Advanced Introduction to Machine Learning

10715, Fall 2014

Structured Models: Hidden Markov Models versus Conditional Random Fields

Eric Xing Lecture 11, October 13, 2014

Reading: © Eric Xing @ CMU, 2014 1

From static to dynamic mixture models

Static mixture

 $\begin{pmatrix} x & x \\ x & x \end{pmatrix}$

 \bar{X}

 x_{x}

X

 \boldsymbol{x}

X

 v^I

x

The underlying source:Speech signal,

 y^2

 $\widehat{x^x}$

X \mathbf{x}

dice,

The sequence: Phonemes, sequence of rolls,

© Eric Xing @ CMU, 2014

Hidden Markov Model

Alphabetic set: Euclidean space:

- 0 Index set of hidden states *d* R
	- $\mathbb{I} = \{1,2,\cdots,M\}$
- 0 **Transition probabilities**

Graphical model

*x***A***1*

y1

*x*₂

y2

or $\left(\bm{\mathsf{y}}_t^{\,\texttt{J}}\, =\! 1 \!\mid \bm{\mathsf{y}}_{t-1}^{\,\texttt{J}} = \bm{1} \right) \!=\! \bm{a}_{i,\texttt{j}} \, ,$ *i t* $p(y_t | y_{t-1}^i = 1) \sim \text{Multinomial}(a_{i,1}, a_{i,2}, \dots, a_{i,M}), \forall i \in \mathbb{I}.$ *j* $p(\gamma^{\cup}_{t} = 1 | \gamma^{\cup}_{t-1} = 1) = a$ $\mathbf{y}_{t-1}^i = 1$ \sim Multinomia $\mathbf{l}(\mathbf{a}_{i,1}, \mathbf{a}_{i,2}, \dots)$

 $C = \{c_1, c_2, \cdots, c_k\}$

0 Start probabilities

 $p(\mathsf{y}_1) \sim \text{Multinomial}(\pi_1, \pi_2, \dots, \pi_M).$

0 Emission probabilities associated with each state

$$
p(\mathbf{X}_{t} | \mathbf{y}_{t}^{i} = 1) \sim \text{Multinomial}(b_{i,1}, b_{i,2}, \dots, b_{i,k}), \forall i \in \mathbb{I}.
$$

or in general:

$$
p(x_t | y_t^i = 1) \sim f(\cdot | \theta_i), \forall i \in \mathbb{I}.
$$

*x***A***3*

y3

State automata

*^x***A***T*

yT

...

...

Applications of HMMs

- \bullet finance, but we never saw them
- \bullet speech recognition
- \bullet modelling ion channels
- \bullet In the mid-late 1980s HMMs entered genetics and molecular biology, and they are now firmly entrenched.

Some current applications of HMMs to biology

- \bullet mapping chromosomes
- \bullet aligning biological sequences
- \bullet predicting sequence structure
- \bullet inferring evolutionary relationships
- \bullet finding genes in DNA sequence

A Bio Application: gene finding

GENSCAN (Burge & Karlin)

AGAACGTGTGAGAGAGAGGCAAGCCGAAAAATCAGCCG

© Eric Xing @ CMU, 2014 6

A "Financial" Application: The Dishonest Casino

A casino has two dice:

Fair die

P(1) = P(2) = P(3) = P(5) = P(6) = 1/6

Loaded die

P(1) = P(2) = P(3) = P(5) = 1/10 P(6) = 1/2

Casino player switches back-&-forth between fair and loaded die once every 20 turns

Game:

- **1. You bet \$1**
- **2. You roll (always with a fair die)**
- **3. Casino player rolls (maybe with fair die, maybe with loaded die)**
- **4. Highest number wins \$2**

The Dishonest Casino Model

Puzzles Regarding the Dishonest Casino

GIVEN: A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION

- 0 How likely is this sequence, given our model of how the casino works?
	- \bullet This is the **EVALUATION** problem in HMMs
- \bullet What portion of the sequence was generated with the fair die, and what portion with the loaded die?
	- 0 This is the **DECODING** question in HMMs
- \bullet How "loaded" is the loaded die? How "fair" is the fair die? How often does the casino player change from fair to loaded, and back?
	- 0 This is the **LEARNING** question in HMMs

Joint Probability

1245526462146146136136661664661636616366163616515615115146123562344

Probability of a Parse

 \bullet • Given a sequence $\mathbf{x} = x_1, \dots, x_T$ and a parse $\mathbf{y} = \boldsymbol{\mathsf{y}}_1, \; , \; \boldsymbol{\mathsf{y}}_{\mathsf{T}},$

 \bullet

 To find how likely is the parse: (given our HMM and the sequence)

$$
\begin{array}{c}\n\mathbf{y}_1 \\
\hline\n\mathbf{x}_1 \\
\hline\n\mathbf{x}_2 \\
\hline\n\mathbf{x}_3 \\
\hline\n\mathbf{x}_1\n\end{array}
$$

$$
p(x, y) = p(x_1, ..., x_T, y_1, ..., y_T)
$$

\n
$$
= p(y_1) p(x_1 | y_1) p(y_2 | y_1) p(x_2 | y_2) ... p(y_T | y_{T-1}) p(x_T | y_T)
$$

\n
$$
= p(y_1) P(y_2 | y_1) ... p(y_T | y_{T-1}) \times p(x_1 | y_1) p(x_2 | y_2) ... p(x_T | y_T)
$$

Marginal probability:
$$
p(x) = \sum_{y} p(x, y) = \sum_{y_1} \sum_{y_2} \cdots \sum_{y_N} \pi_{y_1} \prod_{t=2}^{T} a_{y_{t-1}, y_t} \prod_{t=1}^{T} p(x_t | y_t)
$$

 \bullet Posterior probability: $p(y | x) = p(x, y) / p(x)$

Example: the Dishonest Casino

- Let the sequence of rolls be:
	- $x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4$
- Then, what is the likelihood of
	- \bullet *y* = Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair? (say initial probs $\mathsf{a}_{\mathsf{0} \mathsf{Fair}}$ = \mathcal{V}_2 , $\mathsf{a}_{\mathsf{0} \mathsf{Loaded}}$ = $\mathcal{V}_2)$

½ P(1 | Fair) P(Fair | Fair) P(2 | Fair) P(Fair | Fair) … P(4 | Fair) =

 $\frac{1}{2} \times (\mathbf{1/6})^{10} \times (\mathbf{0.95})^9 = .00000000521158647211 = 5.21 \times 10^{-9}$

Example: the Dishonest Casino

- So, the likelihood the die is fair in all this run is just 5.21 \times 10⁻⁹
- OK, but what is the likelihood of
	- \bullet π = Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded?

½ P(1 | Loaded) P(Loaded | Loaded) … P(4 | Loaded) =

½ (**1/10**) 8 (**1/2**) 2 $(\textbf{0.95})^9 = .00000000078781176215 = 0.79 \times 10^{\textnormal{-}9}$

 \bullet Therefore, it is after all 6.59 times more likely that the die is fair all the way, than that it is loaded all the way

• Now, what is the likelihood $\pi = F, F, ..., F$?

- $\frac{1}{2} \times (1/6)^{10} \times (0.95)^{9} = 0.5 \times 10^{-9}$, same as before
- What is the likelihood $y = L, L, ..., L$?

• Let the sequence of rolls be:

x = 1, 6, 6, 5, 6, 2, 6, 6, 3, 6

 $\frac{1}{2} \times (1/10)^4 \times (1/2)^6~(0.95)^9 = .00000049238235134735 = 5 \times 10^{-7}$

So, it is 100 times more likely the die is loaded

Example: the Dishonest Casino

Joint Probability

1245526462146146136136661664661636616366163616515615115146123562344

Three Main Questions on HMMs

1. Evaluation

GIVEN an HMM **M**, *M*, and a sequence *x*, FIND Prob (*^x* | *M*) ALGO. Forward

2. Decoding

3. Learning

The Forward Algorithm

- \bullet • We want to calculate $P(x)$, the likelihood of x, given the HMM
	- \bullet Sum over all possible ways of generating **x**:

$$
p(x) = \sum_{y} p(x, y) = \sum_{y_1} \sum_{y_2} \cdots \sum_{y_N} \pi_{y_1} \prod_{t=2}^{T} a_{y_{t-1}, y_t} \prod_{t=1}^{T} p(x_t | y_t)
$$

 \bullet To avoid summing over an exponential number of paths **y**, define

$$
\alpha(\gamma_t^k = 1) = \alpha_t^k \stackrel{\text{def}}{=} P(x_1, \dots, x_t, \gamma_t^k = 1) \quad \text{(the forward probability)}
$$

 \bullet The recursion:

$$
\alpha_t^k = p(\mathbf{x}_t | \mathbf{y}_t^k = 1) \sum_i \alpha_{t-1}^i \mathbf{a}_{i,k}
$$

$$
P(\mathbf{x}) = \sum_k \alpha_t^k
$$

The Forward Algorithm – derivation

Compute the forward probability:

 \mathcal{X}_t , \mathcal{X}_t , \mathcal{Y}_t^k

 $= P(X_1, ..., X_{t-1}, X_t, Y_t^k = 1)$

 $\alpha_t^k = P(x_1, ..., x_{t-1}, x_t, y_t)$

$$
\begin{array}{ccc}\n\mathbf{y}_1 & \cdots & \mathbf{y}_{t-1} & \mathbf{y}_t & \cdots \\
\hline\n\mathbf{x}_1 & \cdots & \mathbf{x}_{t-1} & \mathbf{x}_t & \cdots\n\end{array}
$$

$$
= \sum_{y_{t-1}} P(x_1, \ldots, x_{t-1}, y_{t-1}) P(y_t^k = 1 | y_{t-1}, x_1, \ldots, x_{t-1}) P(x_t | y_t^k = 1, x_1, \ldots, x_{t-1}, y_{t-1})
$$
\n
$$
= \sum_{y_{t-1}} P(x_1, \ldots, x_{t-1}, y_{t-1}) P(y_t^k = 1 | y_{t-1}) P(x_t | y_t^k = 1)
$$
\n
$$
= P(x_t | y_t^k = 1) \sum_i P(x_1, \ldots, x_{t-1}, y_{t-1}^i = 1) P(y_t^k = 1 | y_{t-1}^i = 1)
$$
\n
$$
= P(x_t | y_t^k = 1) \sum_i \alpha_{t-1}^i a_{i,k}
$$

Chain rule: $P(A, B, C) = P(A)P(B | A)P(C | A, B)$

The Forward Algorithm

k

 $= P(x_1 | y_1^k = 1)\pi$

 $\alpha_1^k = P(x_1, y_1^k = 1)$

 $= P(x_1 | y_1^k = 1) P(y_1^k = 1)$

• We can compute α_t^k for all k , t , using dynamic programming!

Initialization:

$$
\alpha_1^k = P(\mathbf{x}_1 | \mathbf{y}_1^k = 1)\pi_k
$$

Iteration:

$$
\alpha_t^k = P(\mathbf{x}_t \mid \mathbf{y}_t^k = 1) \sum_i \alpha_{t-1}^i \mathbf{a}_{i,k}
$$

Termination:

$$
P(\mathbf{x}) = \sum_{k} \alpha_{\mathsf{T}}^{k}
$$

The Backward Algorithm

- We want to compute $P(y_t^k = 1 | x)$, the posterior probability distribution on the *t* th position, given **x** *P yt*
	- \bullet We start by computing

$$
P(\gamma_t^k = 1, x) = P(x_1, ..., x_t, \gamma_t^k = 1, x_{t+1}, ..., x_T)
$$

= $P(x_1, ..., x_t, \gamma_t^k = 1)P(x_{t+1}, ..., x_T | x_1, ..., x_t, \gamma_t^k = 1)$
= $P(x_1...x_t, \gamma_t^k = 1)P(x_{t+1}...x_T | \gamma_t^k = 1)$

Forward, $\alpha_t{}^k$

 β_t^k Backward, $\beta_t^k = P(x_{t+1},...,x_{t-1} | y_t^k = 1)$ $\mathcal{X}_{t+1},...,\mathcal{X}_{\mathcal{T}} \mid \mathcal{Y}_{t}^{\: k}$ $\beta_t^k = P(X_{t+1},...,X_{T}\mid \bm{\mathsf{y}})$

*x***A***t*

*y***t**

...

...

*^x***A***t+1*

*y***t+1**

 \bullet The recursion:

$$
\beta_t^k = \sum_i a_{k,i} p(x_{t+1} | y_{t+1}^i = 1) \beta_{t+1}^i
$$

© Eric Xing @ CMU, 2014 20

*^x***A***T*

yT

...

...

The Backward Algorithm – derivation

yT

...

*y***t+1**

*y***t**

...

 \bullet Define the backward probability:

$$
\beta_{t}^{k} = P(x_{t+1},...,x_{T} | y_{t}^{k} = 1) \qquad \cdots \qquad \mathbf{x}_{t}
$$
\n
$$
= \sum_{y_{t+1}} P(x_{t+1},...,x_{T}, y_{t+1} | y_{t}^{k} = 1) \qquad \cdots \qquad \mathbf{x}_{t}
$$
\n
$$
= \sum_{i} P(y_{t+1}^{i} = 1 | y_{t}^{k} = 1) p(x_{t+1} | y_{t+1}^{i} = 1, y_{t}^{k} = 1) P(x_{t+2},...,x_{T} | x_{t+1}, y_{t+1}^{i} = 1, y_{t}^{k} = 1)
$$
\n
$$
= \sum_{i} P(y_{t+1}^{i} = 1 | y_{t}^{k} = 1) p(x_{t+1} | y_{t+1}^{i} = 1) P(x_{t+2},...,x_{T} | y_{t+1}^{i} = 1)
$$
\n
$$
= \sum_{i} a_{k,i} p(x_{t+1} | y_{t+1}^{i} = 1) \beta_{t+1}^{i}
$$

Chain rule: $P(A, B, C | \alpha) = P(A | \alpha)P(B | A, \alpha)P(C | A, B, \alpha)$

The Backward Algorithm

• We can compute β_t^k for all k , t , using dynamic programming!

Initialization:

$$
\beta_T^k=1, \ \forall \, k
$$

Iteration:

$$
\beta_t^k = \sum_i a_{k,i} P(x_{t+1} | y_{t+1}^i = 1) \beta_{t+1}^i
$$

Termination:

$$
P(\mathbf{x}) = \sum_{k} \alpha_1^k \beta_1^k
$$

Example:

x **= 1, 2, 1, 5, 6, 2, 1, 6, 2, 4**

x **= 1, 2, 1, 5, 6, 2, 1, 6, 2, 4**

x **= 1, 2, 1, 5, 6, 2, 1, 6, 2, 4**

Beta (logs) -16.2439 -17.2014-14.4185 -14.9922-12.6028 -12.7337-10.8042 -10.4389-9.0373 -9.7289-7.2181 -7.4833-5.4135 -5.1977-3.6352 -4.4938-1.8120 -2.26980 0

What is the probability of a hidden state prediction?

$$
P(y_{5}^{1}|x) = \frac{y_{1}}{p(x)} \int_{t}^{t} = 1.
$$

$$
P(y_{5}^{1}|x) = \frac{y_{2}}{p(x)} \int_{t}^{t} = 1.
$$

$$
P(y_{5}^{1}|x) = \frac{y_{1}}{p(x)} = \frac{y_{1}^{1}(-18.820)}{x_{1}^{1}(-18.820)} = 0.7415
$$

$$
P(Y_{8}^{1}|\chi) = 0p(-18.8743)/C
$$

\n $P(Y_{8}^{1}|\chi) = exp(-19.647)/C$
\n $P(Y_{8}^{1}|\chi) = 0.6857$.

Posterior decoding

• We can now calculate

$$
P(y_t^k = 1 | x) = \frac{P(y_t^k = 1, x)}{P(x)} = \frac{\alpha_t^k \beta_t^k}{P(x)}
$$

- \bullet Then, we can ask
	- \bullet What is the most likely state at position *t* of sequence **x**:

$$
k_t^* = \arg \max_{k} P(y_t^k = 1 | x)
$$

- \bullet Note that this is an MPA of a single hidden state, what if we want to a MPA of a whole hidden state sequence?
- \bullet Posterior Decoding:

$$
\left\{\gamma_t^{k_t^*}=1:t=1\cdots T\right\}
$$

- \bullet This is different from MPA of a whole sequence of hidden states
- \bullet This can be understood as *bit error rate* vs. *word error rate*

Example: MPA of *X* **?**

MPA of *(X, Y)* **?**

Viterbi decoding

• GIVEN $x = x_1, ..., x_T$, we want to find $y = y_1, ..., y_T$, such that *P* (**y**|**x**) is maximized:

$$
y^* = \operatorname{argmax}_y P(y | x) = \operatorname{argmax}_x P(y, x)
$$

 \bullet Let

$$
V_t^k = \max_{\{y_1, \dots, y_{t-1}\}} P(x_1, \dots, x_{t-1}, y_1, \dots, y_{t-1}, x_t, y_t^k = 1)
$$

 $=$ Probability of most likely $\overline{\textbf{sequence of states}}$ ending at state \bm{y}_{t} = \bm{k}

 \bullet The recursion:

$$
V_t^k = p(x_t | y_t^k = 1) \max_i a_{i,k} V_{t-1}^i
$$

 \bullet Underflows are a significant problem K $p(x_1, ..., x_t, y_1, ..., y_t) = \pi_{y_1} a_{y_1, y_2} \cdots a_{y_{t-1}, y_t} b_{y_1, x_1} \cdots b_{y_t, x_t}$

- These numbers become extremely small underflow
- Solution: Take the logs of all values: $V_t^k = \log p(X_t | Y_t^k = 1) + \max_i \left(\log(a_{i,k}) + V_{t-1}^i \right)$ $\mathbf{y}_t \mid \mathbf{y}_t^{\: k}$ $V_t^k = \log p(X_t | Y_t^k = 1) + \max_i \left(\log(a_{i,k}) + V_{t-1}^k \right)$

Computational Complexity and implementation details

 What is the running time, and space required, for Forward, and Backward?

$$
\alpha_t^k = p(x_t | y_t^k = 1) \sum_i \alpha_{t-1}^i a_{i,k}
$$

$$
\beta_t^k = \sum_i a_{k,i} p(x_{t+1} | y_{t+1}^i = 1) \beta_{t+1}^i
$$

$$
V_t^k = p(x_t | y_t^k = 1) \max_i a_{i,k} V_{t-1}^i
$$

Time: O(*K*² *N*); Space: O(*KN*).

- Useful implementation technique to avoid underflows
	- \bullet Viterbi: sum of logs
	- \bullet Forward/Backward: rescaling at each position by multiplying by a constant

Learning HMM: two scenarios

- **Supervised learning**: estimation when the "right answer" is known
	- \bullet **Examples:**
		- GIVEN: a genomic region $x = x_1...x_{1,000,000}$ where we have good (experimental) annotations of the CpG islands
		- GIVEN: the casino player allows us to observe him one evening, as he changes dice and produces 10,000 rolls
- **Unsupervised learning**: estimation when the "right answer" is unknown
	- \bullet **Examples:**
		- GIVEN: the porcupine genome; we don't know how frequent are the CpG islands there, neither do we know their composition
		- GIVEN: 10,000 rolls of the casino player, but we don't see when he changes dice
- \bullet • **QUESTION:** Update the parameters θ of the model to maximize $P(x|\theta)$ --- Maximal likelihood (ML) estimation \circledcirc Eric Xing \circledcirc CMU, 2014 \hfill

Supervised ML estimation

- Given $x = x_1...x_N$ for which the true state path $y = y_1...y_N$ is known,
	- \bullet **Define:**
		- ${\boldsymbol{\mathsf{A}}}_{ij}$ $\qquad \, = \, \#$ times state transition $i \!\!\rightarrow \!\! j$ occurs in ${\bf y}$
		- *Bik* \mathbf{z}_k = # times state *i* in **y** emits *k* in **x**
	- \bullet \bullet We can show that the maximum likelihood parameters θ are:

$$
a_{ij}^{ML} = \frac{\#(i \rightarrow j)}{\#(i \rightarrow \bullet)} = \frac{\sum_{n} \sum_{t=2}^{T} y_{n,t-1}^{i} y_{n,t}^{j}}{\sum_{n} \sum_{t=2}^{T} y_{n,t-1}^{i}} = \frac{A_{ij}}{\sum_{j} A_{ij}}
$$

$$
b_{ik}^{ML} = \frac{\#(i \rightarrow k)}{\#(i \rightarrow \bullet)} = \frac{\sum_{n} \sum_{t=1}^{T} y_{n,t}^{i} x_{n,t}^{k}}{\sum_{n} \sum_{t=1}^{T} y_{n,t}^{i}} = \frac{B_{ik}}{\sum_{k} B_{ik}}
$$

(Homework!)

 \bullet • What if **y** is continuous? We can treat $\{(\mathsf{x}_{n,t}^-, \mathsf{y}_{n,t}^-,): t = 1 : T, n = 1 : N \}$ as $N \times T$ observations of, e.g., a Gaussian, and apply learning rules for Gaussian … $\langle (\pmb{\times}_{n,t} \, , \pmb{\mathsf{y}}_{n,t} \,) : \pmb{t} \rangle$ $=$ 1 : \overline{T} , $n =$ 1 : N $\overline{\}}$

(Homework!) © Eric Xing @ CMU, 2014 **31**

Pseudocounts

• Solution for small training sets:

- \bullet Add pseudocounts
	- A_{ij} = # times state transition *i* \rightarrow *j* occurs in $y + R_{ij}$
	- B_{ik} = # times state *i* in **y** emits k in $x + S_{ik}$
- \bullet *R*_{ij}, *S*_{ij} are pseudocounts representing our prior belief
- \bullet • Total pseudocounts: $R_i = \sum_j R_{ij}$ *,* $S_i = \sum_k S_{ik}$,
	- --- "strength" of prior belief,
	- --- total number of imaginary instances in the prior
- Larger total pseudocounts \Rightarrow strong prior belief
- Small total pseudocounts: just to avoid 0 probabilities -- smoothing

Unsupervised ML estimation

 \bullet • Given $x = x_1...x_N$ for which the true state path $y = y_1...y_N$ is unknown,

\bullet **EXPECTATION MAXIMIZATION**

- Ω . Starting with our best guess of a model *M*, parameters θ :
- 1. Estimate A_{ij} , B_{ik} in the training data
	- How? $A_{ij} = \sum_{n,t} \left\langle y_{n,t-1}^i y_{n,t}^j \right\rangle$ $B_{ik} = \sum_{n,t} \left\langle y_{n,t}^i \right\rangle x_{n,t}^k$, How? (homework) $\mathcal{B}_{ik} = \sum_{n,t} \left\langle \mathbf{y}_{n,t-1}^i \mathbf{y}_{n,t}^j \right\rangle \hspace{0.5cm} \mathcal{B}_{ik} = \sum_{n,t} \left\langle \mathbf{y}_{n,t}^i \right\rangle \hspace{-0.1cm} \mathbf{x}_{n,t}^k$ *j n t* \mathcal{A}_{ij} = $\sum_{n,t} \left\langle \mathcal{Y}_{n,t-1}^{i} \mathcal{Y}_{n,t}^{j} \right\rangle$
- 2. $\,$ Update θ according to \boldsymbol{A}_{ij} , \boldsymbol{B}_{ik}
	- \bullet Now a "supervised learning" problem
- 3. Repeat 1 & 2, until convergence

This is called the Baum-Welch Algorithm

We can get to a provably more (or equally) likely parameter set θ each iteration

The Baum Welch algorithm

The complete log likelihood

$$
\ell_c(\boldsymbol{\theta}; \mathbf{x}, \mathbf{y}) = \log p(\mathbf{x}, \mathbf{y}) = \log \prod_n \left(p(\mathbf{y}_{n,1}) \prod_{t=2}^T p(\mathbf{y}_{n,t} | \mathbf{y}_{n,t-1}) \prod_{t=1}^T p(\mathbf{x}_{n,t} | \mathbf{x}_{n,t}) \right)
$$

The expected complete log likelihood

$$
\langle \ell_c(\boldsymbol{\theta}; \mathbf{x}, \mathbf{y}) \rangle = \sum_n \left(\langle \mathbf{y}_{n,1}^i \rangle_{p(\mathbf{y}_{n,1}|\mathbf{x}_n)} \log \pi_i \right) + \sum_n \sum_{t=2}^T \left(\langle \mathbf{y}_{n,t-1}^i \mathbf{y}_{n,t}^j \rangle_{p(\mathbf{y}_{n,t-1}, \mathbf{y}_{n,t}|\mathbf{x}_n)} \log \mathbf{a}_{i,j} \right) + \sum_n \sum_{t=1}^T \left(\mathbf{x}_{n,t}^k \langle \mathbf{y}_{n,t}^i \rangle_{p(\mathbf{y}_{n,t}|\mathbf{x}_n)} \log \mathbf{b}_{i,k} \right)
$$

- \bullet EM
	- \bullet The **E** step

$$
\gamma_{n,t}^{i} = \langle \mathbf{y}_{n,t}^{i} \rangle = \mathbf{p}(\mathbf{y}_{n,t}^{i} = 1 | \mathbf{x}_{n})
$$

$$
\xi_{n,t}^{i,j} = \langle \mathbf{y}_{n,t-1}^{i} \mathbf{y}_{n,t}^{j} \rangle = \mathbf{p}(\mathbf{y}_{n,t-1}^{i} = 1, \mathbf{y}_{n,t}^{j} = 1 | \mathbf{x}_{n})
$$

 \bullet The **M** step ("symbolically" identical to MLE)

$$
\pi_i^{ML} = \frac{\sum_n \gamma_{n,1}^i}{N} \qquad \qquad a_{ij}^{ML} = \frac{\sum_n \sum_{t=2}^T \xi_{n,t}^{i,j}}{\sum_n \sum_{t=1}^T \gamma_{n,t}^i}
$$

 \oslash Eric Xing \oslash CMU, 2014 \oslash 34

Summary

- \bullet Modeling hidden transitional trajectories (in discrete state space, such as cluster label, DNA copy number, dice-choice, etc.) underlying observed sequence data (discrete, such as dice outcomes; or continuous, such as CGH signals)
- \bullet Useful for parsing, segmenting sequential data
- \bullet Important HMM computations:
	- \bullet The joint likelihood of a parse and data can be written as a product to local terms (i.e., initial prob, transition prob, emission prob.)
	- \bullet Computing marginal likelihood of the observed sequence: forward algorithm
	- \bullet Predicting a single hidden state: forward-backward
	- \bullet Predicting an entire sequence of hidden states: viterbi
	- \bullet Learning HMM parameters: an EM algorithm known as Baum-Welch

Shortcomings of Hidden Markov Model

- \bullet HMM models capture dependences between each state and only its corresponding observation
	- \bullet NLP example: In a sentence segmentation task, each segmental state may depend not just on a single word (and the adjacent segmental stages), but also on the (non-local) features of the whole line such as line length, indentation, amount of white space, etc.
- \bullet Mismatch between learning objective function and prediction objective function
	- \bullet HMM learns a joint distribution of states and observations P(**Y**, **X**), but in a prediction task, we need the conditional probability P(**Y**|**X**)

Solution: Maximum Entropy Markov Model (MEMM)

- Models dependence between each state and the full observation sequence explicitly
	- \bullet More expressive than HMMs
- \bullet Discriminative model
	- \bullet Completely ignores modeling P(**X**): saves modeling effort
	- \bullet Learning objective function consistent with predictive function: P(**Y**|**X**)

What the local transition probabilities say:

- State 1 almost always prefers to go to state 2
- State 2 almost always prefer to stay in state 2

• $0.4 \times 0.45 \times 0.5 = 0.09$

• Although **locally** it seems state 1 wants to go to state 2 and state 2 wants to remain in state 2.

• **why?**

Most Likely Path: 1-> 1-> 1-> 1

- State 1 has only two transitions but state 2 has 5:
	- Average transition probability from state 2 is lower

Label bias problem in MEMM:

• Preference of states with lower number of transitions over others

Solution: Do not normalize probabilities locally

From local probabilities ….

Solution: Do not normalize probabilities locally

From local probabilities to local potentials

 \bullet States with lower transitions do pat have an unfair advantage! $_{\rm 47}$

From MEMM ….

From MEMM to CRF

$$
P(\mathbf{y}_{1:n}|\mathbf{x}_{1:n}) = \frac{1}{Z(\mathbf{x}_{1:n})}\prod_{i=1}^{n} \phi(y_i, y_{i-1}, \mathbf{x}_{1:n}) = \frac{1}{Z(\mathbf{x}_{1:n}, \mathbf{w})}\prod_{i=1}^{n} \exp(\mathbf{w}^T \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_{1:n}))
$$

- CRF is a partially directed model
	- \bullet Discriminative model like MEMM
	- \bullet Usage of global normalizer Z(**x**) overcomes the label bias problem of MEMM
	- \bullet Models the dependence between each state and the entire observation sequence (like MEMM)

Conditional Random Fields

General parametric form:

$$
P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x}, \lambda, \mu)} \exp(\sum_{i=1}^{n} (\sum_{k} \lambda_k f_k(y_i, y_{i-1}, \mathbf{x}) + \sum_{l} \mu_l g_l(y_i, \mathbf{x})))
$$

=
$$
\frac{1}{Z(\mathbf{x}, \lambda, \mu)} \exp(\sum_{i=1}^{n} (\lambda^T \mathbf{f}(y_i, y_{i-1}, \mathbf{x}) + \mu^T \mathbf{g}(y_i, \mathbf{x})))
$$

where
$$
Z(\mathbf{x}, \lambda, \mu) = \sum_{\mathbf{y}} \exp(\sum_{i=1}^{n} (\lambda^T \mathbf{f}(y_i, y_{i-1}, \mathbf{x}) + \mu^T \mathbf{g}(y_i, \mathbf{x})))
$$

CRFs: Inference

- Given CRF parameters λ and μ , find the **y**^{*} that maximizes $P(y|x)$ \bullet = $\arg \max_{\mathbf{y}} \exp(\sum_{i=1}^{n} (\lambda^T \mathbf{f}(y_i, y_{i-1}, \mathbf{x}) + \mu^T \mathbf{g}(y_i, \mathbf{x})))$ \mathbf{y}^*
	- \bullet Can ignore Z(**x**) because it is not a function of **y**
- \bullet Run the max-product algorithm on the junction-tree of CRF:

 $i=1$

CRF learning

• Given $\{(\mathbf{x}_d, \mathbf{y}_d)\}_{d=1}^N$, find λ^* , μ^* such that

$$
\lambda*, \mu* = \arg \max_{\lambda, \mu} L(\lambda, \mu) = \arg \max_{\lambda, \mu} \prod_{d=1}^{N} P(\mathbf{y}_d | \mathbf{x}_d, \lambda, \mu)
$$

$$
= \arg \max_{\lambda, \mu} \prod_{d=1}^N \frac{1}{Z(\mathbf{x}_d, \lambda, \mu)} \exp(\sum_{i=1}^n (\lambda^T \mathbf{f}(y_{d,i}, y_{d,i-1}, \mathbf{x}_d) + \mu^T \mathbf{g}(y_{d,i}, \mathbf{x}_d)))
$$

$$
= \arg \max_{\lambda,\mu} \sum_{d=1}^N (\sum_{i=1}^n (\lambda^T \mathbf{f}(y_{d,i}, y_{d,i-1}, \mathbf{x}_d) + \mu^T \mathbf{g}(y_{d,i}, \mathbf{x}_d)) - \log Z(\mathbf{x}_d, \lambda, \mu))
$$

• Computing the gradient w.r.t λ :

Gradient of the log-partition function in an exponential family is the expectation of the sufficient statistics.

$$
\nabla_{\lambda} L(\lambda, \mu) = \sum_{d=1}^{N} \left(\sum_{i=1}^{n} \mathbf{f}(y_{d,i}, y_{d,i-1}, \mathbf{x}_d) - \sum_{\mathbf{y}} (P(\mathbf{y}|\mathbf{x}_{\mathbf{d}}) \sum_{i=1}^{n} \mathbf{f}(y_{d,i}, y_{d,i-1}, \mathbf{x}_d)) \right)
$$

CRF learning

$$
\nabla_{\lambda} L(\lambda, \mu) = \sum_{d=1}^{N} (\sum_{i=1}^{n} \mathbf{f}(y_{d,i}, y_{d,i-1}, \mathbf{x}_d) - \sum_{\mathbf{y}} (P(\mathbf{y}|\mathbf{x}_{\mathbf{d}}) \sum_{i=1}^{n} \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_d))
$$

- \bullet Computing the model expectations:
	- \bullet Requires exponentially large number of summations: Is it intractable?

$$
\sum_{\mathbf{y}} (P(\mathbf{y}|\mathbf{x}_d) \sum_{i=1}^n \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_d)) = \sum_{i=1}^n (\sum_{\mathbf{y}} \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_d) P(\mathbf{y}|\mathbf{x}_d))
$$

$$
= \sum_{i=1}^n \sum_{y_i, y_{i-1}} \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_d) P(y_i, y_{i-1}|\mathbf{x}_d)
$$

$$
\sum_{i=1}^n \sum_{y_i, y_{i-1}} \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_d) P(y_i, y_{i-1}|\mathbf{x}_d)
$$

- 0 Tractable!
	- \bullet Can compute marginals using the sum-product algorithm on the chain

CRF learning

• In practice, we use a Gaussian Regularizer for the parameter vector to improve generalizability

$$
\lambda*, \mu* = \arg \max_{\lambda, \mu} \sum_{d=1}^{N} \log P(\mathbf{y}_d | \mathbf{x}_d, \lambda, \mu) - \frac{1}{2\sigma^2} (\lambda^T \lambda + \mu^T \mu)
$$

- In practice, gradient ascent has very slow convergence
	- \bullet Alternatives:
		- 0 Conjugate Gradient method
		- \bullet Limited Memory Quasi-Newton Methods

CRFs: some empirical results

 \bullet Comparison of error rates on synthetic data

Data is increasingly higher order in the direction of arrow

> CRFs achieve the lowest error rate for higher order data

CRFs: some empirical results

Parts of Speech tagging

⁺Using spelling features

- \bullet Using same set of features: HMM >=< CRF > MEMM
- \bullet • Using additional overlapping features: CRF+ > MEMM+ >> HMM

Summary

- \bullet Conditional Random Fields are partially directed discriminative models
- 0 They overcome the label bias problem of MEMMs by using a global normalizer
- 0 Inference for 1-D chain CRFs is exact
	- \bullet Same as Max-product or Viterbi decoding
- \bullet Learning also is exact
	- \bullet globally optimum parameters can be learned
	- \bullet Requires using sum-product or forward-backward algorithm
- \bullet CRFs involving arbitrary graph structure are intractable in general
	- \bullet E.g.: Grid CRFs
	- \bullet Inference and learning require approximation techniques
		- \bullet MCMC sampling
		- \bullet Variational methods
		- \bullet Loopy BP