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Shortcomings of Hidden Markov 
Model

 HMM models capture dependences between each state and only its 
corresponding observation  
 NLP example: In a sentence segmentation task, each segmental state may 

depend not just on a single word (and the adjacent segmental stages), but also 
on the (non-local) features of the whole line such as line length, indentation, 
amount of white space, etc.

 Mismatch between learning objective function and prediction 
objective function
 HMM learns a joint distribution of states and observations P(Y, X), but in a 

prediction task, we need the conditional probability P(Y|X)

Y1 Y2 … … … Yn

X1 X2 … … … Xn
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Departing from HMM

© Eric Xing @ CMU, 2014 3



Solution:
Maximum Entropy Markov Model (MEMM)

 Models dependence between each state and the full 
observation sequence explicitly
 More expressive than HMMs 

 Discriminative model
 Completely ignores modeling P(X): saves modeling effort
 Learning objective function consistent with predictive function: P(Y|X)

Y1 Y2 … … … Yn

X1:n
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MEMM: the Label bias problem
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What the local transition probabilities say:

• State 1 almost always prefers to go to state 2

• State 2 almost always prefer to stay in state 2
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MEMM: the Label bias problem
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Probability of path 1-> 1-> 1-> 1:

• 0.4 x 0.45 x 0.5 = 0.09 
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MEMM: the Label bias problem

State 1
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Probability of path 2->2->2->2 :

• 0.2 X 0.3 X 0.3 = 0.018 
Other paths:
1-> 1-> 1-> 1: 0.09 
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MEMM: the Label bias problem

State 1

State 2

State 3
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Observation 1 Observation 2 Observation 3 Observation 4
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Probability of path 1->2->1->2:

• 0.6 X 0.2 X 0.5 = 0.06
Other paths:
1->1->1->1: 0.09 
2->2->2->2: 0.018 
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MEMM: the Label bias problem

State 1

State 2

State 3
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Observation 1 Observation 2 Observation 3 Observation 4
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Probability of path 1->1->2->2:

• 0.4 X 0.55 X 0.3 = 0.066
Other paths:
1->1->1->1: 0.09 
2->2->2->2: 0.018
1->2->1->2: 0.06© Eric Xing @ CMU, 2014 9



MEMM: the Label bias problem
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Most Likely Path:  1-> 1-> 1-> 1

• Although locally it seems state 1 wants to go to state 2 and state 2 wants to remain in state 2.

• why?
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MEMM: the Label bias problem

State 1
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Most Likely Path:  1-> 1-> 1-> 1

• State 1 has only two transitions but state 2 has 5:

• Average transition probability from state 2 is lower
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MEMM: the Label bias problem

State 1
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Label bias problem in MEMM:

• Preference of states with lower number of transitions over others
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Solution: 
Do not normalize probabilities locally
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From local probabilities ….
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Solution: 
Do not normalize probabilities locally

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
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From local probabilities to local potentials

• States with lower transitions do not have an unfair advantage!© Eric Xing @ CMU, 2014 14



From MEMM ….

Y1 Y2 … … … Yn

X1:n
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 CRF is a partially directed model
 Discriminative model like MEMM
 Usage of global normalizer Z(x) overcomes the label bias problem of MEMM
 Models the dependence between each state and the entire observation sequence 

(like MEMM)

From MEMM to CRF

Y1 Y2 … … … Yn

x1:n

© Eric Xing @ CMU, 2014 16



Conditional Random Fields
 General parametric form:

Y1 Y2 … … … Yn

x1:n
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CRFs: Inference
 Given CRF parameters  and , find the y* that maximizes P(y|x)

 Can ignore Z(x) because it is not a function of y

 Run the max-product algorithm on the junction-tree of CRF:

Y1 Y2 … … … Yn

x1:n

Y1,Y2 Y2,Y3 ……. Yn-2,Yn-1
Yn-1,Yn

Y2 Y3
Yn-2 Yn-1

Same as Viterbi decoding 
used in HMMs!
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CRF learning
 Given {(xd, yd)}d=1

N, find *, * such that

 Computing the gradient w.r.t 
Gradient of the log-partition function in an 
exponential family is the expectation of the 

sufficient statistics.
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CRF learning

 Computing the model expectations:

 Requires exponentially large number of summations: Is it intractable?

 Tractable!
 Can compute marginals using the sum-product algorithm on the chain

Expectation of f over the corresponding marginal 
probability of neighboring nodes!!
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CRF learning
 In practice, we use a Gaussian Regularizer for the parameter 

vector to improve generalizability

 In practice, gradient ascent has very slow convergence
 Alternatives:

 Conjugate Gradient method
 Limited Memory Quasi-Newton Methods 
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CRFs: some empirical results
 Comparison of error rates on synthetic data

CRF error HMM error

HMM error
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Data is increasingly higher 
order in the direction of arrow

CRFs achieve the lowest 
error rate for higher order 
data
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CRFs: some empirical results
 Parts of Speech tagging

 Using same set of features: HMM >=< CRF > MEMM
 Using additional overlapping features: CRF+ > MEMM+ >> HMM
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Summary
 Conditional Random Fields are partially directed discriminative 

models
 They overcome the label bias problem of MEMMs by using a global 

normalizer
 Inference for 1-D chain CRFs is exact

 Same as Max-product or Viterbi decoding
 Learning also is exact

 globally optimum parameters can be learned
 Requires using sum-product or forward-backward algorithm

 CRFs involving arbitrary graph structure are intractable in general
 E.g.: Grid CRFs
 Inference and learning require approximation techniques

 MCMC sampling
 Variational methods
 Loopy BP 
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Other CRFs
 So far we have discussed only 1-

dimensional chain CRFs
 Inference and learning: exact

 We could also have CRFs for 
arbitrary graph structure
 E.g: Grid CRFs
 Inference and learning no longer tractable
 Approximate techniques used

 MCMC Sampling
 Variational Inference
 Loopy Belief Propagation

 We will discuss these techniques soon
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Image Segmentation
 Image segmentation (FG/BG) by modeling of interactions btw RVs 

 Images are noisy. 
 Objects occupy continuous regions in an image.

Input image Pixel-wise separate
optimal labeling

Locally-consistent 
joint optimal labeling

[Nowozin,Lampert 2012]

Y* argmax
y{0,1}n

Vi (yi,X) Vi, j (yi, yj )
jNi


iS


iS












.

Y: labels
X: data (features)
S: pixels
Ni: neighbors of pixel i

Unary Term Pairwise Term
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Undirected Graphical Models 
(with an Image Labeling Example)
 Image can be represented by 4-connected

2D grid. 

 MRF / CRF with image labeling problem
 X={xi}iS: observed data of an image. 
 xi: data at i-th site (pixel or block) of the image set S

 Y={yi}iS: (hidden) labels at i-th site. yi  {1,…, L}. 

 Object: maximize the conditional probability  Y*=argmaxY P(Y|X)

xi
si

xj

sj
yi= 0 (BG)

si

yi= 1 (FG)
sj

Y*
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MRF (Markov Random Field)
 Definition: Y={yi}iS is called Markov Random Field on the set S, with 

respect to neighborhood system N, iff for all i  S,

 The posterior probability is

 (1) Very strict independence assumptions 
for tractability: Label of each site is a 
function of data only at that site. 

 (2) P(Y) is modeled as a MRF

P(yi|yS-{i}) = P(yi|yNi). 

yj yi

xi

P(Y | X)  P(X,Y )
P(X)

P(X |Y )P(Y )  P(xi | yi )
iS
 P(Y )

(1) (2)

P(Y )  1
Z

c (yc )
cC

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CRF
 Definition: Let G = (S, E), then (X, Y) is said to be a Conditional 

Random Field (CRF) if, when conditioned on X, the random 
variables yi obey the Markov property with respect to the graph

 Globally conditioned on the observation X

yj yi

xi

P(yi|yS-{i}) = P(yi|yNi)MRF:P(yi|X,yS-{i}) = P(yi|X,yNi)

CRF

yj yi

xi

MRF
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CRF vs MRF
 MRF: two-step generative model

 Infer likelihood P(X|Y) and prior P(Y)
 Use Bayes theorem to determine posterior P(Y|X)

 CRF: one-step discriminative model
 Directly Infer posterior P(Y|X)

 Popular Formulation

P(Y | X) P(X,Y )
P(X)

P(X |Y )P(Y )  P(xi | yi )
iS
  1

Z
c (yc )

cC


P(Y | X) 1
Z

exp( log p(xi | yi ) V2 (yi, yi ' )
i 'Ni


iS


iS
 )MRF

P(Y | X)  1
Z

exp( V1(yi | X) V2 (yi, yi ' | X)
i 'Ni


iS


iS
 )CRF

Potts model for P(Y) with
only pairwise potential 

Only up to pairwise clique
potentials

Assumption
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Example of CRF – DRF
 A special type of CRF

 The unary and pairwise potentials are designed using local discriminative 
classifiers.

 Posterior

 Association Potential 
 Local discriminative model for site i: using logistic link with GLM.

 Interaction Potential
 Measure of how likely site i and j have the same label given X

Ai (yi,X)  logP(yi | fi (X))

P(Y | X)  1
Z

exp( Ai (yi,X) Iij (yi, yj,X)
jNi


iS


iS
 )

S. Kumar and M. Hebert. Discriminative Random Fields. IJCV, 2006.

Association Interaction

P(yi 1 | fi (X))  1
1 exp((wT fi (X)))

 (wT fi (X))

Iij (yi, yj,X)  kyiyj  (1 k)(2 (yiyjij (X))1))

(1) Data-independent smoothing term (2) Data-dependent pairwise logistic function  
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Example of CRF – DRF Results
 Task: Detecting man-made structure in natural scenes. 

 Each image is divided in non-overlapping 16x16 tile blocks. 

 An example

 Logistic: No smoothness in the labels
 MRF: Smoothed False positive. Lack of neighborhood interaction of the data

S. Kumar and M. Hebert. Discriminative Random Fields. IJCV, 2006.

Input image Logistic MRF DRF
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Example of CRF –Body Pose 
Estimation
 Task: Estimate a body pose.

 Need to detect parts of human body
 Appearance + Geometric configuration. 
 A large number of DOFs

 Use CRF to model a human body
 Nodes: Parts (head, torso, upper/

lower left/right arms).
L=(l1,…, l6), li = [xi, yi, θi].

 Edges: Pairwise linkage between
parts

 Tree vs. Graph

V. Ferrari et al. Progressive search space reduction for human pose estimation. CVPR 2008.
D. Ramanan. Learning to Parse Images of Articulated Bodies." NIPS 2006. 

[Zisserman 2010]
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Example of CRF –Body Pose 
Estimation
 Posterior of configuration

 ψ(li,lj): relative position with geometric constraints
 ϕ(li): local image evidence for a part in a particular location
 If E is a tree, exact inference is efficiently performed by BP.

 Example of unary and pairwise terms 
 Unary term: appearance feature

P(L | I ) exp( (li ) (li, l j
(i, j )E


i
 ))

HOG of lower arm 
template (learned)

HOG of image L2 Distance

 Pairwise term: kinematic layout

li

lj
Truncated
quadratic

[Zisserman 2010]

35© Eric Xing @ CMU, 2005-2013



Example of CRF – Results of 
Body Pose Estimation
 Examples of results

 Datasets and codes are available.
 http://www.ics.uci.edu/~dramanan/papers/parse/
 http://www.robots.ox.ac.uk/~vgg/research/pose_estimation/

[Ferrari et al. 2008]

[Ramanan 2006] 
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