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From static to dynamic mixture 
models

Dynamic mixture

A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... 

Static mixture

AX1

Y1

N
The sequence:

The underlying 
source:

Phonemes,

Speech signal, 

sequence of rolls, 

dice,
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Hidden Markov Model
 Observation space

Alphabetic set:
Euclidean space:

 Index set of hidden states

 Transition probabilities between any two states

or

 Start probabilities

 Emission probabilities associated with each state

or in general:

A AA Ax2 x3x1 xT

y2 y3y1 yT... 

... 
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Applications of HMMs
 Some early applications of HMMs

 finance, but we never saw them  
 speech recognition  
 modelling ion channels 

 In the mid-late 1980s HMMs entered genetics and molecular 
biology, and they are now firmly entrenched.

 Some current applications of HMMs to biology
 mapping chromosomes
 aligning biological sequences
 predicting sequence structure
 inferring evolutionary relationships
 finding genes in DNA sequence
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A Bio Application: gene finding
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E0 E1 E2

E

poly-A

3'UTR5'UTR

tEi

Es

I0 I1 I2

intergenic
region

Forward (+) strand
Reverse (-) strand

Forward (+) strand
Reverse (-) strand

promoter

GAGAACGTGTGAGAGAGAGGCAAGCCGAAAAATCAGCCGC
CGAAGGATACACTATCGTCGTCCTTGTCCGACGAACCGGT
GGTCATGCAAACAACGCACAGAACAAATTAATTTTCAAAT
TGTTCAATAAATGTCCCACTTGCTTCTGTTGTTCCCCCCT
TTCCGCTAGCGGAATTTTTTATATTCTTTTGGGGGCGCTC
TTTCGTTGACTTTTCGAGCACTTTTTCGATTTTCGCGCGC
TGTCGAACGGCAGCGTATTTATTTACAATTTTTTTTGTTA
GCGGCCGCCGTTGTTTGTTGCAGATACACAGCGCACACAT
ATAAGCTTGCACACTGATGCACACACACCGACACGTTGTC
ACCGAAATGAACGGGACGGCCATATGACTGGCTGGCGCTC
GGTATGTGGGTGCAAGCGAGATACCGCGATCAAGACTCGA
ACGAGACGGGTCAGCGAGTGATACCGATTCTCTCTCTTTT
GCGATTGGGAATAATGCCCGACTTTTTACACTACATGCGT
TGGATCTGGTTATTTAATTATGCCATTTTTCTCAGTATAT
CGGCAATTGGTTGCATTAATTTTGCCGCAAAGTAAGGAAC
ACAAACCGATAGTTAAGATCCAACGTCCCTGCTGCGCCTC
GCGTGCACAATTTGCGCCAATTTCCCCCCTTTTCCAGTTT
TTTTCAACCCAGCACCGCTCGTCTCTTCCTCTTCTTAACG
TTAGCATTCGTACGAGGAACAGTGCTGTCATTGTGGCCGC
TGTGTAGCTAAAAAGCGTAATTATTCATTATCTAGCTATC
TTTTCGGATATTATTGTCATTTGCCTTTAATCTTGTGTAT
TTATATGGATGAAACGTGCTATAATAACAATGCAGAATGA
AGAACTGAAGAGTTTCAAAACCTAAAAATAATTGGAATAT
AAAGTTTGGTTTTACAATTTGATAAAACTCTATTGTAAGT
GGAGCGTAACATAGGGTAGAAAACAGTGCAAATCAAAGTA
CCTAAATGGAATACAAATTTTAGTTGTACAATTGAGTAAA
ATGAGCAAAGCGCCTATTTTGGATAATATTTGCTGTTTAC
AAGGGGAACATATTCATAATTTTCAGGTTTAGGTTACGCA
TATGTAGGCGTAAAGAAATAGCTATATTTGTAGAAGTGCA
TATGCACTTTATAAAAAATTATCCTACATTAACGTATTTT
ATTTGCTTTAAAACCTATCTGAGATATTCCAATAAGGTAA
GTGCAGTAATACAATGTAAATAATTGCAAATAATGTTGTA
ACTAAATACGTAAACAATAATGTAGAAGTCCGGCTGAAAG
CCCCAGCAGCTATAGCCGATATCTATATGATTTAAACTCT
TGTCTGCAACGTTCTAATAAATAAATAAAATGCAAAATAT
AACCTATTGAGACAATACATTTATTTTATTTTTTTATATC
ATCAATCATCTACTGATTTCTTTCGGTGTATCGCCTAATC
CATCTGTGAAATAGAAATGGCGCCACCTAGGTTAAGAAAA
GATAAACAGTTGCCTTTAGTTGCATGACTTCCCGCTGGAT
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A “Financial” Application: 
The Dishonest Casino

A casino has two dice:
 Fair die

P(1) = P(2) = P(3) = P(5) = P(6) = 1/6
 Loaded die

P(1) = P(2) = P(3) = P(5) = 1/10
P(6) = 1/2

Casino player switches back-&-forth 
between fair and loaded die once 
every 20 turns

Game:
1. You bet $1
2. You roll (always with a fair die)
3. Casino player rolls (maybe with fair 

die, maybe with loaded die)
4. Highest number wins $2
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FAIR LOADED

0.05

0.05

0.950.95

P(1|F) = 1/6
P(2|F) = 1/6
P(3|F) = 1/6
P(4|F) = 1/6
P(5|F) = 1/6
P(6|F) = 1/6

P(1|L) = 1/10
P(2|L) = 1/10
P(3|L) = 1/10
P(4|L) = 1/10
P(5|L) = 1/10
P(6|L) = 1/2

The Dishonest Casino Model
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Puzzles Regarding the Dishonest 
Casino 

GIVEN: A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION
 How likely is this sequence, given our model of how the casino 

works?
 This is the EVALUATION problem in HMMs

 What portion of the sequence was generated with the fair die, and 
what portion with the loaded die?
 This is the DECODING question in HMMs

 How “loaded” is the loaded die? How “fair” is the fair die? How often 
does the casino player change from fair to loaded, and back?
 This is the LEARNING question in HMMs
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Joint Probability

1245526462146146136136661664661636616366163616515615115146123562344

© Eric Xing @ CMU, 2014 10



Probability of a Parse
 Given a sequence x = x1……xT

and a parse y = y1, ……, yT,
 To find how likely is the parse:

(given our HMM and the sequence)

p(x, y) = p(x1……xT, y1, ……, yT) (Joint probability)
= p(y1) p(x1 | y1) p(y2 | y1) p(x2 | y2) … p(yT | yT-1) p(xT | yT)
= p(y1) P(y2 | y1) … p(yT | yT-1) × p(x1 | y1) p(x2 | y2) … p(xT | yT)

 Marginal probability:

 Posterior probability:
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Example: the Dishonest Casino
 Let the sequence of rolls be:

 x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4

 Then, what is the likelihood of
 y = Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair?

(say initial probs a0Fair = ½, aoLoaded = ½)

½  P(1 | Fair) P(Fair | Fair) P(2 | Fair) P(Fair | Fair) … P(4 | Fair) =

½  (1/6)10  (0.95)9 = .00000000521158647211 = 5.21  10-9
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Example: the Dishonest Casino
 So, the likelihood the die is fair in all this run

is just 5.21  10-9

 OK, but what is the likelihood of
  = Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, 

Loaded, Loaded, Loaded?

½  P(1 | Loaded) P(Loaded | Loaded) … P(4 | Loaded) =

½  (1/10)8  (1/2)2 (0.95)9 = .00000000078781176215 = 0.79  10-9

 Therefore, it is after all 6.59 times more likely that the die is fair 
all the way, than that it is loaded all the way

© Eric Xing @ CMU, 2014 13



Example: the Dishonest Casino
 Let the sequence of rolls be:

 x = 1, 6, 6, 5, 6, 2, 6, 6, 3, 6

 Now, what is the likelihood  = F, F, …, F?
 ½  (1/6)10  (0.95)9 = 0.5  10-9, same as before

 What is the likelihood y = L, L, …, L?

½  (1/10)4  (1/2)6 (0.95)9 = .00000049238235134735 = 5  10-7

 So, it is 100 times more likely the die is loaded
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Joint Probability

1245526462146146136136661664661636616366163616515615115146123562344
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Three Main Questions on HMMs
1. Evaluation

GIVEN an HMM M, and a sequence x,
FIND Prob (x | M)
ALGO. Forward

2. Decoding
GIVEN an HMM M, and a sequence x ,
FIND the sequence y of states that maximizes, e.g., P(y | x , M),    

or the most probable subsequence of states
ALGO. Viterbi, Forward-backward 

3. Learning
GIVEN an HMM M, with unspecified transition/emission probs.,

and a sequence x,
FIND parameters  = (i, aij, ik) that maximize P(x | )
ALGO. Baum-Welch (EM)
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The Forward Algorithm
 We want to calculate P(x), the likelihood of x, given the HMM

 Sum over all possible ways of generating x:

 To avoid summing over an exponential number of paths y, define

(the forward probability)

 The recursion:

),,...,()(
def

11 1  k
tt

k
t

k
t yxxPy 

 
i

ki
i
t

k
tt

k
t ayxp ,)|( 11 


k

k
TP )(x

     
 




y
yxx

1 2 11
2 1

y y y

T

t

T

t
ttyyy

N tt
yxpapp )|(),()( ,

© Eric Xing @ CMU, 2014 17



The Forward Algorithm –
derivation
 Compute the forward probability:
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The Forward Algorithm
 We can compute       for all k, t, using dynamic programming!

Initialization:

Iteration:

Termination:
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The Backward Algorithm
 We want to compute                      ,

the posterior probability distribution on the                                          
t th position, given x

 We start by computing

 The recursion:
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The Backward Algorithm –
derivation
 Define the backward probability:
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The Backward Algorithm
 We can compute       for all k, t, using dynamic programming!

Initialization:

Iteration:

Termination:
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Example:

FAIR LOADED

0.05

0.05

0.950.95

P(1|F) = 1/6
P(2|F) = 1/6
P(3|F) = 1/6
P(4|F) = 1/6
P(5|F) = 1/6
P(6|F) = 1/6

P(1|L) = 1/10
P(2|L) = 1/10
P(3|L) = 1/10
P(4|L) = 1/10
P(5|L) = 1/10
P(6|L) = 1/2

x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4
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Alpha (actual)
0.0833    0.0500
0.0136    0.0052
0.0022    0.0006
0.0004    0.0001
0.0001    0.0000
0.0000    0.0000
0.0000    0.0000
0.0000    0.0000
0.0000    0.0000
0.0000    0.0000

Beta (actual)
0.0000    0.0000
0.0000    0.0000
0.0000    0.0000
0.0000    0.0000
0.0001    0.0001
0.0007    0.0006
0.0045    0.0055
0.0264    0.0112
0.1633    0.1033
1.0000    1.0000

FAIR LOADED

0.05

0.05

0.950.95

P(1|F) = 1/6
P(2|F) = 1/6
P(3|F) = 1/6
P(4|F) = 1/6
P(5|F) = 1/6
P(6|F) = 1/6

P(1|L) = 1/10
P(2|L) = 1/10
P(3|L) = 1/10
P(4|L) = 1/10
P(5|L) = 1/10
P(6|L) = 1/2

x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4
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Alpha (logs)
-2.4849   -2.9957
-4.2969   -5.2655
-6.1201   -7.4896
-7.9499   -9.6553
-9.7834  -10.1454

-11.5905  -12.4264
-13.4110  -14.6657
-15.2391  -15.2407
-17.0310  -17.5432
-18.8430  -19.8129

Beta (logs)
-16.2439  -17.2014
-14.4185  -14.9922
-12.6028  -12.7337
-10.8042  -10.4389
-9.0373   -9.7289
-7.2181   -7.4833
-5.4135   -5.1977
-3.6352   -4.4938
-1.8120   -2.2698

0         0

FAIR LOADED

0.05

0.05

0.950.95

P(1|F) = 1/6
P(2|F) = 1/6
P(3|F) = 1/6
P(4|F) = 1/6
P(5|F) = 1/6
P(6|F) = 1/6

P(1|L) = 1/10
P(2|L) = 1/10
P(3|L) = 1/10
P(4|L) = 1/10
P(5|L) = 1/10
P(6|L) = 1/2

x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4
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What is the probability of a 
hidden state prediction?
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Posterior decoding
 We can now calculate

 Then, we can ask
 What is the most likely state at position t of sequence x:

 Note that this is an MPA of a single hidden state, 
what if we want to a MPA of a whole hidden state sequence?

 Posterior Decoding: 

 This is different from MPA of a whole sequence of hidden 
states

 This can be understood as bit error rate
vs. word error rate
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Example:
MPA of X ?
MPA of (X, Y) ?

x y P(x,y)
0 0 0.35
0 1 0.05
1 0 0.3
1 1 0.3
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Viterbi decoding
 GIVEN x = x1, …, xT, we want to find y = y1, …, yT, such that 

P(y|x) is maximized:
y* = argmaxy P(y|x) = argmax P(y,x) 

 Let

= Probability of most likely sequence of states ending at state yt = k

 The recursion:

 Underflows are a significant problem

 These numbers become extremely small – underflow
 Solution: Take the logs of all values:
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Computational Complexity and 
implementation details
 What is the running time, and space required, for Forward, 

and Backward?

Time:   O(K2N); Space: O(KN).

 Useful implementation technique to avoid underflows
 Viterbi: sum of logs
 Forward/Backward:   rescaling at each position by multiplying by a constant
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Learning HMM: two scenarios
 Supervised learning: estimation when the “right answer” is 

known
 Examples: 

GIVEN: a genomic region x = x1…x1,000,000 where we have good
(experimental) annotations of the CpG islands

GIVEN: the casino player allows us to observe him one evening, 
as he changes dice and produces 10,000 rolls

 Unsupervised learning: estimation when the “right answer” is 
unknown
 Examples:

GIVEN: the porcupine genome; we don’t know how frequent are the 
CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don’t see when he 
changes dice

 QUESTION: Update the parameters  of the model to maximize 
P(x|) --- Maximal likelihood (ML) estimation 
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(Homework!)

Supervised ML estimation
 Given x = x1…xN for which the true state path y = y1…yN is 

known,
 Define:

Aij = # times state transition ij occurs in y
Bik = # times state i in y emits k in x

 We can show that the maximum likelihood parameters  are:

 What if y is continuous? We can treat                                               as NT
observations of, e.g., a Gaussian, and apply learning rules for Gaussian …
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(Homework!)
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Pseudocounts
 Solution for small training sets:

 Add pseudocounts
Aij = # times state transition ij occurs in y + Rij

Bik = # times state i in y emits k in x + Sik

 Rij, Sij are pseudocounts representing our prior belief
 Total pseudocounts: Ri = jRij , Si = kSik , 

 --- "strength" of prior belief, 
 --- total number of imaginary instances in the prior

 Larger total pseudocounts  strong prior belief

 Small total pseudocounts: just to avoid 0 probabilities ---
smoothing
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Unsupervised ML estimation
 Given x = x1…xN for which the true state path y = y1…yN is 

unknown,

 EXPECTATION MAXIMIZATION

0. Starting with our best guess of a model M, parameters :
1. Estimate Aij , Bik in the training data 

 How?                             , ,    How? (homework)

2. Update  according to Aij , Bik
 Now a "supervised learning" problem

3. Repeat 1 & 2, until convergence

This is called the Baum-Welch Algorithm

We can get to a provably more (or equally) likely parameter set  each iteration
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The Baum Welch algorithm
 The complete log likelihood

 The expected complete log likelihood

 EM
 The E step

 The M step ("symbolically" identical to MLE)
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Summary
 Modeling hidden transitional trajectories (in discrete state 

space, such as cluster label, DNA copy number, dice-choice, 
etc.) underlying observed sequence data (discrete, such as 
dice outcomes; or continuous, such as CGH signals)

 Useful for parsing, segmenting sequential data
 Important HMM computations:

 The joint likelihood of a parse and data can be written as a product to local terms 
(i.e., initial prob, transition prob, emission prob.)

 Computing marginal likelihood of the observed sequence: forward algorithm
 Predicting a single hidden state: forward-backward
 Predicting an entire sequence of hidden states: viterbi
 Learning HMM parameters: an EM algorithm known as Baum-Welch
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Shortcomings of Hidden Markov 
Model

 HMM models capture dependences between each state and only its 
corresponding observation  
 NLP example: In a sentence segmentation task, each segmental state may 

depend not just on a single word (and the adjacent segmental stages), but also 
on the (non-local) features of the whole line such as line length, indentation, 
amount of white space, etc.

 Mismatch between learning objective function and prediction 
objective function
 HMM learns a joint distribution of states and observations P(Y, X), but in a 

prediction task, we need the conditional probability P(Y|X)

Y1 Y2 … … … Yn

X1 X2 … … … Xn
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Solution:
Maximum Entropy Markov Model (MEMM)

 Models dependence between each state and the full 
observation sequence explicitly
 More expressive than HMMs 

 Discriminative model
 Completely ignores modeling P(X): saves modeling effort
 Learning objective function consistent with predictive function: P(Y|X)

Y1 Y2 … … … Yn

X1:n
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MEMM: the Label bias problem

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

What the local transition probabilities say:

• State 1 almost always prefers to go to state 2

• State 2 almost always prefer to stay in state 2
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MEMM: the Label bias problem

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

Probability of path 1-> 1-> 1-> 1:

• 0.4 x 0.45 x 0.5 = 0.09 
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MEMM: the Label bias problem

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

Probability of path 2->2->2->2 :

• 0.2 X 0.3 X 0.3 = 0.018 
Other paths:
1-> 1-> 1-> 1: 0.09 
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MEMM: the Label bias problem

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

Probability of path 1->2->1->2:

• 0.6 X 0.2 X 0.5 = 0.06
Other paths:
1->1->1->1: 0.09 
2->2->2->2: 0.018 
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MEMM: the Label bias problem

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

Probability of path 1->1->2->2:

• 0.4 X 0.55 X 0.3 = 0.066
Other paths:
1->1->1->1: 0.09 
2->2->2->2: 0.018
1->2->1->2: 0.06© Eric Xing @ CMU, 2014 42



MEMM: the Label bias problem

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

Most Likely Path:  1-> 1-> 1-> 1

• Although locally it seems state 1 wants to go to state 2 and state 2 wants to remain in state 2.

• why?
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MEMM: the Label bias problem

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

Most Likely Path:  1-> 1-> 1-> 1

• State 1 has only two transitions but state 2 has 5:

• Average transition probability from state 2 is lower
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MEMM: the Label bias problem

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

Label bias problem in MEMM:

• Preference of states with lower number of transitions over others
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Solution: 
Do not normalize probabilities locally

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

From local probabilities ….
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Solution: 
Do not normalize probabilities locally

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
20

3010

20

10

20

20

30

2020

30

10

10

30

5

510

30

20

20

20

From local probabilities to local potentials

• States with lower transitions do not have an unfair advantage!© Eric Xing @ CMU, 2014 47



From MEMM ….

Y1 Y2 … … … Yn

X1:n
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 CRF is a partially directed model
 Discriminative model like MEMM
 Usage of global normalizer Z(x) overcomes the label bias problem of MEMM
 Models the dependence between each state and the entire observation sequence 

(like MEMM)

From MEMM to CRF

Y1 Y2 … … … Yn

x1:n
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Conditional Random Fields
 General parametric form:

Y1 Y2 … … … Yn

x1:n
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CRFs: Inference
 Given CRF parameters  and , find the y* that maximizes P(y|x)

 Can ignore Z(x) because it is not a function of y

 Run the max-product algorithm on the junction-tree of CRF:

Y1 Y2 … … … Yn

x1:n

Y1,Y2 Y2,Y3 ……. Yn-2,Yn-1
Yn-1,Yn

Y2 Y3
Yn-2 Yn-1

Same as Viterbi decoding 
used in HMMs!
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CRF learning
 Given {(xd, yd)}d=1

N, find *, * such that

 Computing the gradient w.r.t 
Gradient of the log-partition function in an 
exponential family is the expectation of the 

sufficient statistics.
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CRF learning

 Computing the model expectations:

 Requires exponentially large number of summations: Is it intractable?

 Tractable!
 Can compute marginals using the sum-product algorithm on the chain

Expectation of f over the corresponding marginal 
probability of neighboring nodes!!
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CRF learning
 In practice, we use a Gaussian Regularizer for the parameter 

vector to improve generalizability

 In practice, gradient ascent has very slow convergence
 Alternatives:

 Conjugate Gradient method
 Limited Memory Quasi-Newton Methods 
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CRFs: some empirical results
 Comparison of error rates on synthetic data

CRF error HMM error

HMM error

M
EM

M
 e

rro
r

M
EM

M
 e

rro
r

C
R

F 
er

ro
r

Data is increasingly higher 
order in the direction of arrow

CRFs achieve the lowest 
error rate for higher order 
data
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CRFs: some empirical results
 Parts of Speech tagging

 Using same set of features: HMM >=< CRF > MEMM
 Using additional overlapping features: CRF+ > MEMM+ >> HMM
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Summary
 Conditional Random Fields are partially directed discriminative 

models
 They overcome the label bias problem of MEMMs by using a global 

normalizer
 Inference for 1-D chain CRFs is exact

 Same as Max-product or Viterbi decoding
 Learning also is exact

 globally optimum parameters can be learned
 Requires using sum-product or forward-backward algorithm

 CRFs involving arbitrary graph structure are intractable in general
 E.g.: Grid CRFs
 Inference and learning require approximation techniques

 MCMC sampling
 Variational methods
 Loopy BP 
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