Advanced Introduction to Machine Learning

10715, Fall 2014

Structured Models:

Hidden Markov Models versus Conditional Random Fields

Lecture 11, October 13, 2014

Reading:

From static to dynamic mixture models

Static mixture

Dynamic mixture

The underlying source:

Speech signal, dice,

The sequence: Phonemes, sequence of rolls,

Hidden Markov Model

Observation space

Alphabetic set: $\mathbb{C} = \{c_1, c_2, \cdots, c_K\}$ Euclidean space:

Graphical model

Index set of hidden states

$$\mathbb{I} = \{1, 2, \cdots, M\}$$

Transition probabilities between any two states

$$\begin{aligned} & p(y_t^{\,j} = 1 \,|\, y_{t-1}^{\,i} = 1) = a_{i,j} \,, \\ & \text{or} \quad p(y_t \mid y_{t-1}^{\,i} = 1) \sim \text{Multinomia l} \big(a_{i,1}, a_{i,2}, \dots, a_{i,M} \, \big), \forall \, i \in \mathbb{I}. \end{aligned}$$

Start probabilities

$$p(\mathbf{y}_1) \sim \text{Multinomia l}(\pi_1, \pi_2, \dots, \pi_M)$$
.

Emission probabilities associated with each state

$$p(x_t \mid y_t^i = 1) \sim \text{Multinomia l}(b_{i,1}, b_{i,2}, \dots, b_{i,K}), \forall i \in \mathbb{I}.$$
 or in general:

$$p(\mathbf{x}_t \mid \mathbf{y}_t^i = 1) \sim f(\cdot \mid \theta_i), \forall i \in \mathbb{I}.$$

State automata

Applications of HMMs

- Some early applications of HMMs
 - finance, but we never saw them
 - speech recognition
 - modelling ion channels
- In the mid-late 1980s HMMs entered genetics and molecular biology, and they are now firmly entrenched.
- Some current applications of HMMs to biology
 - mapping chromosomes
 - aligning biological sequences
 - predicting sequence structure
 - inferring evolutionary relationships
 - finding genes in DNA sequence

A Bio Application: gene finding

GENSCAN (Burge & Karlin)

A "Financial" Application: The Dishonest Casino

A casino has two dice:

Fair die

$$P(1) = P(2) = P(3) = P(5) = P(6) = 1/6$$

Loaded die

Casino player switches back-&-forth between fair and loaded die once every 20 turns

Game:

- 1. You bet \$1
- 2. You roll (always with a fair die)
- 3. Casino player rolls (maybe with fair die, maybe with loaded die)
- 4. Highest number wins \$2

The Dishonest Casino Model

Puzzles Regarding the Dishonest Casino

GIVEN: A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION

- How likely is this sequence, given our model of how the casino works?
 - This is the **EVALUATION** problem in HMMs
- What portion of the sequence was generated with the fair die, and what portion with the loaded die?
 - This is the **DECODING** question in HMMs
- How "loaded" is the loaded die? How "fair" is the fair die? How often does the casino player change from fair to loaded, and back?
 - This is the **LEARNING** question in HMMs

Probability of a Parse

- Given a sequence $\mathbf{x} = \mathbf{x}_1 \dots \mathbf{x}_T$ and a parse $\mathbf{y} = \mathbf{y}_1, \dots, \mathbf{y}_T$,
- To find how likely is the parse:
 (given our HMM and the sequence)

$$p(\mathbf{x}, \mathbf{y}) = p(x_1, \dots, x_T, y_1, \dots, y_T)$$
 (Joint probability)
= $p(y_1) p(x_1 | y_1) p(y_2 | y_1) p(x_2 | y_2) \dots p(y_T | y_{T-1}) p(x_T | y_T)$
= $p(y_1) P(y_2 | y_1) \dots p(y_T | y_{T-1}) \times p(x_1 | y_1) p(x_2 | y_2) \dots p(x_T | y_T)$

- Marginal probability: $p(\mathbf{x}) = \sum_{\mathbf{y}} p(\mathbf{x}, \mathbf{y}) = \sum_{\mathbf{y}_1} \sum_{\mathbf{y}_2} \cdots \sum_{\mathbf{y}_N} \pi_{\mathbf{y}_1} \prod_{t=2}^T a_{\mathbf{y}_{t-1}, \mathbf{y}_t} \prod_{t=1}^T p(\mathbf{x}_t \mid \mathbf{y}_t)$
- Posterior probability: p(y | x) = p(x, y) / p(x)

Example: the Dishonest Casino

- Let the sequence of rolls be:
 - **x** = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4

- Then, what is the likelihood of
 - y = Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair?
 (say initial probs a_{0Fair} = ½, a_{0Loaded} = ½)

$$\frac{1}{2} \times (\frac{1}{6})^{10} \times (0.95)^9 = .00000000521158647211 = 5.21 \times 10^{-9}$$

Example: the Dishonest Casino

• So, the likelihood the die is fair in all this run is just 5.21×10^{-9}

- OK, but what is the likelihood of
 - π = Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded,

½ × P(1 | Loaded) P(Loaded | Loaded) ... P(4 | Loaded) =

 $\frac{1}{2} \times (1/10)^8 \times (1/2)^2 (0.95)^9 = .00000000078781176215 = 0.79 \times 10^{-9}$

 Therefore, it is after all 6.59 times more likely that the die is fair all the way, than that it is loaded all the way

Example: the Dishonest Casino

- Let the sequence of rolls be:
 - x = 1, 6, 6, 5, 6, 2, 6, 6, 3, 6

- Now, what is the likelihood $\pi = F, F, ..., F$?
 - $\frac{1}{2} \times (\frac{1}{6})^{10} \times (0.95)^9 = 0.5 \times 10^{-9}$, same as before
- What is the likelihood y = L, L, ..., L?

$$\frac{1}{2} \times (\frac{1}{10})^4 \times (\frac{1}{2})^6 (0.95)^9 = .00000049238235134735 = 5 \times 10^{-7}$$

So, it is 100 times more likely the die is loaded

Three Main Questions on HMMs

1. Evaluation

GIVEN an HMM M, and a sequence x,

FIND Prob (x | M)

ALGO. Forward

2. Decoding

GIVEN an HMM M, and a sequence x,

FIND the sequence y of states that maximizes, e.g., $P(y \mid x, M)$,

or the most probable subsequence of states

ALGO. Viterbi, Forward-backward

3. Learning

GIVEN an HMM **M**, with unspecified transition/emission probs.,

and a sequence x,

FIND parameters $\theta = (\pi_i, a_{ij}, \eta_{ik})$ that maximize $P(x \mid \theta)$

ALGO. Baum-Welch (EM)

The Forward Algorithm

- We want to calculate P(x), the likelihood of x, given the HMM
 - Sum over all possible ways of generating x:

$$p(\mathbf{x}) = \sum_{y_1} p(\mathbf{x}, \mathbf{y}) = \sum_{y_1} \sum_{y_2} \cdots \sum_{y_N} \pi_{y_1} \prod_{t=2}^{T} a_{y_{t-1}, y_t} \prod_{t=1}^{T} p(\mathbf{x}_t \mid \mathbf{y}_t)$$

• To avoid summing over an exponential number of paths y, define

$$\alpha(\mathbf{y}_{t}^{k} = 1) = \alpha_{t}^{k} \stackrel{\text{def}}{=} P(\mathbf{x}_{1}, ..., \mathbf{x}_{t}, \mathbf{y}_{t}^{k} = 1)$$
 (the forward probability)

The recursion:

$$\alpha_t^k = p(x_t \mid y_t^k = 1) \sum_i \alpha_{t-1}^i a_{i,k}$$

$$P(\mathbf{x}) = \sum_k \alpha_T^k$$

The Forward Algorithm – derivation

Compute the forward probability:

$$\alpha_t^k = P(x_1, ..., x_{t-1}, x_t, y_t^k = 1)$$

$$\begin{split} &= \sum_{y_{t-1}} P(x_1, \dots, x_{t-1}, y_{t-1}) P(y_t^k = 1 \mid y_{t-1}, x_1, \dots, x_{t-1}) P(x_t \mid y_t^k = 1, x_1, \dots, x_{t-1}, y_{t-1}) \\ &= \sum_{y_{t-1}} P(x_1, \dots, x_{t-1}, y_{t-1}) P(y_t^k = 1 \mid y_{t-1}) P(x_t \mid y_t^k = 1) \\ &= P(x_t \mid y_t^k = 1) \sum_{i} P(x_1, \dots, x_{t-1}, y_{t-1}^i = 1) P(y_t^k = 1 \mid y_{t-1}^i = 1) \\ &= P(x_t \mid y_t^k = 1) \sum_{i} \alpha_{t-1}^i \alpha_{i,k} \end{split}$$

Chain rule: $P(A, B, C) = P(A)P(B \mid A)P(C \mid A, B)$

• We can compute α_t^k for all k, t, using dynamic programming!

Initialization:

$$\alpha_1^k = P(x_1 | y_1^k = 1)\pi_k$$

$\alpha_1^k = P(x_1, y_1^k = 1)$ $= P(x_1 | y_1^k = 1)P(y_1^k = 1)$ $= P(x_1 | y_1^k = 1)\pi_k$

Iteration:

$$\alpha_t^k = P(x_t | y_t^k = 1) \sum_i \alpha_{t-1}^i a_{i,k}$$

Termination:

$$P(\mathbf{x}) = \sum_{k} \alpha_{\mathsf{T}}^{k}$$

The Backward Algorithm

• We want to compute $P(y_t^k = 1 | x)$, the posterior probability distribution on the tth position, given x

We start by computing

$$P(y_t^k = 1, \mathbf{x}) = P(x_1, ..., x_t, y_t^k = 1, x_{t+1}, ..., x_T)$$

$$= P(x_1, ..., x_t, y_t^k = 1)P(x_{t+1}, ..., x_T \mid x_1, ..., x_t, y_t^k = 1)$$

$$= P(x_1, ..., x_t, y_t^k = 1)P(x_{t+1}, ..., x_T \mid y_t^k = 1)$$

Forward, $\alpha_t^{\ k}$

Backward, $\beta_t^k = P(x_{t+1},...,x_T | y_t^k = 1)$

The recursion:

$$\beta_t^k = \sum_i a_{k,i} p(x_{t+1} | y_{t+1}^i = 1) \beta_{t+1}^i$$

The Backward Algorithm – derivation

Define the backward probability:

$$\beta_{t}^{k} = P(x_{t+1}, ..., x_{T} | y_{t}^{k} = 1)$$

$$= \sum_{y_{t+1}} P(x_{t+1}, ..., x_{T}, y_{t+1} | y_{t}^{k} = 1)$$

$$= \sum_{i} P(y_{t+1}^{i} = 1 | y_{t}^{k} = 1) p(x_{t+1} | y_{t+1}^{i} = 1, y_{t}^{k} = 1) P(x_{t+2}, ..., x_{T} | x_{t+1}, y_{t+1}^{i} = 1, y_{t}^{k} = 1)$$

$$= \sum_{i} P(y_{t+1}^{i} = 1 | y_{t}^{k} = 1) p(x_{t+1} | y_{t+1}^{i} = 1) P(x_{t+2}, ..., x_{T} | y_{t+1}^{i} = 1)$$

$$= \sum_{i} a_{k,i} p(x_{t+1} | y_{t+1}^{i} = 1) \beta_{t+1}^{i}$$

Chain rule: $P(A, B, C \mid \alpha) = P(A \mid \alpha)P(B \mid A, \alpha)P(C \mid A, B, \alpha)$

• We can compute β_t^k for all k, t, using dynamic programming!

Initialization:

$$\beta_T^k = 1, \ \forall k$$

Iteration:

$$\beta_t^k = \sum_i a_{k,i} P(x_{t+1} | y_{t+1}^i = 1) \beta_{t+1}^i$$

Termination:

$$P(\mathbf{x}) = \sum_{k} \alpha_1^k \beta_1^k$$

Example:

x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4

x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4

Alpha (actual)		Beta (actual)	
0.0833	0.0500	0.0000	0.0000
0.0136	0.0052	0.0000	0.0000
0.0022	0.0006	0.0000	0.0000
0.0004	0.0001	0.0000	0.0000
0.0001	0.0000	0.0001	0.0001
0.0000	0.0000	0.0007	0.0006
0.0000	0.0000	0.0045	0.0055
0.0000	0.0000	0.0264	0.0112
0.0000	0.0000	0.1633	0.1033
0.0000	0.0000	1.0000	1.0000

x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4

Alpha (logs)	Beta (logs)	
-2.4849 -2.9957	-16.2439 -17.2014	
-4.2969 -5.2655	-14.4185 -14.9922	
-6.1201 -7.4896	-12.6028 -12.7337	
-7.9499 -9.6553	-10.8042 -10.4389	
-9.7834 -10.1454	-9.0373 -9.7289	
-11.5905 -12.4264	-7.2181 -7.4833	
-13.4110 -14.6657	-5.4135 -5.1977	
-15.2391 -15.2407	-3.6352 -4.4938	
-17.0310 -17.5432	-1.8120 -2.2698	
-18.8430 -19.8129	0 0	

$$\alpha_{t}^{k} = P(x_{t} | y_{t}^{k} = 1) \sum_{i} \alpha_{t-1}^{i} a_{i,k}$$

$$\beta_{t}^{k} = \sum_{i} a_{k,i} P(x_{t+1} | y_{t+1}^{i} = 1) \beta_{t}^{i}$$

What is the probability of a hidden state prediction?

P(0,11X) = 6-6857.

$$P(9_{5}^{1}|X) = \frac{(9)}{P(X)} + = 1.$$

$$P(9_{5}^{1}|X) = \frac{(b)}{P(X)} + = 1.$$

$$P(9_{5}^{1}|X) = \frac{(b)}{P(X)} + \frac{(-18.6707)}{(-18.6707)} + \exp(-19.8745) = \frac{0.7415}{(-18.6707)}$$

$$P(9_{5}^{1}|X) = \exp(-18.6745) / C$$

$$P(9_{5}^{1}|X) = \exp(-19.6745) / C$$

Posterior decoding

We can now calculate

$$P(y_t^k = 1 | x) = \frac{P(y_t^k = 1, x)}{P(x)} = \frac{\alpha_t^k \beta_t^k}{P(x)}$$

- Then, we can ask
 - What is the most likely state at position t of sequence x:

$$\mathbf{k}_{t}^{*} = \operatorname{arg\,max}_{k} P(\mathbf{y}_{t}^{k} = 1 \mid \mathbf{x})$$

- Note that this is an MPA of a single hidden state,
 what if we want to a MPA of a whole hidden state sequence?
- Posterior Decoding: $\left\{ \mathbf{y}_{t}^{k_{t}^{*}} = \mathbf{1} : \mathbf{t} = \mathbf{1} \cdots \mathbf{T} \right\}$
- This is different from MPA of a whole sequence states
- This can be understood as bit error rate
 vs. word error rate

Example: MPA of X? MPA of (X, Y)?

of hidden

×	У	P(x,y)
0	0	0.35
0	1	0.05
1	0	0.3
1	1	0.3

Viterbi decoding

• GIVEN $\mathbf{x} = \mathbf{x}_1, ..., \mathbf{x}_T$, we want to find $\mathbf{y} = \mathbf{y}_1, ..., \mathbf{y}_T$, such that $P(\mathbf{y}|\mathbf{x})$ is maximized:

$$y^* = \operatorname{argmax}_y P(y|x) = \operatorname{argmax}_{\pi} P(y,x)$$

Let

$$V_t^k = \max_{\{y_1,...,y_{t-1}\}} P(x_1,...,x_{t-1},y_1,...,y_{t-1},x_t,y_t^k = 1)$$

= Probability of most likely <u>sequence of states</u> ending at state $y_t = k$

• The recursion:

$$V_t^k = p(x_t | y_t^k = 1) \max_i a_{i,k} V_{t-1}^i$$

Underflows are a significant problem

$$p(x_1,...,x_t,y_1,...,y_t) = \pi_{y_1}a_{y_1,y_2}\cdots a_{y_{t-1},y_t}b_{y_1,x_1}\cdots b_{y_t,x_t}$$

- These numbers become extremely small underflow
- Solution: Take the logs of all values: $V_t^k = \log p(x_t \mid y_t^k = 1) + \max_i (\log(a_{i,k}) + V_{t-1}^i)$

Computational Complexity and implementation details

 What is the running time, and space required, for Forward, and Backward?

$$\alpha_{t}^{k} = p(x_{t} | y_{t}^{k} = 1) \sum_{i} \alpha_{t-1}^{i} a_{i,k}$$

$$\beta_{t}^{k} = \sum_{i} a_{k,i} p(x_{t+1} | y_{t+1}^{i} = 1) \beta_{t+1}^{i}$$

$$V_{t}^{k} = p(x_{t} | y_{t}^{k} = 1) \max_{i} a_{i,k} V_{t-1}^{i}$$

Time: $O(K^2N)$; Space: O(KN).

- Useful implementation technique to avoid underflows
 - Viterbi: sum of logs
 - Forward/Backward: rescaling at each position by multiplying by a constant

Learning HMM: two scenarios

- **Supervised learning**: estimation when the "right answer" is known
 - Examples:

GIVEN: a genomic region $x = x_1...x_{1.000.000}$ where we have good

(experimental) annotations of the CpG islands

GIVEN: the casino player allows us to observe him one evening,

as he changes dice and produces 10,000 rolls

- Unsupervised learning: estimation when the "right answer" is unknown
 - Examples:

GIVEN: the porcupine genome; we don't know how frequent are the

CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don't see when he

changes dice

• **QUESTION:** Update the parameters θ of the model to maximize $P(x|\theta)$ --- Maximal likelihood (ML) estimation

© Eric Xing @ CMU, 2014

Supervised ML estimation

- Given $x = x_1...x_N$ for which the true state path $y = y_1...y_N$ is known,
 - Define:

 A_{ij} = # times state transition $i \rightarrow j$ occurs in y B_{ik} = # times state i in y emits k in x

• We can show that the maximum likelihood parameters θ are:

$$a_{ij}^{ML} = \frac{\#(i \to j)}{\#(i \to \bullet)} = \frac{\sum_{n} \sum_{t=2}^{T} y_{n,t-1}^{i} y_{n,t}^{j}}{\sum_{n} \sum_{t=2}^{T} y_{n,t-1}^{i}} = \frac{A_{ij}}{\sum_{j} A_{ij}}$$

$$b_{ik}^{ML} = \frac{\#(i \to k)}{\#(i \to \bullet)} = \frac{\sum_{n} \sum_{t=1}^{T} y_{n,t}^{i} X_{n,t}^{k}}{\sum_{n} \sum_{t=1}^{T} y_{n,t}^{i}} = \frac{B_{ik}}{\sum_{k} B_{ik}}$$

(Homework!)

• What if y is continuous? We can treat $\{(x_{n,t}, y_{n,t}): t = 1:T, n = 1:N\}$ as $N \times T$ observations of, e.g., a Gaussian, and apply learning rules for Gaussian ...

(Homework!)

Pseudocounts

- Solution for small training sets:
 - Add pseudocounts

```
A_{ij} = # times state transition i \rightarrow j occurs in y + R_{ij}

B_{ik} = # times state i in y emits k in x + S_{ik}
```

- R_{ij} , S_{ij} are pseudocounts representing our prior belief
- Total pseudocounts: $R_i = \Sigma_j R_{ij}$, $S_i = \Sigma_k S_{ik}$,
 - --- "strength" of prior belief,
 - --- total number of imaginary instances in the prior
- Larger total pseudocounts ⇒ strong prior belief
- Small total pseudocounts: just to avoid 0 probabilities --smoothing

Unsupervised ML estimation

- Given $x = x_1...x_N$ for which the true state path $y = y_1...y_N$ is unknown,
 - EXPECTATION MAXIMIZATION
 - Starting with our best guess of a model M, parameters θ .
 - 1. Estimate A_{ii} , B_{ik} in the training data
 - How? $A_{ij} = \sum_{n,t} \left\langle \mathbf{y}_{n,t-1}^i \mathbf{y}_{n,t_0}^j \right\rangle$ $B_{ik} = \sum_{n,t} \left\langle \mathbf{y}_{n,t}^i \right\rangle \mathbf{x}_{n,t}^k$, How? (homework)
 - 2. Update θ according to A_{ij} , B_{ik}
 - Now a "supervised learning" problem
 - 3. Repeat 1 & 2, until convergence

This is called the Baum-Welch Algorithm

We can get to a provably more (or equally) likely parameter set θ each iteration

The Baum Welch algorithm

The complete log likelihood

$$\ell_{c}(\theta; \mathbf{x}, \mathbf{y}) = \log p(\mathbf{x}, \mathbf{y}) = \log \prod_{n} \left(p(\mathbf{y}_{n,1}) \prod_{t=2}^{T} p(\mathbf{y}_{n,t} \mid \mathbf{y}_{n,t-1}) \prod_{t=1}^{T} p(\mathbf{x}_{n,t} \mid \mathbf{x}_{n,t}) \right)$$

The expected complete log likelihood

$$\left\langle \ell_{c}\left(\boldsymbol{\theta}; \mathbf{x}, \mathbf{y}\right) \right\rangle = \sum_{n} \left(\left\langle \mathbf{y}_{n,1}^{i} \right\rangle_{p(\mathbf{y}_{n,1} | \mathbf{x}_{n})} \log \pi_{i} \right) + \sum_{n} \sum_{t=2}^{T} \left(\left\langle \mathbf{y}_{n,t-1}^{i} \mathbf{y}_{n,t}^{j} \right\rangle_{p(\mathbf{y}_{n,t-1}, \mathbf{y}_{n,t} | \mathbf{x}_{n})} \log \mathbf{a}_{i,j} \right) + \sum_{n} \sum_{t=1}^{T} \left(\mathbf{x}_{n,t}^{k} \left\langle \mathbf{y}_{n,t}^{i} \right\rangle_{p(\mathbf{y}_{n,t} | \mathbf{x}_{n})} \log \mathbf{b}_{i,k} \right)$$

- EM
 - The E step

$$\gamma_{n,t}^{i} = \left\langle \mathbf{y}_{n,t}^{i} \right\rangle = \mathbf{p}(\mathbf{y}_{n,t}^{i} = 1 \mid \mathbf{x}_{n})$$

$$\xi_{n,t}^{i,j} = \left\langle \mathbf{y}_{n,t-1}^{i} \mathbf{y}_{n,t}^{j} \right\rangle = \mathbf{p}(\mathbf{y}_{n,t-1}^{i} = 1, \mathbf{y}_{n,t}^{j} = 1 \mid \mathbf{x}_{n})$$

• The **M** step ("symbolically" identical to MLE)

$$\pi_{i}^{ML} = \frac{\sum_{n} \gamma_{n,1}^{i}}{N} \qquad a_{ij}^{ML} = \frac{\sum_{n} \sum_{t=2}^{T} \xi_{n,t}^{i,j}}{\sum_{n} \sum_{t=1}^{T-1} \gamma_{n,t}^{i}} \qquad b_{ik}^{ML} = \frac{\sum_{n} \sum_{t=1}^{T} \gamma_{n,t}^{i} X_{n,t}^{k}}{\sum_{n} \sum_{t=1}^{T-1} \gamma_{n,t}^{i}}$$

© Eric Xing @ CMU, 2014

Summary

- Modeling hidden transitional trajectories (in discrete state space, such as cluster label, DNA copy number, dice-choice, etc.) underlying observed sequence data (discrete, such as dice outcomes; or continuous, such as CGH signals)
- Useful for parsing, segmenting sequential data
- Important HMM computations:
 - The joint likelihood of a parse and data can be written as a product to local terms
 (i.e., initial prob, transition prob, emission prob.)
 - Computing marginal likelihood of the observed sequence: forward algorithm
 - Predicting a single hidden state: forward-backward
 - Predicting an entire sequence of hidden states: viterbi
 - Learning HMM parameters: an EM algorithm known as Baum-Welch

Shortcomings of Hidden Markov Model

- HMM models capture dependences between each state and only its corresponding observation
 - NLP example: In a sentence segmentation task, each segmental state may depend not just on a single word (and the adjacent segmental stages), but also on the (non-local) features of the whole line such as line length, indentation, amount of white space, etc.
- Mismatch between learning objective function and prediction objective function
 - HMM learns a joint distribution of states and observations P(Y, X), but in a prediction task, we need the conditional probability P(Y|X)

Solution:

Maximum Entropy Markov Model (MEMM)

$$P(\mathbf{y}_{1:n}|\mathbf{x}_{1:n}) = \prod_{i=1}^{n} P(y_i|y_{i-1},\mathbf{x}_{1:n}) = \prod_{i=1}^{n} \frac{\exp(\mathbf{w}^T \mathbf{f}(y_i,y_{i-1},\mathbf{x}_{1:n}))}{Z(y_{i-1},\mathbf{x}_{1:n})}$$

- Models dependence between each state and the full observation sequence explicitly
 - More expressive than HMMs
- Discriminative model
 - Completely ignores modeling P(X): saves modeling effort
 - Learning objective function consistent with predictive function: P(Y|X)

What the local transition probabilities say:

- State 1 almost always prefers to go to state 2
- State 2 almost always prefer to stay in state 2
 © Eric Xing @ CMU, 2014

Probability of path 1-> 1-> 1:

• $0.4 \times 0.45 \times 0.5 = 0.09$

Probability of path 2->2->2:

 \bullet 0.2 X 0.3 X 0.3 = 0.018

Other paths:

1-> 1-> 1-> 1: 0.09

Probability of path 1->2->1->2:

• $0.6 \times 0.2 \times 0.5 = 0.06$

Other paths:

1->1->1: 0.09

2->2->2: 0.018

Probability of path 1->1->2:

 \bullet 0.4 X 0.55 X 0.3 = 0.066

Other paths:

1->1->1: 0.09

2->2->2: 0.018

© Eric Xing @ CMU, 2014->2->1->2: 0.06

Most Likely Path: 1-> 1-> 1

- Although locally it seems state 1 wants to go to state 2 and state 2 wants to remain in state 2.
- why?

Most Likely Path: 1-> 1-> 1

- State 1 has only two transitions but state 2 has 5:
 - Average transition probability from state 2 is lower
 © Eric Xing @ CMU, 2014

Label bias problem in MEMM:

• Preference of states with lower number of transitions over others

Solution: Do not normalize probabilities locally

From local probabilities

Solution: Do not normalize probabilities locally

From local probabilities to local potentials

• States with lower transitions do not have an unfair advantage!

From MEMM

$$P(\mathbf{y}_{1:n}|\mathbf{x}_{1:n}) = \prod_{i=1}^{n} P(y_i|y_{i-1},\mathbf{x}_{1:n}) = \prod_{i=1}^{n} \frac{\exp(\mathbf{w}^T \mathbf{f}(y_i,y_{i-1},\mathbf{x}_{1:n}))}{Z(y_{i-1},\mathbf{x}_{1:n})}$$

$$P(\mathbf{y}_{1:n}|\mathbf{x}_{1:n}) = \frac{1}{Z(\mathbf{x}_{1:n})} \prod_{i=1}^{n} \phi(y_i, y_{i-1}, \mathbf{x}_{1:n}) = \frac{1}{Z(\mathbf{x}_{1:n}, \mathbf{w})} \prod_{i=1}^{n} \exp(\mathbf{w}^T \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_{1:n}))$$

- CRF is a partially directed model
 - Discriminative model like MEMM
 - Usage of global normalizer Z(x) overcomes the label bias problem of MEMM
 - Models the dependence between each state and the entire observation sequence (like MEMM)

Conditional Random Fields

General parametric form:

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x}, \lambda, \mu)} \exp(\sum_{i=1}^{n} (\sum_{k} \lambda_{k} f_{k}(y_{i}, y_{i-1}, \mathbf{x}) + \sum_{l} \mu_{l} g_{l}(y_{i}, \mathbf{x})))$$

$$= \frac{1}{Z(\mathbf{x}, \lambda, \mu)} \exp(\sum_{i=1}^{n} (\lambda^{T} \mathbf{f}(y_{i}, y_{i-1}, \mathbf{x}) + \mu^{T} \mathbf{g}(y_{i}, \mathbf{x})))$$

where
$$Z(\mathbf{x}, \lambda, \mu) = \sum_{\mathbf{y}} \exp(\sum_{i=1}^{n} (\lambda^T \mathbf{f}(y_i, y_{i-1}, \mathbf{x}) + \mu^T \mathbf{g}(y_i, \mathbf{x})))$$

CRFs: Inference

• Given CRF parameters λ and μ , find the \mathbf{y}^* that maximizes $P(\mathbf{y}|\mathbf{x})$

$$\mathbf{y}^* = \arg\max_{\mathbf{y}} \exp(\sum_{i=1}^n (\lambda^T \mathbf{f}(y_i, y_{i-1}, \mathbf{x}) + \mu^T \mathbf{g}(y_i, \mathbf{x})))$$

- Can ignore Z(x) because it is not a function of y
- Run the max-product algorithm on the junction-tree of CRF:

CRF learning

• Given $\{(\mathbf{x}_d, \mathbf{y}_d)\}_{d=1}^N$, find λ^* , μ^* such that

$$\lambda*, \mu* = \arg\max_{\lambda,\mu} L(\lambda,\mu) = \arg\max_{\lambda,\mu} \prod_{d=1}^{N} P(\mathbf{y}_{d}|\mathbf{x}_{d},\lambda,\mu)$$

$$= \arg\max_{\lambda,\mu} \prod_{d=1}^{N} \frac{1}{Z(\mathbf{x}_{d},\lambda,\mu)} \exp(\sum_{i=1}^{n} (\lambda^{T} \mathbf{f}(y_{d,i},y_{d,i-1},\mathbf{x}_{d}) + \mu^{T} \mathbf{g}(y_{d,i},\mathbf{x}_{d})))$$

$$= \arg\max_{\lambda,\mu} \sum_{d=1}^{N} (\sum_{i=1}^{n} (\lambda^{T} \mathbf{f}(y_{d,i},y_{d,i-1},\mathbf{x}_{d}) + \mu^{T} \mathbf{g}(y_{d,i},\mathbf{x}_{d})) - \log Z(\mathbf{x}_{d},\lambda,\mu))$$

Computing the gradient w.r.t λ:

Gradient of the log-partition function in an exponential family is the expectation of the sufficient statistics.

$$\nabla_{\lambda} L(\lambda, \mu) = \sum_{d=1}^{N} \left(\sum_{i=1}^{n} \mathbf{f}(y_{d,i}, y_{d,i-1}, \mathbf{x}_d) - \sum_{\mathbf{y}} \left(P(\mathbf{y} | \mathbf{x}_d) \sum_{i=1}^{n} \mathbf{f}(y_{d,i}, y_{d,i-1}, \mathbf{x}_d) \right) \right)$$

CRF learning

$$\nabla_{\lambda}L(\lambda,\mu) = \sum_{d=1}^{N} (\sum_{i=1}^{n} \mathbf{f}(y_{d,i},y_{d,i-1},\mathbf{x}_d) - \sum_{\mathbf{y}} (P(\mathbf{y}|\mathbf{x}_d) \sum_{i=1}^{n} \mathbf{f}(y_i,y_{i-1},\mathbf{x}_d)))$$
Computing the model expectations:

- - Requires exponentially large number of summations: Is it intractable?

$$\sum_{\mathbf{y}} (P(\mathbf{y}|\mathbf{x}_d) \sum_{i=1}^n \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_d)) = \sum_{i=1}^n (\sum_{\mathbf{y}} \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_d) P(\mathbf{y}|\mathbf{x}_d))$$

$$= \sum_{i=1}^n \sum_{y_i, y_{i-1}} \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_d) P(y_i, y_{i-1}|\mathbf{x}_d)$$

Expectation of **f** over the corresponding marginal probability of neighboring nodes!!

- Tractable!
 - Can compute marginals using the sum-product algorithm on the chain

CRF learning

 In practice, we use a Gaussian Regularizer for the parameter vector to improve generalizability

$$\lambda *, \mu * = \arg \max_{\lambda, \mu} \sum_{d=1}^{N} \log P(\mathbf{y}_d | \mathbf{x}_d, \lambda, \mu) - \frac{1}{2\sigma^2} (\lambda^T \lambda + \mu^T \mu)$$

- In practice, gradient ascent has very slow convergence
 - Alternatives:
 - Conjugate Gradient method
 - Limited Memory Quasi-Newton Methods

CRFs: some empirical results

Comparison of error rates on synthetic data

Data is increasingly higher order in the direction of arrow

CRFs achieve the lowest error rate for higher order data

CRFs: some empirical results

Parts of Speech tagging

model	error	oov error
HMM	5.69%	45.99%
MEMM	6.37%	54.61%
CRF	5.55%	48.05%
MEMM ⁺	4.81%	26.99%
CRF ⁺	4.27%	23.76%

⁺Using spelling features

- Using same set of features: HMM >=< CRF > MEMM
- Using additional overlapping features: CRF+ > MEMM+ >> HMM

Summary

- Conditional Random Fields are partially directed discriminative models
- They overcome the label bias problem of MEMMs by using a global normalizer
- Inference for 1-D chain CRFs is exact
 - Same as Max-product or Viterbi decoding
- Learning also is exact
 - globally optimum parameters can be learned
 - Requires using sum-product or forward-backward algorithm
- CRFs involving arbitrary graph structure are intractable in general
 - E.g.: Grid CRFs
 - Inference and learning require approximation techniques
 - MCMC sampling
 - Variational methods
 - Loopy BP