# Advanced Introduction to Machine Learning

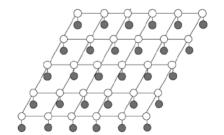
10715, Fall 2014

Structured Models (2):

Hidden Markov Models versus Conditional Random Fields

**Eric Xing** 

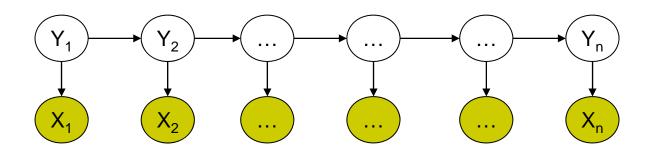
**Lecture 12, October 15, 2014** 



Reading:

## **Shortcomings of Hidden Markov Model**



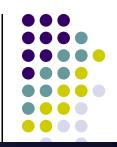


- HMM models capture dependences between each state and only its corresponding observation
  - NLP example: In a sentence segmentation task, each segmental state may depend not just on a single word (and the adjacent segmental stages), but also on the (non-local) features of the whole line such as line length, indentation, amount of white space, etc.
- Mismatch between learning objective function and prediction objective function
  - HMM learns a joint distribution of states and observations P(Y, X), but in a
    prediction task, we need the conditional probability P(Y|X)

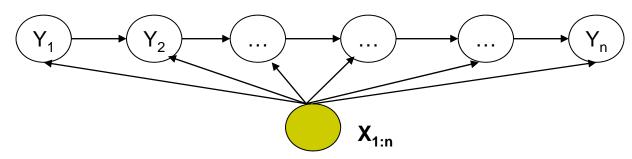




## Solution:

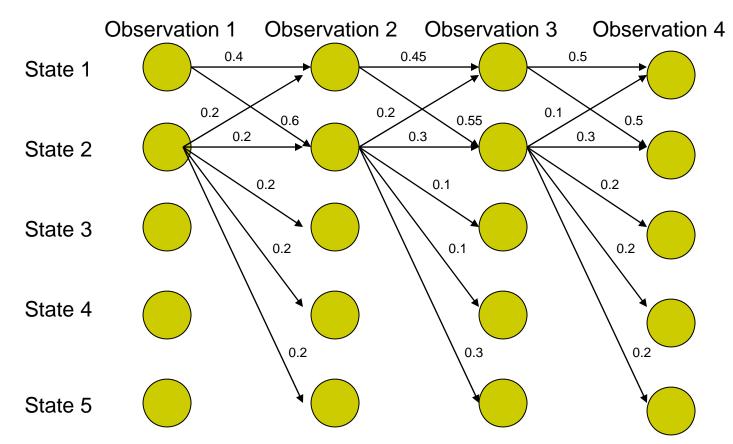


### **Maximum Entropy Markov Model (MEMM)**



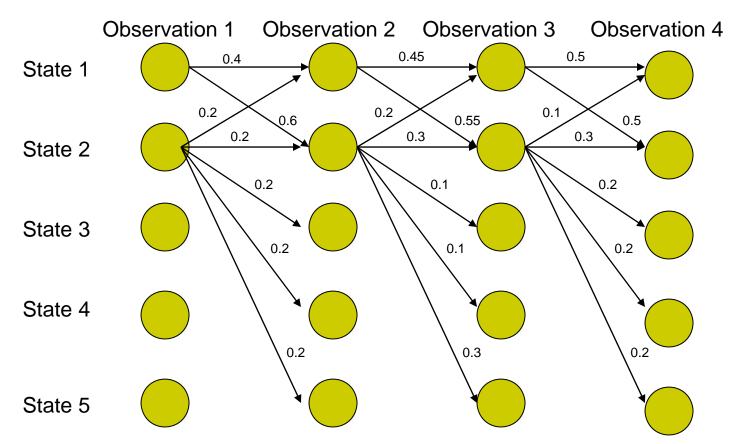
$$P(\mathbf{y}_{1:n}|\mathbf{x}_{1:n}) = \prod_{i=1}^{n} P(y_i|y_{i-1},\mathbf{x}_{1:n}) = \prod_{i=1}^{n} \frac{\exp(\mathbf{w}^T \mathbf{f}(y_i,y_{i-1},\mathbf{x}_{1:n}))}{Z(y_{i-1},\mathbf{x}_{1:n})}$$

- Models dependence between each state and the full observation sequence explicitly
  - More expressive than HMMs
- Discriminative model
  - Completely ignores modeling P(X): saves modeling effort
  - Learning objective function consistent with predictive function: P(Y|X)



### What the local transition probabilities say:

- State 1 almost always prefers to go to state 2
- State 2 almost always prefer to stay in state 2
   © Eric Xing @ CMU, 2014



Probability of path 1-> 1-> 1:

•  $0.4 \times 0.45 \times 0.5 = 0.09$ 





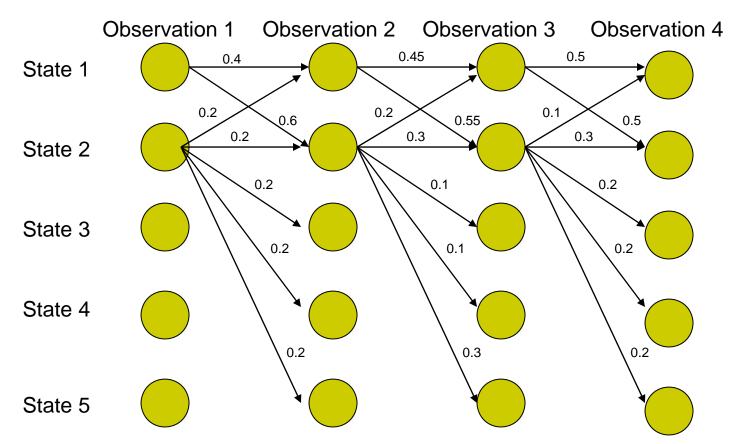
Probability of path 2->2->2:

 $\bullet$  0.2 X 0.3 X 0.3 = 0.018

Other paths:

1-> 1-> 1-> 1: 0.09





Probability of path 1->2->1->2:

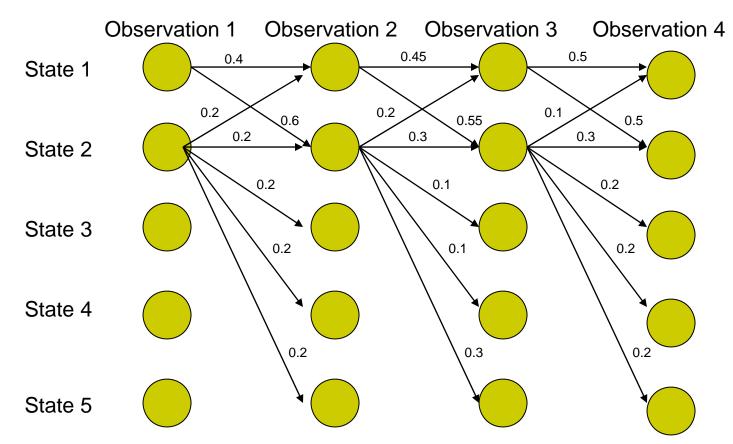
•  $0.6 \times 0.2 \times 0.5 = 0.06$ 

Other paths:

1->1->1: 0.09

2->2->2: 0.018





Probability of path 1->1->2:

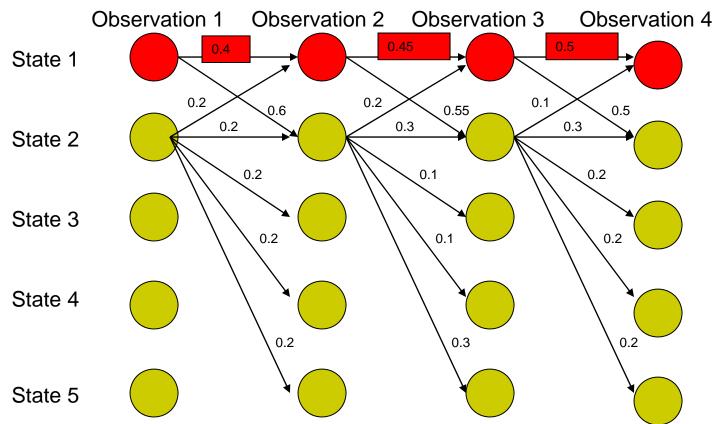
• 0.4 X 0.55 X 0.3 = 0.066

Other paths:

1->1->1: 0.09

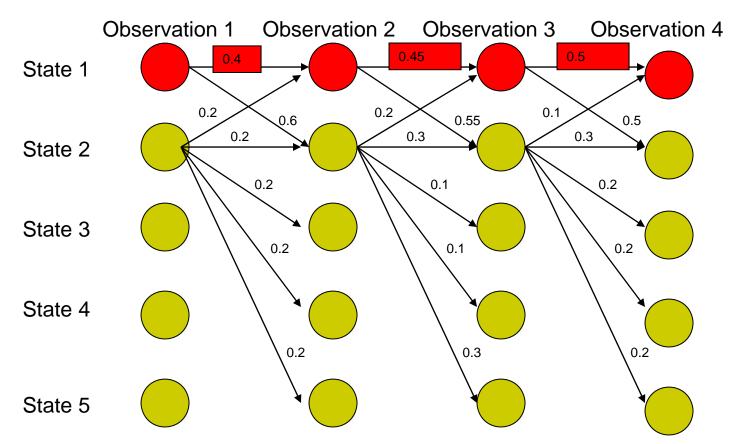
2->2->2: 0.018

© Eric Xing @ CMU, 2014->2->1->2: 0.06



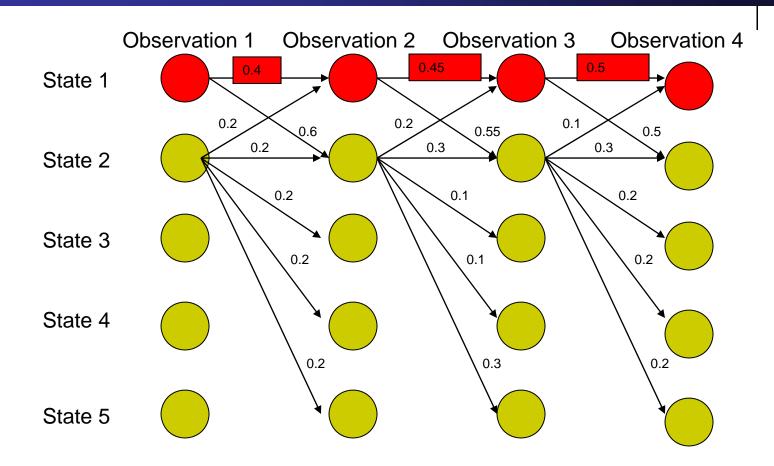
Most Likely Path: 1-> 1-> 1

- Although locally it seems state 1 wants to go to state 2 and state 2 wants to remain in state 2.
- why?



Most Likely Path: 1-> 1-> 1

- State 1 has only two transitions but state 2 has 5:
  - Average transition probability from state 2 is lower

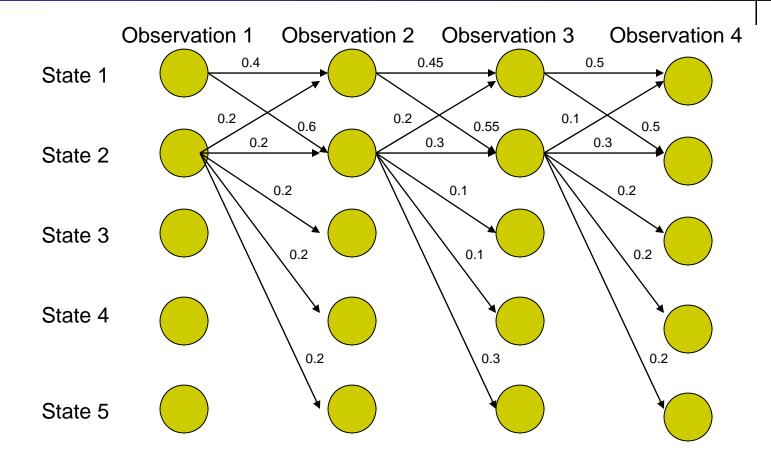


### Label bias problem in MEMM:

• Preference of states with lower number of transitions over others

# Solution: Do not normalize probabilities locally

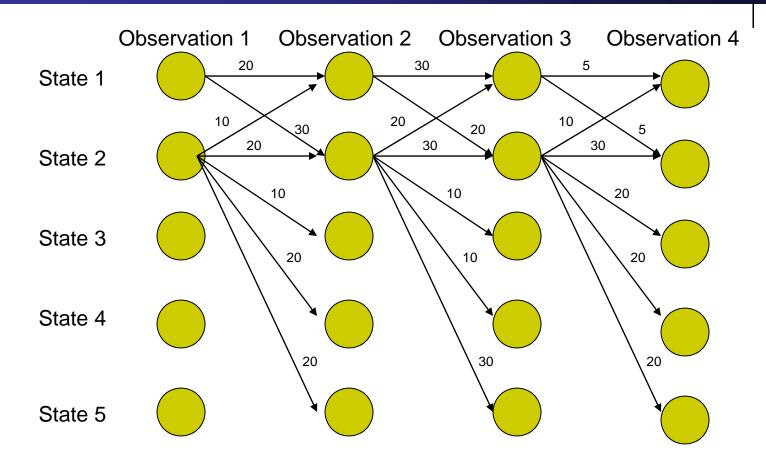




From local probabilities ....

## Solution: Do not normalize probabilities locally



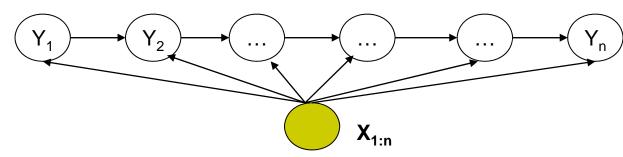


From local probabilities to local potentials

• States with lower transitions do not have an unfair advantage!



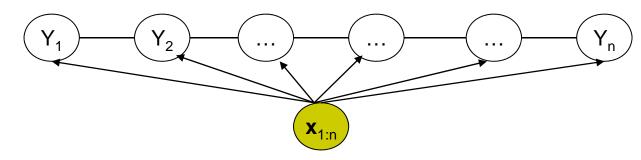
### From MEMM ....



$$P(\mathbf{y}_{1:n}|\mathbf{x}_{1:n}) = \prod_{i=1}^{n} P(y_i|y_{i-1},\mathbf{x}_{1:n}) = \prod_{i=1}^{n} \frac{\exp(\mathbf{w}^T \mathbf{f}(y_i,y_{i-1},\mathbf{x}_{1:n}))}{Z(y_{i-1},\mathbf{x}_{1:n})}$$





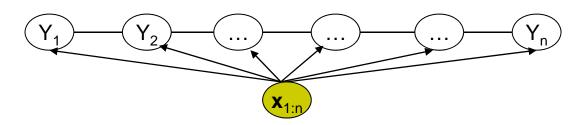


$$P(\mathbf{y}_{1:n}|\mathbf{x}_{1:n}) = \frac{1}{Z(\mathbf{x}_{1:n})} \prod_{i=1}^{n} \phi(y_i, y_{i-1}, \mathbf{x}_{1:n}) = \frac{1}{Z(\mathbf{x}_{1:n}, \mathbf{w})} \prod_{i=1}^{n} \exp(\mathbf{w}^T \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_{1:n}))$$

- CRF is a partially directed model
  - Discriminative model like MEMM
  - Usage of global normalizer Z(x) overcomes the label bias problem of MEMM
  - Models the dependence between each state and the entire observation sequence (like MEMM)

### **Conditional Random Fields**

General parametric form:



$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x}, \lambda, \mu)} \exp(\sum_{i=1}^{n} (\sum_{k} \lambda_{k} f_{k}(y_{i}, y_{i-1}, \mathbf{x}) + \sum_{l} \mu_{l} g_{l}(y_{i}, \mathbf{x})))$$
$$= \frac{1}{Z(\mathbf{x}, \lambda, \mu)} \exp(\sum_{i=1}^{n} (\lambda^{T} \mathbf{f}(y_{i}, y_{i-1}, \mathbf{x}) + \mu^{T} \mathbf{g}(y_{i}, \mathbf{x})))$$

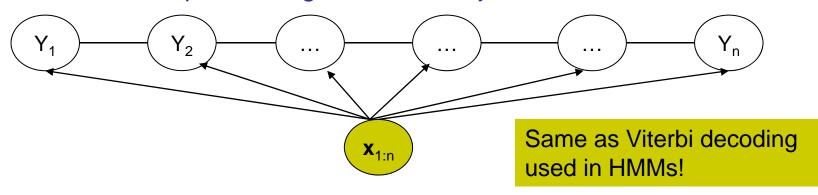
where 
$$Z(\mathbf{x}, \lambda, \mu) = \sum_{\mathbf{y}} \exp(\sum_{i=1}^{n} (\lambda^T \mathbf{f}(y_i, y_{i-1}, \mathbf{x}) + \mu^T \mathbf{g}(y_i, \mathbf{x})))$$

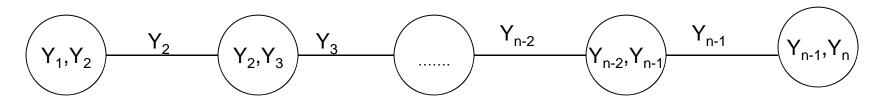
### **CRFs: Inference**

• Given CRF parameters  $\lambda$  and  $\mu$ , find the  $\mathbf{y}^*$  that maximizes  $P(\mathbf{y}|\mathbf{x})$ 

$$\mathbf{y}^* = \arg\max_{\mathbf{y}} \exp(\sum_{i=1}^n (\lambda^T \mathbf{f}(y_i, y_{i-1}, \mathbf{x}) + \mu^T \mathbf{g}(y_i, \mathbf{x})))$$

- Can ignore Z(x) because it is not a function of y
- Run the max-product algorithm on the junction-tree of CRF:





## **CRF** learning



• Given  $\{(\mathbf{x}_d, \mathbf{y}_d)\}_{d=1}^N$ , find  $\lambda^*$ ,  $\mu^*$  such that

$$\lambda*, \mu* = \arg\max_{\lambda,\mu} L(\lambda,\mu) = \arg\max_{\lambda,\mu} \prod_{d=1}^{N} P(\mathbf{y}_{d}|\mathbf{x}_{d}, \lambda, \mu)$$

$$= \arg\max_{\lambda,\mu} \prod_{d=1}^{N} \frac{1}{Z(\mathbf{x}_{d}, \lambda, \mu)} \exp(\sum_{i=1}^{n} (\lambda^{T} \mathbf{f}(y_{d,i}, y_{d,i-1}, \mathbf{x}_{d}) + \mu^{T} \mathbf{g}(y_{d,i}, \mathbf{x}_{d})))$$

$$= \arg\max_{\lambda,\mu} \sum_{d=1}^{N} (\sum_{i=1}^{n} (\lambda^{T} \mathbf{f}(y_{d,i}, y_{d,i-1}, \mathbf{x}_{d}) + \mu^{T} \mathbf{g}(y_{d,i}, \mathbf{x}_{d})) - \log Z(\mathbf{x}_{d}, \lambda, \mu))$$

Computing the gradient w.r.t λ:

Gradient of the log-partition function in an exponential family is the expectation of the sufficient statistics.

$$\nabla_{\lambda} L(\lambda, \mu) = \sum_{d=1}^{N} \left( \sum_{i=1}^{n} \mathbf{f}(y_{d,i}, y_{d,i-1}, \mathbf{x}_d) - \sum_{\mathbf{y}} \left( P(\mathbf{y} | \mathbf{x}_d) \sum_{i=1}^{n} \mathbf{f}(y_{d,i}, y_{d,i-1}, \mathbf{x}_d) \right) \right)$$

## CRF learning



$$\nabla_{\lambda}L(\lambda,\mu) = \sum_{d=1}^{N}(\sum_{i=1}^{n}\mathbf{f}(y_{d,i},y_{d,i-1},\mathbf{x}_{d}) - \sum_{\mathbf{y}}(P(\mathbf{y}|\mathbf{x}_{d})\sum_{i=1}^{n}\mathbf{f}(y_{i},y_{i-1},\mathbf{x}_{d})))$$
Computing the model expectations:

- - Requires exponentially large number of summations: Is it intractable?

$$\sum_{\mathbf{y}} (P(\mathbf{y}|\mathbf{x}_d) \sum_{i=1}^n \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_d)) = \sum_{i=1}^n (\sum_{\mathbf{y}} \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_d) P(\mathbf{y}|\mathbf{x}_d))$$

$$= \sum_{i=1}^n \sum_{y_i, y_{i-1}} \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_d) P(y_i, y_{i-1}|\mathbf{x}_d)$$

Expectation of **f** over the corresponding marginal probability of neighboring nodes!!

- Tractable!
  - Can compute marginals using the sum-product algorithm on the chain

## **CRF** learning

 In practice, we use a Gaussian Regularizer for the parameter vector to improve generalizability

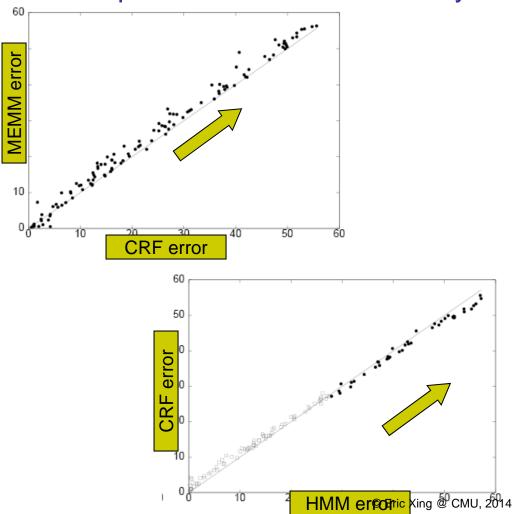
$$\lambda *, \mu * = \arg \max_{\lambda, \mu} \sum_{d=1}^{N} \log P(\mathbf{y}_d | \mathbf{x}_d, \lambda, \mu) - \frac{1}{2\sigma^2} (\lambda^T \lambda + \mu^T \mu)$$

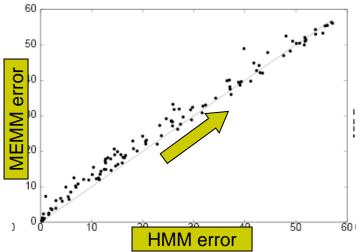
- In practice, gradient ascent has very slow convergence
  - Alternatives:
    - Conjugate Gradient method
    - Limited Memory Quasi-Newton Methods





Comparison of error rates on synthetic data





Data is increasingly higher order in the direction of arrow

CRFs achieve the lowest error rate for higher order data



### **CRFs:** some empirical results

### Parts of Speech tagging

| model             | error | oov error |
|-------------------|-------|-----------|
| HMM               | 5.69% | 45.99%    |
| MEMM              | 6.37% | 54.61%    |
| CRF               | 5.55% | 48.05%    |
| MEMM <sup>+</sup> | 4.81% | 26.99%    |
| CRF <sup>+</sup>  | 4.27% | 23.76%    |

<sup>&</sup>lt;sup>+</sup>Using spelling features

- Using same set of features: HMM >=< CRF > MEMM
- Using additional overlapping features: CRF+ > MEMM+ >> HMM

### **Summary**

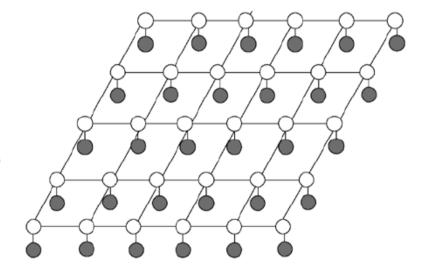
- Conditional Random Fields are partially directed discriminative models
- They overcome the label bias problem of MEMMs by using a global normalizer
- Inference for 1-D chain CRFs is exact
  - Same as Max-product or Viterbi decoding
- Learning also is exact
  - globally optimum parameters can be learned
  - Requires using sum-product or forward-backward algorithm
- CRFs involving arbitrary graph structure are intractable in general
  - E.g.: Grid CRFs
  - Inference and learning require approximation techniques
    - MCMC sampling
    - Variational methods
    - Loopy BP



### Other CRFs



- So far we have discussed only 1dimensional chain CRFs
  - Inference and learning: exact
- We could also have CRFs for arbitrary graph structure
  - E.g: Grid CRFs
  - Inference and learning no longer tractable
  - Approximate techniques used
    - MCMC Sampling
    - Variational Inference
    - Loopy Belief Propagation
  - We will discuss these techniques soon



## **Image Segmentation**



- Image segmentation (FG/BG) by modeling of interactions btw RVs
  - Images are noisy.
  - Objects occupy continuous regions in an image.

[Nowozin,Lampert 2012]



Input image



Pixel-wise separate optimal labeling



Locally-consistent joint optimal labeling

**Unary Term** Pairwise Term

$$Y^* = \underset{y \in \{0,1\}^n}{\arg \max} \left[ \sum_{i \in S} V_i(y_i, X) + \sum_{i \in S} \sum_{j \in N_i} V_{i,j}(y_i, y_j) \right].$$

Y: labels

X: data (features)

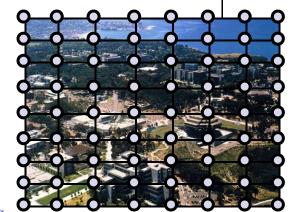
S: pixels

 $N_i$ : neighbors of pixel i

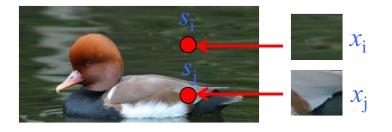
# Undirected Graphical Models (with an Image Labeling Example)

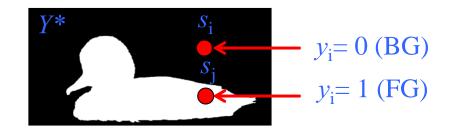


- Image can be represented by 4-connected
   2D grid.
- MRF / CRF with image labeling problem
  - $X=\{x_i\}_{i\in S}$ : observed data of an image.
  - x<sub>i</sub>: data at i-th site (pixel or block) of the image set S
  - $Y=\{y_i\}_{i\in S}$ : (hidden) labels at *i*-th site.  $y_i\in\{1,\ldots,L\}$ .



• Object: maximize the conditional probability  $Y^*=\operatorname{argmax}_Y P(Y|X)$ 









• Definition:  $Y = \{y_i\}_{i \in S}$  is called Markov Random Field on the set S, with respect to neighborhood system N, iff for all  $i \in S$ ,

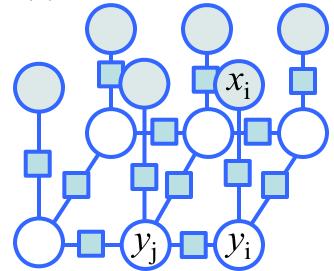
$$\mathsf{P}(y_i|y_{S-\{i\}}) = \mathsf{P}(y_i|y_{Ni}).$$

The posterior probability is

$$P(Y \mid X) = \frac{P(X,Y)}{P(X)} \propto P(X \mid Y)P(Y) = \prod_{i \in S} P(x_i \mid y_i) \cdot P(Y)$$

- (1) Very strict independence assumptions for tractability: Label of each site is a function of data only at that site.
- (2) P(Y) is modeled as a MRF

$$P(Y) = \frac{1}{Z} \prod_{c \in C} \psi_c(y_c)$$



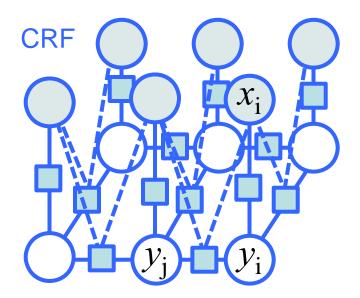
### **CRF**

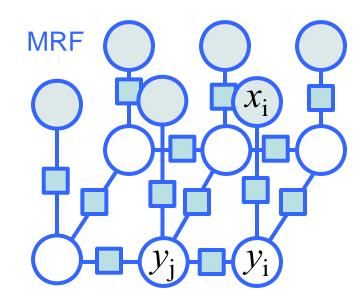
• Definition: Let G = (S, E), then (X, Y) is said to be a Conditional Random Field (CRF) if, when conditioned on X, the random variables  $y_i$  obey the Markov property with respect to the graph

$$P(y_i|X,y_{S-\{i\}}) = P(y_i|X,y_{Ni})$$

MRF:  $P(y_i|y_{S-\{i\}}) = P(y_i|y_{Ni})$ 

Globally conditioned on the observation X





### **CRF vs MRF**



- MRF: two-step generative model
  - Infer likelihood P(X|Y) and prior P(Y)
  - Use Bayes theorem to determine posterior P(Y|X)

$$P(Y | X) = \frac{P(X, Y)}{P(X)} \propto P(X | Y)P(Y) = \prod_{i \in S} P(x_i | y_i) \cdot \frac{1}{Z} \prod_{c \in C} \psi_c(y_c)$$

- CRF: one-step discriminative model
  - Directly Infer posterior P(Y|X)
- Popular Formulation

MRF 
$$P(Y|X) = \frac{1}{Z} \exp(\sum_{i \in S} \log p(x_i | y_i) + \sum_{i \in S} \sum_{i' \in N_i} V_2(y_i, y_{i'}))$$

CRF 
$$P(Y|X) = \frac{1}{Z} \exp(-\sum_{i \in S} V_1(y_i|X) + \sum_{i \in S} \sum_{i' \in N_i} V_2(y_i, y_{i'}|X))$$

### **Assumption**

Potts model for P(*Y*) with only pairwise potential

Only up to pairwise clique potentials

## **Example of CRF – DRF**



- A special type of CRF
  - The unary and pairwise potentials are designed using local discriminative classifiers.
  - Posterior  $P(Y \mid X) = \frac{1}{Z} \exp(\sum_{i \in S} A_i(y_i, X) + \sum_{i \in S} \sum_{j \in N_i} I_{ij}(y_i, y_j, X))$
- Association Potential
  - Local discriminative model for site *i*: using logistic link with GLM.

$$A_{i}(y_{i}, X) = \log P(y_{i} | f_{i}(X)) \qquad P(y_{i} = 1 | f_{i}(X)) = \frac{1}{1 + \exp(-(w^{T} f_{i}(X)))} = \sigma(w^{T} f_{i}(X))$$

- Interaction Potential
  - Measure of how likely site i and j have the same label given X

$$I_{ij}(y_i, y_j, X) = ky_i y_j + (1 - k)(2\sigma(y_i y_j \mu_{ij}(X)) - 1))$$

- (1) Data-independent smoothing term (2) Data-dependent pairwise logistic function
  - S. Kumar and M. Hebert. Discriminative Random Fields. IJCV, 2006.





- Task: Detecting man-made structure in natural scenes.
  - Each image is divided in non-overlapping 16x16 tile blocks.
- An example







**MRF** 



Input image Logistic

Logistic: No smoothness in the labels

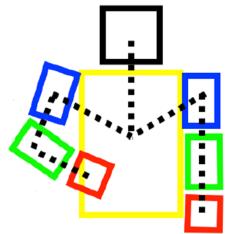
MRF: Smoothed False positive. Lack of neighborhood interaction of the data

S. Kumar and M. Hebert. Discriminative Random Fields. IJCV, 2006. © Eric Xing @ CMU, 2005-2013

## Example of CRF –Body Pose Estimation



- Task: Estimate a body pose.
  - Need to detect parts of human body
  - Appearance + Geometric configuration.
  - A large number of DOFs
- Use CRF to model a human body
  - Nodes: Parts (head, torso, upper/lower left/right arms).  $L=(l_1,...,l_6), l_i=[x_i,y_i,\theta_i].$
  - Edges: Pairwise linkage between parts
  - Tree vs. Graph



[Zisserman 2010]

- V. Ferrari et al. Progressive search space reduction for human pose estimation. CVPR 2008.
- D. Ramanan. Learning to Parse Images of Articulated Bodies." NIPS 2006.

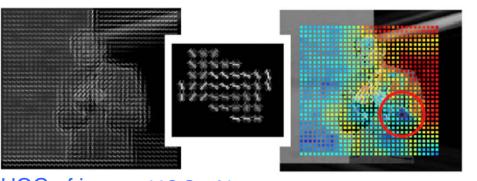
## **Example of CRF –Body Pose Estimation**



Posterior of configuration

$$P(L|I) \propto \exp(\sum \Phi(l_i) + \sum \Psi(l_i, l_j))$$

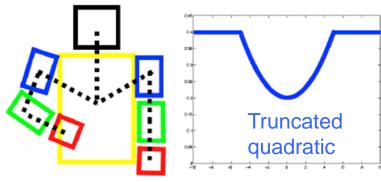
- $\psi(l_{i}, l_{j})$ : relative position with geometric constraints
- $\phi(l_i)$ : local image evidence for a part in a particular location
- If E is a tree, exact inference is efficiently performed by BP.
- Example of unary and pairwise terms
  - Unary term: appearance feature



HOG of image HOG of lower arm template (learned)

L2 Distance





[Zisserman 2010]

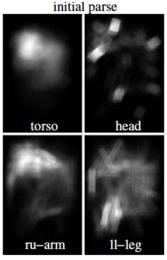
# Example of CRF – Results of Body Pose Estimation



Examples of results



[Ramanan 2006]





[Ferrari et al. 2008]

- Datasets and codes are available.
  - http://www.ics.uci.edu/~dramanan/papers/parse/
  - http://www.robots.ox.ac.uk/~vgg/research/pose\_estimation/