We want to compute P (v =1|x) , @ @ @

the posterior probability distribution on the

4
t 1 position, given x @ @ O
nnn nnn XT

e We start by computing

Py =1,%) =P Xy, X, ¥ =1, Xy g0 X )
:P(Xl""’xt’)/tk ZI)P(anv--’XT |X1""’Xt’)/tk :1)

:P(Xl...Xt,ytk :l)P(Xt+1"'XT |Ytk :1)
-

Forward, . Backward, ,Btk =P (X, 10 Xr |)’tk =1)
e The recursion:

IBtk - Z ak,i p(xt+1 | yti+1 — 1)/Bti+l

© Eric Xing @ CMU, 2014 20



The Backward Algorithm — T
derivation oo

e Define the backward probability:
Bl =P (XX Ly =1)
:ZYt+1P(Xt+1 """ XT’yt+1|Ytk:1) @ @ @

- ZiP(YtiH =1y =DpX, 1Y =Ly =DP (X, g X [ X Ve =1y =1)
= Z,P()’tiu =1] Ytk =1)p(x,.; | Yti+1 =DP (X000 Xy |Yti+1 =1)
= Zi ak,ip(xt+1 | Yti+1 - l)ﬂtl+1

e

Chainrule: P(A,B,C|a)=P(A|a)P(B|A,a)P(C|A,B,a)

© Eric Xing @ CMU, 2014 21



The Backward Algorithm o

e We can compute ,Btk for all k, t, using dynamic programming!

Initialization:

B =1, vk

lteration:

B = Z,-ak,ip(xt+1 Y =18

Termination:

P(x)= Zafﬂf
k

© Eric Xing @ CMU, 2014 22



Example:

x=12,1,56,2,1,6,2,4

© Eric Xing @ CMU, 2014

0.95 ‘@

P(1|F) = 1/6
P(2|F) = 1/6
P(3|F) = 1/6
P(4|F) = 1/6
P(5|F) = 1/6
P(6|F) = 1/6

0.05

@‘. 0.95

P(1IL) = 1/10
P(2IL) = 1/10
P(3IL) = 1/10
P(4|L) = 1/10
P(5|L) = 1/10
P(BIL) = 1/2

23
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x=1,2,1,5,6,2,1,6,2,4

0.95 ‘@ @‘ 0.95
’

Alpha (actual)

P(1|F) = 1/6 0.05 Pp(L)=1/10
0.0833 0.0500 0.0000 0.0000 P(2|F) = 1/6 P(2IL) = 1/10
0.0136 0.0052 0.0000 0.0000 P(3|F) = 1/6 P(3IL) = 1/10
0.0022 0.0006 0.0000  0.0000 el = 16 beI) = 110
0.0004 0.0001 0.0000 0.0000 P(6|F) = 1/6 P(6|L) = 1/2
0.0001 0.0000 0.0001 0.0001 . . |
0.0000 0.0000 0.0007 0.0006 ak =P (x DS o .a
0.0000 0.0000 0.0045 0.0055 ‘ (X: 1Ye )Z’ t-1Thk
0.0000 0.0000 0.0264 0.0112 =N a, .P(x =g
0.0000 0.0000 0.1633 0.1033 P Zi it Kea lYea =DA:
0.0000 0.0000 1.0000 1.0000

Beta (actual)

© Eric Xing @ CMU, 2014
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x=1,2,1,5,6,2,1,6,2,4

0.95 ‘@ @‘ 0.95
’

Alpha (logs) Beta (logs) PUIF) = 1/6 0.05 P(|L) = 1/10
-2.4849 -2.9957 -16.2439 -17.2014 P(2|F) = 1/6 P(2IL) = 1/10
-4.2969 -5.2655 -14.4185 -14.9922 P(3[F) = 1/6 P(3|L) = 1/10
-6.1201 -7.4896 -12.6028 -12.7337 el = 16 beI) = 110
-7.9499 -9.6553 -10.8042 -10.4389 P(6|F) = 1/6 P(6|L) = 1/2
-9.7834 -10.1454 -9.0373 -9.7289 |
-11.5905 -12.4264 -7.2181 -7.4833 atk = P(x, |)’tk 21)2-04_10,' )
-13.4110 -14.6657 -5.4135 -5.1977 ! |
-15.2391 -15.2407 -3.6352 -4.4938 kK-N"a, .P(x =1
117.0310 -17.5432 11.8120 -2.2698 b Zf it Kea lYea =DA:

-18.8430 -19.8129

0

0

© Eric Xing @ CMU, 2014
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What is the probability of a T
hidden state prediction? 4+

AU VI
P 1X) = 0 ]f,,,‘

~ = )
P{Yg(X) ) D

PLY¢ IX) = 21 plA-1151)1 P18 7)

= v

F(‘l%.'l() - W[—[J’.Prﬂ)%'/
1o lx) = (-G

POy LX) = 06657
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000
0000
0000
00
. . o0
Posterior decoding -
e \We can now calculate . )
_ k
k _P(Yt _lix)_atlgt
Py, =1|x) = =
P (x) P (x)
e Then, we can ask
e What is the most likely state at position t of sequence x:
k. =argmax, P(y,) =1|x)
e Note that this is an MPA of a single hidden state,
what if we want to a MPA of a whole hidden state sequence?
Posterior Decoding: ki _ 1.4 _
: o yF =ttt |
e This is different from MPA of a whole sequence of hidden
states x y P(x,y)
e This can be understood as bit error rate O] O Ghi
vs. word error rate Example: Of 1 oeE
MPA of X ? 1 O 0.3
MPA of (X, Y) ? 1 1 0.3

© Eric Xing @ CMU, 2014 27



Viterbil decoding -

e GIVENX =Xy, ..., X, we wantto find y = y;, ..., y;, such that
P(y|x) is maximized:

y" = argmax, P(y|x) = argmax_ P(y x)
o Let

L k
V, :max{yl,“_yt_l}P(Xli""xt-l’YI""’Yt-l’Xt,Yt =1)

= Probability of most likely sequence of states ending at state y, = k

e The recursion: Xg Xg Xg eeveerereeraeassnsenenenaeens Xy
VE=p(x, |y¥ =)max. a V., :p
t = PWXe 1Yy = i i kVi-1 e
v
e Underflows are a significant problem K[ /

P(X1r-s X s Yiveen Vi) =7y, Ay, °"ayt_1,ytby1,x1 “.b)'t’xt

These numbers become extremely small — underflow
Solution: Take the logs of all values:  V,* =log p(x, | y,* =1) + max, (Iog(a,,k )+Vtil)

© Eric Xing @ CMU, 2014 28



Computational Complexity and
Implementation detalls -

e What is the running time, and space required, for Forward,
and Backward?

o = p(x |y =1)) apay

B =Y 8, p0ka | Vs =D AL

V= p;(xt Yy =lymax; a; Vv,
Time: O(K°N); Space: O(KN).

e Useful implementation technique to avoid underflows

e Viterbi: sum of logs
e Forward/Backward: rescaling at each position by multiplying by a constant

© Eric Xing @ CMU, 2014 29



Learning HMM: two scenarios

e Supervised learning: estimation when the “right answer” is
known

e Examples:

GIVEN:  agenomic region X = X;...X go0 000 Where we have good
(experimental) annotations of the CpG islands

GIVEN: the casino player allows us to observe him one evening,
as he changes dice and produces 10,000 rolls

e Unsupervised learning: estimation when the “right answer” is
unknown

e Examples:

GIVEN: the porcupine genome; we don’t know how frequent are the
CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don’t see when he
changes dice

e QUESTION: Update the parameters & of the model to maximize
P(x| ) --- Maximal likelihood (ML) estimation

© Eric Xing @ CMU, 2014 30



Supervised ML estimation .o

e Given x = x;...xy for which the true state path y = y,...yy IS

known,

e Define:
Ajj = # times state transition i—j occurs in'y
B, = # times state i in y emits kK in x

e We can show that the maximum likelihood parameters fare:

. . T i ‘
g — #(i—>J) _ Dp Qe YnaYi A4

I T (i e znzlzy,;x_l _ZJ,A,J..

g _#iok) X, Y YaXee B

CoRo YN b

e Whatif y is continuous? We can treat {(xnt,ynt);t 1T .n :1;N}as NxT
observations of, e.g., a Gaussian, and apply learning rules for Gaussian ...

(Homework!)
31

(Homework!)

© Eric Xing @ CMU, 2014



Pseudocounts

e Solution for small training sets:
e Add pseudocounts
A,.J. = # times state transition i—j occurs iny + R,-J-
B, = # times state i in y emits kinx + S;,
¢ Ry
e Total pseudocounts: R, = iR, 5i=ZkSi,
--- "strength" of prior belief,

Sj; are pseudocounts representing our prior belief

--- total number of imaginary instances in the prior

e Larger total pseudocounts = strong prior belief

e Small total pseudocounts: just to avoid O probabilities ---
smoothing

© Eric Xing @ CMU, 2014
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Unsupervised ML estimation .

Given x = x;...xy for which the true state path y = y,...y\ IS
unknown,

e EXPECTATION MAXIMIZATION

o. Starting with our best guess of a model M, parameters 6.

1. Estimate A; , By in the training data

How? A =Zn’t<y,f,t1y,f¢,> B =Znﬁt<y,f,t >X,,k,t, How? (homework)
2. Update @according to A; , By

Now a "supervised learning" problem

3. Repeat 1 & 2, until convergence
This is called the Baum-Welch Algorithm
We can get to a provably more (or equally) likely parameter set ¢ each iteration

© Eric Xing @ CMU, 2014 33



The Baum Welch algorithm o°

e The complete log likelihood

T T
/c (91 X1Y) - |Og P(X’ Y) - IOgH (p(ynl)H P(yn,t | Yn,t—l)H p(xn,t | Xn,t )j
n t=2 t=1
e The expected complete log likelihood
(4. 0:x,y)) = ;@yn’,l)p(yﬂﬂxn) log 7, j ' ;g((ymm}

e EM
e The E step

7/riz,t :<Yr:,t>:p()’ni,t =1]x,)
SEAtJ :<Yr:,t—1Yr;i,t>: p(YI:,t—l :1’)/nj,t =1[x,)

e The M step ("symbolically” identical to MLE)

ML Znyfil,l ! Z Zt 25’” 'k Z Zt 17/nt nt
- I T-1 i ! T-1
N J Z Zt 1/nt Z Ztl Vnit

© Eric Xing @ CMU, 2014 34
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Summary .

e Modeling hidden transitional trajectories (in discrete state
space, such as cluster label, DNA copy number, dice-choice,
etc.) underlying observed sequence data (discrete, such as
dice outcomes; or continuous, such as CGH signals)

e Useful for parsing, segmenting sequential data
e Important HMM computations:

e The joint likelihood of a parse and data can be written as a product to local terms

(i.e., initial prob, transition prob, emission prob.)
e Computing marginal likelihood of the observed sequence: forward algorithm
e Predicting a single hidden state: forward-backward
e Predicting an entire sequence of hidden states: viterbi
e Learning HMM parameters: an EM algorithm known as Baum-Welch

© Eric Xing @ CMU, 2014
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Shortcomings of Hidden Markov | 8322
Model oo

¢ HMM models capture dependences between each state and only its
corresponding observation

e NLP example: In a sentence segmentation task, each segmental state may
depend not just on a single word (and the adjacent segmental stages), but also
on the (non-local) features of the whole line such as line length, indentation,
amount of white space, etc.

e Mismatch between learning objective function and prediction

objective function

e HMM learns a joint distribution of states and observations P(Y, X), butin a
prediction task, we need the conditional probability P(Y|X)

© Eric Xing @ CMU, 2014 36



Solution: H
Maximum Entropy Markov Model (MEMM) | ¢

n T

P(ylrnlxlin) = Hp(y’ilyi—laxl:n) — H

1=1 1=1

eXP(WTf(yz', Yi—1, Xl:n))
Z(y'i—la Xl:n)

e Models dependence between each state and the full
observation sequence explicitly
e More expressive than HMMs

e Discriminative model
e Completely ignores modeling P(X): saves modeling effort
e Learning objective function consistent with predictive function: P(Y|X)

© Eric Xing @ CMU, 2014 37



MEMM: the Label bias problem

Observation 1 Observation 2 Observation 3 Observation 4

0.4 =m 0.45 =m 0.5 :

State 1
0.2 0.6 0.2 0.55 0.1 0.5
0.2 0.3 0.3
D
0.2 0.1 0.2
sees O\ O N\ O N\ O
0.2 0.1 0.2
= @ \O0 \O0 \@
0.2 0.3 0.2
wes O O O O

What the local transition probabilities say:
 State 1 almost always prefers to go to state 2

» State 2 almost always prefer to stay in state 2
© Eric Xing @ CMU, 2014 38




MEMM: the Label bias problem

Observation 1 Observation 2 Observation 3 Observation 4

0.4 :m 0.45 :m 0.5 >

State 1
0.2 0.6 0.2 0.55 0.1 0.5
0.2 0.3 0.3
e e
0.2 0.1 0.2
sees O\ O N\ O N\ O
0.2 0.1 0.2
= @ \O0 \O0 \@
0.2 0.3 0.2
wes O O O O

Probability of path 1-> 1-> 1-> 1:
 0.4x0.45x0.5=0.09

© Eric Xing @ CMU, 2014 39



MEMM: the Label bias problem

Observation 1 Observation 2 Observation 3 Observation 4

0.4 :m 0.45 :m 0.5 >

State 1
0.2 0.6 0.2 0.55 0.1 0.5
0.2 0.3 0.3
e e
0.2 0.1 0.2
sees O\ O N\ O N\ O
0.2 0.1 0.2
= @ \O0 \O0 \@
0.2 0.3 0.2
wes O O O O

Probability of path 2->2->2->2 :
Other paths:
*«0.2X0.3X0.3=0.018 1->1->1->1:0.09

© Eric Xing @ CMU, 2014 40



MEMM: the Label bias problem

Observation 1 Observation 2 Observation 3 Observation 4

0.4 m 0.45 :m 0.5 >

State 1 >
0.2 0.6 0.2 0.55 0.1 0.5
0.2 0.3 0.3
e e
0.2 0.1 0.2
sees O\ O N\ O N\ O
0.2 0.1 0.2
= @ \O0 \O0 \@
0.2 0.3 0.2
wes O O O O

Probability of path 1->2->1->2;
Other paths:

« 0.6 X0.2X0.5=0.06 1->1->1->1: 0.09
2->2->2->2:0.018
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MEMM: the Label bias problem

Observation 1 Observation 2 Observation 3 Observation 4

0.4 m 0.45 :m 0.5 >

State 1 >
0.2 0.6 0.2 0.55 0.1 0.5
0.2 0.3 0.3
e e
0.2 0.1 0.2
sees O\ O N\ O N\ O
0.2 0.1 0.2
= @ \O0 \O0 \@
0.2 0.3 0.2
wes O O O O

Probability of path 1->1->2->2;
Other paths:

0.4 X0.55 X 0.3 =0.066 1->1->1->1° 0.09
2->2->2->2:0.018
© Eric Xing @ CMU, 20ﬂ4'>2'>1'>2: 006 42



MEMM: the Label bias problem

Observation 1 Observation 2 Observation 3 Observation 4

State 1

State 2 Q

State 3 Q

State 4 Q
2

State 5 Q

Most Likely Path: 1->1->1->1

 Although locally it seems state 1 wants to go to state 2 and state 2 wants to remain in state 2.

e Why?
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MEMM: the Label bias problem

Observation 1 Observation 2 Observation 3 Observation 4

State 1

State 2

State 3

State 4

SR KC)

0.2

State 5

O

Most Likely Path: 1->1->1->1
 State 1 has only two transitions but state 2 has 5:

» Average transition probability from state 2 is lower
© Eric Xing @ CMU, 2014 44




MEMM: the Label bias problem

Observation 1 Observation 2 Observation 3

State 1

State 2

State 3

State 4

State 5

Label bias problem in MEMM:

Observation 4

SR KC)

0.2

O

» Preference of states with lower number of transitions over others

© Eric Xing @ CMU, 2014
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Solution:
Do not normalize probabilities locally

Observation 1 Observation 2 Observation 3 Observation 4

0.4 =m 0.45 =m 0.5 :

State 1
0.2 0.6 0.2 0.55 0.1 0.5
0.2 0.3 0.3
OO0
0.2 0.1 0.2
sees O\ O N\ O N\ O
0.2 0.1 0.2
= @ \O0 \O0 \@
0.2 0.3 0.2
wes O O O O

From local probabilities ....
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Solution: eecs
Do not normalize probabilities locally | s¢

Observation 1 Observation 2 Observation 3 Observation 4

20 =m 30 =m 5 :

State 1
10 30 20 20 10 5
20 30 30
OO0
10 10 20
s @\ O \.O \.@®
20 10 20
= @ \\O0 \0 \@
20 30 20
= @ ‘@ O @

From local probabilities to local potentials

e States with lower transitiQns dQunet have an unfair advantage!



From MEMM ....




From MEMM to CRF ol

H exp(w' £(y;,yi—1,X1:n))

P(yl;n|xl:n) N H ¢(yiayi—laxl:n) —
g i=1

Z(Xl:nv W)

e CRF is a partially directed model
e Discriminative model like MEMM
e Usage of global normalizer Z(x) overcomes the label bias problem of MEMM

e Models the dependence between each state and the entire observation sequence
(like MEMM)
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Conditional Random Fields

e General parametric form:

m‘g‘\gg»m

P(ylx) = Z(Xl)\ " exp( Z Z)\kfk (Yis Yi-1,%) +Zuzgz (yi>x)))

=1
1 mn
_ MNF(ys, i,
T GXP(;( (vi, vi1,%) + pF g(yi, x)))

where Z(x, A, i) ZGXP(Z(ATf Vi Yie1,X) + [ g(y’iax)))
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CRFs: Inference :
e Given CRF parameters A and y, find the y* that maximizes P(y|x)
y' = arg max eXP(Z(ATf(ym Yi-1,X) + 1’ gy, x)))
=1

e Canignore Z(x) because it is not a function of y

e Run the max-product algorithm on the junction-tree of CRF:

Same as Viterbi decoding
used in HMMs!

© Eric Xing @ CMU, 2014 51



CRF learning

o Given {(Xy4 Yy)}q=1", find A%, H* such that

A%, 1k = arg max L(\, p) = arg max H P(y |xa, A, 1)

A, p "udl

= argmaXH Xd )\ /J) eXp Z()\ yd iy Yd,i— 17Xd) + g(yd Zaxd)))

= arg maXZ Z AT (Yai Yaim1,%a) + 1" 8(Wai,%a)) — log Z (x4, A, 1))

Arkh d=1 i=1
Gradient of the log-patrtition function in an
_ _ exponential family is the expectation of the
e Computing the gradient w.r.t A: sufficient statistics.

VAL(/\,M) = Z(Z f(yd,z',yd,z'—l,xd) — Z(P(y‘xd)Zf(yd,iayd,i—laxd)))

d=1 =1 y 1=1
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CRF learning .

N n n
VaLhp) = ) O f(Wair vai-1,%a) 4 > _(Plylxa) Y £(yi,yi-1,%a)))
d=1 1=1 y g==1
e Computing the model expectations: ﬂ

e Requires exponentially large number of summations: Is it intractable?

Z(P(Y|Xd)zf(yz’ayz’—laxd)) = Z(Zf(yiayi—laxd)P(Y|Xd))
= Z Z £(yi, Yi-1,%Xa) P(Yi, Yi-1]%Xa)

Expectation of f over the corresponding marginal
probability of neighboring nodes!!

e Tractable!
e Can compute marginals using the sum-product algorithm on the chain
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CRF learning .

e In practice, we use a Gaussian Regularizer for the parameter
vector to improve generalizability

N

Ak, pux = argmax Yy log P(y X4, A,
p g)w; g P(yalxa, A p)

1
- @(AT)\ + ' )
e In practice, gradient ascent has very slow convergence

e Alternatives:
Conjugate Gradient method
Limited Memory Quasi-Newton Methods
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CRFs: some empirical results
e Comparison of error rates on synthetic data
60 - - - . . . . 60
'.3°'- 50 . "rad B
) copr” Ol aee
= . o © e .
o -/ =3 / |
S e E o | - el '
;,:;... = :,!...‘.
10 . ,.'-.'- 0} .‘.‘.'.-"‘
H ':.\- | . 0 g’v i o in 5 ‘
0 10 SRF e:‘rl]’or 40 50 80 ) 10 HMM error ’ o0
60
50 Data is increasingly higher
i & order in the direction of arrow
5 o
E 0 s s
o ' /
OF CRFs achieve the lowest
0 error rate for higher order
ok | data
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CRFs: some empirical results

e Parts of Speech tagging

model | error  oov error
HMM | 5.69%  45.99%
MEMM | 6.37%  54.61%
CRF | 5.55%  48.05%

MEMMT | 481%  26.99%
CRFT | 427%  23.76%

* Using spelling features

e Using same set of features: HMM >=< CRF > MEMM
e Using additional overlapping features: CRF* > MEMM* >> HMM
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Summary .
e Conditional Random Fields are partially directed discriminative
models
e They overcome the label bias problem of MEMMSs by using a global
normalizer

e Inference for 1-D chain CRFs is exact
e Same as Max-product or Viterbi decoding

e Learning also is exact
e globally optimum parameters can be learned
e Requires using sum-product or forward-backward algorithm

e CRFs involving arbitrary graph structure are intractable in general
e E.g.:Grid CRFs
e Inference and learning require approximation techniques
MCMC sampling
Variational methods
Loopy BP
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