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Structured Models (2):

Hidden Markov Models versus
Conditional Random Fields
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Shortcomings of Hidden Markov | 8322
Model oo

¢ HMM models capture dependences between each state and only its
corresponding observation

e NLP example: In a sentence segmentation task, each segmental state may
depend not just on a single word (and the adjacent segmental stages), but also
on the (non-local) features of the whole line such as line length, indentation,
amount of white space, etc.

e Mismatch between learning objective function and prediction

objective function

e HMM learns a joint distribution of states and observations P(Y, X), butin a
prediction task, we need the conditional probability P(Y|X)
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Departing from HMM




Solution: H
Maximum Entropy Markov Model (MEMM) | ¢

n T

P(ylrnlxlin) = Hp(y’ilyi—laxl:n) — H

=1 1=1

eXP(WTf(yz', Yi—1, Xl:n))
Z(y'i—la Xl:n)

e Models dependence between each state and the full
observation sequence explicitly
e More expressive than HMMs

e Discriminative model
e Completely ignores modeling P(X): saves modeling effort
e Learning objective function consistent with predictive function: P(Y|X)
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MEMM: the Label bias problem

Observation 1 Observation 2 Observation 3
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What the local transition probabilities say:
 State 1 almost always prefers to go to state 2

» State 2 almost always prefer to stay in state 2
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MEMM: the Label bias problem

Observation 1 Observation 2 Observation 3
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Probability of path 1-> 1-> 1-> 1:
 0.4x0.45x0.5=0.09
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MEMM: the Label bias problem

Observation 1 Observation 2 Observation 3 Observation 4

0.4 :m 0.45 :m 0.5
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Probability of path 2->2->2->2 :
*«0.2X0.3X0.3=0.018

Other paths:
1->1->1->1:0.09
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MEMM: the Label bias problem

Observation 1 Observation 2 Observation 3 Observation 4
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Probability of path 1->2->1->2;
Other paths:

« 0.6 X0.2X0.5=0.06 1->1->1->1: 0.09
2->2->2->2:0.018
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MEMM: the Label bias problem

Observation 1 Observation 2 Observation 3 Observation 4

0.4 (D o4 =m 05

@00

State 1 > >
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0.2 0.3 0.3
0.2 0.1 0.2
AN AN
0.2 0.1 0.2
w @ 'O \®
0.2 0.3 0.2
w: @ '@ @

Probability of path 1->1->2->2;
Other paths:

0.4 X0.55 X0.3=0.066 1->1->1->1: 0.09
2->2->2->2:0.018
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MEMM: the Label bias problem

Observation 1 Observation 2 Observation 3 Observation 4

State 1

State 2 Q

State 3 Q

State 4 Q
2

State 5 Q

Most Likely Path: 1->1->1->1

 Although locally it seems state 1 wants to go to state 2 and state 2 wants to remain in state 2.

e Why?
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MEMM: the Label bias problem

Observation 1 Observation 2 Observation 3 Observation 4

State 1

State 2

State 3

State 4

SR KC)

0.2

State 5

O

Most Likely Path: 1->1->1->1
 State 1 has only two transitions but state 2 has 5:

» Average transition probability from state 2 is lower
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MEMM: the Label bias problem

Observation 1 Observation 2 Observation 3

State 1

State 2

State 3

State 4

State 5

Label bias problem in MEMM:

Observation 4

SR KC)

0.2

O

» Preference of states with lower number of transitions over others
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Solution:
Do not normalize probabilities locally

Observation 1 Observation 2 Observation 3 Observation 4

0.4 =m 0.45 =m 0.5 :

State 1
0.2 0.6 0.2 0.55 0.1 0.5
0.2 0.3 0.3
OO0
0.2 0.1 0.2
sees O\ O N\ O N\ O
0.2 0.1 0.2
= @ \O0 \O0 \@
0.2 0.3 0.2
wes O O O O

From local probabilities ....
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Solution: eecs
Do not normalize probabilities locally | s¢

Observation 1 Observation 2 Observation 3 Observation 4

20 =m 30 =m 5 :
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From local probabilities to local potentials

e States with lower transitiQpns &Qunef have an unfair advantage! ,,



From MEMM ....




From MEMM to CRF ol

H exp(w' £(y;,yi—1,X1:n))

P(yl;n|xl:n) N H ¢(yiayi—laxl:n) —
g i=1

Z(Xl:nv W)

e CRF is a partially directed model
e Discriminative model like MEMM
e Usage of global normalizer Z(x) overcomes the label bias problem of MEMM

e Models the dependence between each state and the entire observation sequence
(like MEMM)
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Conditional Random Fields

e General parametric form:

m‘g‘\gg»m

P(ylx) = Z(Xl)\ " exp( Z Z)\kfk (Yis Yi-1,%) +Zuzgz (yi>x)))

=1
1 mn
_ MNF(ys, i,
T GXP(;( (vi, vi1,%) + pF g(yi, x)))

where Z(x, A, i) ZGXP(Z(ATf Vi Yie1,X) + [ g(y’iax)))
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CRFs: Inference :
e Given CRF parameters A and y, find the y* that maximizes P(y|x)
y' = arg max eXP(Z(ATf(ym Yi-1,X) + 1’ gy, x)))
=1

e Canignore Z(x) because it is not a function of y

e Run the max-product algorithm on the junction-tree of CRF:

Same as Viterbi decoding
used in HMMs!
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CRF learning

o Given {(Xy4 Yy)}q=1", find A%, H* such that

A%, 1k = arg max L(\, p) = arg max H P(y |xa, A, 1)

A, p "udl

= argmaXH Xd )\ /J) eXp Z()\ yd iy Yd,i— 17Xd) + g(yd Zaxd)))

= arg maXZ Z AT (Yai Yaim1,%a) + 1" 8(Wai,%a)) — log Z (x4, A, 1))

Arkh d=1 i=1
Gradient of the log-patrtition function in an
_ _ exponential family is the expectation of the
e Computing the gradient w.r.t A: sufficient statistics.

VAL(/\,M) = Z(Z f(yd,z',yd,z'—l,xd) — Z(P(y‘xd)Zf(yd,iayd,i—laxd)))

d=1 =1 y 1=1
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CRF learning .

N n n
VaLhp) = ) O f(Wair vai-1,%a) 4 > _(Plylxa) Y £(yi,yi-1,%a)))
d=1 1=1 y g==1
e Computing the model expectations: ﬂ

e Requires exponentially large number of summations: Is it intractable?

Z(P(Y|Xd)zf(yz’ayz’—laxd)) = Z(Zf(yiayi—laxd)P(Y|Xd))
= Z Z £(yi, Yi-1,%Xa) P(Yi, Yi-1]%Xa)

Expectation of f over the corresponding marginal
probability of neighboring nodes!!

e Tractable!
e Can compute marginals using the sum-product algorithm on the chain
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CRF learning .

e In practice, we use a Gaussian Regularizer for the parameter
vector to improve generalizability

N

Ak, pux = argmax Yy log P(y X4, A,
p g)w; g P(yalxa, A p)

1
- @(AT)\ + ' )
e In practice, gradient ascent has very slow convergence

e Alternatives:
Conjugate Gradient method
Limited Memory Quasi-Newton Methods

© Eric Xing @ CMU, 2014
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CRFs: some empirical results
e Comparison of error rates on synthetic data
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CRFs: some empirical results

e Parts of Speech tagging

model | error  oov error
HMM | 5.69%  45.99%
MEMM | 6.37%  54.61%
CRF | 5.55%  48.05%

MEMMT | 481%  26.99%
CRFT | 427%  23.76%

* Using spelling features

e Using same set of features: HMM >=< CRF > MEMM
e Using additional overlapping features: CRF* > MEMM* >> HMM
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Summary .
e Conditional Random Fields are partially directed discriminative
models
e They overcome the label bias problem of MEMMSs by using a global
normalizer

e Inference for 1-D chain CRFs is exact
e Same as Max-product or Viterbi decoding

e Learning also is exact
e globally optimum parameters can be learned
e Requires using sum-product or forward-backward algorithm

e CRFs involving arbitrary graph structure are intractable in general
e E.g.:Grid CRFs
e Inference and learning require approximation techniques
MCMC sampling
Variational methods
Loopy BP

© Eric Xing @ CMU, 2014
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Other CRFs :
e So far we have discussed only 1-
dimensional chain CRFs

e Inference and learning: exact

e We could also have CRFs for
arbitrary graph structure
e E.g: Grid CRFs
e Inference and learning no longer tractable

e Approximate techniques used
MCMC Sampling

Variational Inference
Loopy Belief Propagation
e We will discuss these techniques soon

© Eric Xing @ CMU, 2005-2013
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Image Segmentation

e |Image segmentation (FG/BG) by modeling of interactions btw RVs
e Images are noisy.
e Objects occupy continuous regions in an image.

[Nowozin,Lampert 2012]

Input image Pixel-wise separate Locally-consistent
optimal labeling joint optimal labeling
Unary Term Pairwise Term
—t—— | d \ Y: labels
Y*=argmax Zl/i(yl.,X)-l—Z Z V.. y,) | g{ Siitea};features)
ye{01}" | ies ieS jeN; N;: neighbors of pixel i
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Undirected Graphical Models cece
(with an Image Labeling Example) | <¢

e Image can be represented by 4-connected
2D grid.

e MRF / CRF with image labeling problem

o X={x};.: observed data of an image.

e x;: data at i-th site (pixel or block) of the image set S

o Y={y}is (hidden) labels at i-th site. y; € {1,..., L}.

e Object: maximize the conditional probability Y*=argmax, P(Y]|X)

yi=0(BG)
y=1(FG)

© Eric Xing @ CMU, 2005-2013 28



MRF (Markov Random Field) o°

e Definition: Y={y;},_, Is called Markov Random Field on the set S, with
respect to neighborhood system N, iff for all i € S,

P(Vib’s-{i}) = PQibvw)-

e The posterior probabillity is (1) 2)
—
Py 1= e P 1yp(n) <[ TP 1) POY)

ieS

e (1) Very strict independence assumptions
for tractability: Label of each site is a < >
function of data only at that site.

e (2)P(Y)is modeled as a MRF
L]

P=—TTw.()

ceC
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CRF

e Definition: Let G = (S, E), then (X, Y) is said to be a Conditional
Random Field (CRF) if, when conditioned on X, the random
variables y; obey the Markov property with respect to the graph

P(Vi|XJ’S-{z‘}) = POilX,yn) MRF: P(Vib’s-{i}) =PQilvw)

e Globally conditioned on the observation X

© Eric Xing @ CMU, 2005-2013 30



CRF vs MRF oe

e MRF: two-step generative model
e Infer likelihood P(X]Y) and prior P(Y)
e Use Bayes theorem to determine posterior P(Y]X)

P(X,Y 1
P(r 1) =200 o px ) =TT PG 1) 2 TTw0)
P X) ieS Z ceC
e CRF: one-step discriminative model
e Directly Infer posterior P(Y|X)
e Popular Formulation Assumption

1 Potts model for P(Y) with
MRF  P(Y|X)= EeXp(Zlogp(xi Iy,-)+z Z Vo0s¥:))  only pairwise potential

ieS ieSi'eN;

Z Z ACY

ieSi'eN;

Only up to pairwise cligue
potentials

CRF P(Y|X)=%exp(—ZV1

ieS
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Example of CRF — DRF .

e A special type of CRF

e The unary and pairwise potentials are designed using local discriminative

classifiers.
e Posterior Association Interaction
P(Y | X) ——exp(ZA G )+ 2 D 1, (507, X))
ieS§ ieSjeN;

e Association Potential
e Local discriminative model for site i: using logistic link with GLM.

1
, log P X P(y. =1| (X)) = = "X
A0 0)=100P0 L) PO, =11 f00)= e =0 (A1)
e Interaction Potential

e Measure of how likely site i and | have the same label given X

Iij (yi’yj’X) =lky,-yj' +l(1_k)(20-(yiyjluij (X))_l).)

(1) Data-independent smoothing term  (2) Data-dependent pairwise logistic function
S. Kumar and M. Hebert. Discriminative Random Fields. 1JCV, 2006.
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Example of CRF — DRF Results

e Task: Detecting man-made structure in natural scenes.
e Each image is divided in non-overlapping 16x16 tile blocks.

e An example

Input image Logistic MRF DRF
e Logistic: No smoothness in the labels

e MRF: Smoothed False positive. Lack of neighborhood interaction of the data

S. Kumar and M. Hebert. Discriminative Random Fields. IJCV, 2006.
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Example of CRF —-Body Pose i

Estimation 4+
e Task: Estimate a body pose.
e Need to detect parts of human body
e Appearance + Geometric configuration.
e Alarge number of DOFs
e Use CRF to model a human body ~ [#isserman 2010]
e Nodes: Parts (head, torso, upper/ m
lower left/right arms).
L=(ly,..., l), [; = [x;, v, O]. ﬂ -
e Edges: Pairwise linkage between ~... E R

parts Q 'pet -
e Tree vs. Graph Q E]

V. Ferrari et al. Progressive search space reduction for human pose estimation. CVPR 2008.

D. Ramanan. Learning to Parse Images of Articulated Bodies." NIPS 2006.
© Eric Xing @ CMU, 2005-2013 34




Example of CRF —-Body Pose i
Estimation oo

e Posterior of configuration

P(L|D)cexp(E00)+ X (1)

: . L (ij)eE
o y(l,1): relative position with geometric constraints

e ¢(/): local image evidence for a part in a particular location
e |If Eis atree, exact inference is efficiently performed by BP.

e Example of unary and pairwise terms

e Unary term: appearance feature
e Pairwise term: kinematic layout

L N . i '
¥ N Q [ﬂ Truncated

E quadratic

HOG of image HOG of lower arm L2 Distance [Zisserman 2010]

template (learned) © Eric Xing @ CMU, 2005-2013 35




Example of CRF — Results of T
Body Pose Estimation 4+

e Examples of results

initial parse

[Ramanan 2006] — ¢ 7
[Ferrari et al. 2008]

e Datasets and codes are available.
e http://www.ics.uci.edu/~dramanan/papers/parse/
e http://www.robots.ox.ac.uk/~vgg/research/pose_estimation/

© Eric Xing @ CMU, 2005-2013 36



