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Multivariate Distribution in High-
D Space
 A possible world for cellular signal transduction: 
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What is a Graphical Model?
--- example from a signal transduction pathway

 A possible world for cellular signal transduction: 
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GM: Structure Simplifies 
Representation

 Dependencies among variables
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 If Xi's are conditionally independent (as described by a PGM), the 
joint can be factored to a product of simpler terms, e.g., 

 Why we may favor a PGM?
 Representation cost: how many probability statements are needed? 

 Algorithms for systematic and efficient inference/learning computation
• Exploring the graph structure and probabilistic (e.g., Bayesian, Markovian) semantics

 Incorporation of domain knowledge and causal (logical) structures

P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)

Probabilistic Graphical Models, 
con'd

2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28! 

Receptor A

Kinase C

TF F

Gene G Gene H

Kinase EKinase D

Receptor BX1 X2

X3 X4 X5

X6

X7 X8

Receptor A

Kinase C

TF F

Gene G Gene H

Kinase EKinase D

Receptor BX1 X2

X3 X4 X5

X6

X7 X8

X1 X2

X3 X4 X5

X6

X7 X8

© Eric Xing @ CMU, 2014 5



Specification of a BN
 There are two components to any GM:

 the qualitative specification
 the quantitative specification
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Qualitative Specification
 Where does the qualitative specification come from?

 Prior knowledge of causal relationships
 Prior knowledge of modular relationships
 Assessment from experts
 Learning from data
 We simply link a certain architecture (e.g. a layered graph) 
 …
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 Directed edges give causality relationships (Bayesian 
Network or Directed Graphical Model):

 Undirected edges simply give correlations between 
variables (Markov Random Field or Undirected Graphical 
model):

Two types of GMs
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P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)

P(X1, X2, X3, X4, X5, X6, X7, X8)

= 1/Z exp{E(X1)+E(X2)+E(X3, X1)+E(X4, X2)+E(X5, X2)
+ E(X6, X3, X4)+E(X7, X6)+E(X8, X5, X6)}
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Bayesian Network:
 A BN is a directed graph whose nodes represent the random 

variables and whose edges represent direct influence of one 
variable on another.

 It is a data structure that provides the skeleton for representing a 
joint distribution compactly in a factorized way;

 It offers a compact representation for a set of conditional 
independence assumptions about a distribution;

 We can view the graph as encoding a generative sampling process
executed by nature, where the value for each variable is selected by 
nature using a distribution that depends only on its parents. In other 
words, each variable is a stochastic function of its parents.
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Bayesian Network: Factorization Theorem

 Theorem: 
Given a DAG, The most general form of the probability 
distribution that is consistent with the graph factors according 
to “node given its parents”:

where      is the set of parents of Xi, d is the number of nodes 
(variables) in the graph.
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Structure: DAG

• Meaning: a node is 
conditionally independent
of every other node in the 
network outside its Markov 
blanket

• Local conditional 
distributions (CPD) and the 
DAG completely determine 
the joint dist. 

• Give causality
relationships, and facilitate 
a generative process

X

Y1 Y2

Descendent

Ancestor

Parent

Children's co-parentChildren's co-parent

Child

Bayesian Network: Conditional 
Independence Semantics

© Eric Xing @ CMU, 2014 11



Graph separation criterion
 D-separation criterion for Bayesian networks (D for Directed 

edges):

Definition: variables x and y are D-separated (conditionally 
independent) given z if they are separated in the moralized 
ancestral graph

 Example:
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Global Markov properties of 
DAGs
 X is d-separated (directed-separated) from Z given Y if we can't 

send a ball from any node in X to any node in Z using the "Bayes-
ball" algorithm illustrated bellow (and plus some boundary 
conditions):

• Defn: I(G)all independence 
properties that correspond to d-
separation:

• D-separation is sound and 
complete

 );(dsep:)(I YZXYZXG G
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Towards quantitative specification of 
probability distribution

 Separation properties in the graph imply independence 
properties about the associated variables

 For the graph to be useful, any conditional independence 
properties we can derive from the graph should hold for the 
probability distribution that the graph represents

 The Equivalence Theorem
For a graph G,
Let D1 denote the family of all distributions that satisfy I(G),
Let D2 denote the family of all distributions that factor according to G,
Then D1≡D2.
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Example

A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... 

Hidden Markov Model

 Speech recognition

© Eric Xing @ CMU, 2014 15



Knowledge Engineering
 Picking variables

 Observed
 Hidden

 Picking structure
 CAUSAL 
 Generative 

 Picking Probabilities
 Zero probabilities
 Orders of magnitudes
 Relative values 
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AGAGAC

Tree Model

Example, con'd
 Evolution
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a0 0.75
a1 0.25

b0 0.33
b1 0.67

a0b0 a0b1 a1b0 a1b1

c0 0.45 1 0.9 0.7
c1 0.55 0 0.1 0.3

A B

C

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

D
c0 c1

d0 0.3 0.5
d1 07 0.5

Conditional probability tables 
(CPTs)
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A B

C

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

D

A~N(μa, Σa) B~N(μb, Σb)

C~N(A+B, Σc)

D~N(μa+C, Σa)
D

C

P(
D
| 
C)

Conditional probability density 
func. (CPDs)
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Conditionally Independent 
Observations

y1



Data

Model parameters

y2 yn-1 yn
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“Plate” Notation

yi

i=1:n



Data = {y1,…yn}

Model parameters

Plate = rectangle in graphical model

variables within a plate are replicated
in a conditionally independent manner
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Example: Gaussian Model

yi

i=1:n

 Generative model:   

p(y1,…yn | , ) = P p(yi | , )
=   p(data | parameters)
=   p(D  | )     

where  = {, }



 Likelihood = p(data | parameters) 
= p( D |  ) 
= L () 

 Likelihood tells us how likely the observed data are conditioned 
on a particular setting of the parameters
 Often easier to work with log L () 
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Example: Bayesian Gaussian 
Model

yi

i=1:n



Note: priors and parameters are assumed independent here

 
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Structure: an undirected 
graph

• Meaning: a node is 
conditionally independent of 
every other node in the 
network given its Directed 
neighbors

• Local contingency functions 
(potentials) and the cliques in 
the graph completely 
determine the joint dist. 

• Give correlations between 
variables, but no explicit way 
to generate samples

X

Y1 Y2

Markov Random Fields
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Global Markov property
 Let H be an undirected graph:

 B separates A and C if every path from a node in A to a node 
in C passes through a node in B:

 A probability distribution satisfies the global Markov property
if for any disjoint A, B, C, such that B separates A and C, A is 
independent of C given B:

);(sep BCAH

 );(sep:))(I BCABCAH H
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Representation
 Defn: an undirected graphical model represents a distribution 

P(X1 ,…,Xn) defined by an undirected graph H, and a set of 
positive potential functions yc associated with cliques of H, 
s.t.

where Z is known as the partition function:

 Also known as Markov Random Fields, Markov networks …
 The potential function can be understood as an contingency 

function of its arguments assigning "pre-probabilistic" score of 
their joint configuration.   



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Cliques
 For G={V,E}, a complete subgraph (clique) is a subgraph 

G'={V'ÍV,E'ÍE} such that nodes in V' are fully interconnected
 A (maximal) clique is a complete subgraph s.t. any superset 

V"ÉV' is not complete.
 A sub-clique is a not-necessarily-maximal clique.

 Example: 
 max-cliques = {A,B,D}, {B,C,D}, 
 sub-cliques = {A,B}, {C,D}, … all edges and singletons 

A

C

D B
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Example UGM – using max 
cliques 

 For discrete nodes, we can represent P(X1:4) as two 3D tables 
instead of one 4D table

A

C

D B

)()(),,,( 2341244321
1 xx ccZ

xxxxP  

 
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xxxx
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)()( xx 
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Example UGM – using subcliques 

 For discrete nodes, we can represent P(X1:4) as 5 2D tables 
instead of one 4D table

A

C

D B

)()()()()(

)(),,,(
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Exponential Form
 Constraining clique potentials to be positive could be inconvenient (e.g., 

the interactions between a pair of atoms can be either attractive or 
repulsive). We represent a clique potential c(xc)  in an unconstrained 
form using a real-value "energy" function c(xc):

For convenience, we will call c(xc) a potential when no confusion arises from the context.

 This gives the joint a nice additive strcuture

where the sum in the exponent is called the "free energy":

 In physics, this is called the "Boltzmann distribution".
 In statistics, this is called a log-linear model.
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Example: Boltzmann machines

 A fully connected graph with pairwise (edge) potentials on 
binary-valued nodes (for                                  ) is called a 
Boltzmann machine

 Hence the overall energy function has the form:

1
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Example: Ising (spin-glass) 
models
 Nodes are arranged in a regular topology (often a regular 

packing grid) and connected only to their geometric 
neighbors.

 Same as sparse Boltzmann machine, where ij0 iff i,j are 
neighbors.
 e.g., nodes are pixels, potential function encourages nearby pixels to have similar 

intensities.

 Potts model: multi-state Ising model.
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Example: Modeling Go
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(Picture by 
Zoubin 
Ghahramani and 
Sam Roweis)

An 
(incomplete) 

genealogy 
of graphical 

models
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Advanced Introduction to 
Machine Learning

Markov Chain Monte Carlo

Eric Xing

Lecture 14, October 20, 2014

Reading:
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Approaches to inference
 Exact inference algorithms

 The elimination algorithm
 Belief propagation
 The junction tree algorithms      (but will not cover in detail here)

 Approximate inference techniques

 Variational algorithms 
 Stochastic simulation / sampling methods
 Markov chain Monte Carlo methods
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Monte Carlo methods
 Draw random samples from the desired distribution 

 Yield a stochastic representation of a complex distribution
 marginals and other expections can be approximated using sample-based 

averages

 Asymptotically exact and easy to apply to arbitrary models

 Challenges:
 how to draw samples from a given dist. (not all distributions can be trivially 

sampled)?

 how to make better use of the samples (not all sample are useful, or eqally 
useful, see an example later)?

 how to know we've sampled enough?





N

t

txf
N

xf
1

1 )()]([ )(E
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Example: naive sampling
 Construct samples according to probabilities given in a BN.

Alarm example: (Choose the right sampling 
sequence)
1) Sampling:P(B)=<0.001, 0.999> suppose it is false, 
B0. Same for E0. P(A|B0, E0)=<0.001, 0.999> 
suppose it is false... 
2) Frequency counting: In the samples right, 
P(J|A0)=P(J,A0)/P(A0)=<1/9, 8/9>.

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J1

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E1 B0 A1 M1 J1

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J1

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E1 B0 A1 M1 J1

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0
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Example: naive sampling
 Construct samples according to probabilities given in a BN.

Alarm example: (Choose the right sampling 
sequence)

3) what if we want to compute P(J|A1) ? 
we have only one sample ...
P(J|A1)=P(J,A1)/P(A1)=<0, 1>.

4) what if we want to compute P(J|B1) ? 
No such sample available!
P(J|A1)=P(J,B1)/P(B1) can not be defined.

For a model with hundreds or more 
variables, rare events will be very hard to 
garner evough samples even after a long 
time or sampling ...

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J1

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E1 B0 A1 M1 J1

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0
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Monte Carlo methods (cond.)
 Direct Sampling 

 We have seen it.
 Very difficult to populate a high-dimensional state space 

 Rejection Sampling
 Create samples like direct sampling, only count samples which is consistent with 

given evidences.

 Likelihood weighting, ...
 Sample variables and calculate evidence weight. Only create the samples which 

support the evidences.

 Markov chain Monte Carlo (MCMC)
 Metropolis-Hasting
 Gibbs
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Markov chain Monte Carlo 
(MCMC)
 Construct a Markov chain whose stationary distribution is the 

target density  = P(X|e).

 Run for T samples (burn-in time) until the chain       
converges/mixes/reaches stationary distribution.

 Then collect M (correlated) samples xm .
 Key issues:

 Designing proposals so that the chain mixes rapidly.
 Diagnosing convergence.
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Markov Chains
 Definition:

 Given an n-dimensional state space
 Random vector X = (x1,…,xn)
 x(t) = x at time-step t
 x(t) transitions to x(t+1) with prob

P(x(t+1) | x(t),…,x(1)) = T(x(t+1) | x(t)) = T(x(t)  x(t+1)) 

 Homogenous: chain determined by state x(0), fixed transition 
kernel T (rows sum to 1)

 Equilibrium: (x) is a stationary (equilibrium) distribution if 
(x') = x(x) T(xx'). 

i.e., is a left eigenvector of the transition matrix TT = TT.

   

















05050
30700

7500250
305020305020

..
..

..
......

X1 X2

X3

0.25 0.7

0.50.50.75 0.3
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Markov Chains
 An MC is irreducible if  transition graph connected
 An MC is aperiodic if it is not trapped in cycles
 An MC is ergodic (regular) if you can get from state x to x ' 

in a finite number of steps.
 Detailed balance: prob(x(t)x(i-1)) = prob(x(t-1)x(t))

summing over x(t-1)

 Detailed bal  stationary dist exists

)|()()|()( )()()()()()( 111   tttttt TpTp xxxxxx





)(

)|()()( )()()()(

1

11

t

tttt Tpp
x

xxxx
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Metropolis-Hastings
 Treat the target distribution as stationary distribution
 Sample from an easier proposal distribution, followed by an 

acceptance test
 This induces a transition matrix that satisfies detailed balance

 MH proposes moves according to Q(x'|x) and accepts samples with probability 
A(x'|x).

 The induced transition matrix is
 Detailed balance means

 Hence the acceptance ratio is

)|'()|'()'( xxAxxQxxT 

)'|()'|()'()|'()|'()( xxAxxQxxxAxxQx  











)|'()(
)'|()'(,min)|'(

xxQx
xxQxxxA


1
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Metropolis-Hastings
1. Initialize x(0)

2. While not mixing  // burn-in
 x=x(t)

 t += 1,
 sample u ~ Unif(0,1)
 sample x* ~ Q(x*|x)

- if

 x(t) = x*  // transition

- else
 x(t) = x // stay in current state 

 Reset t=0, for t =1:N
 x(t+1))  Draw sample (x(t))











)|*()(
*)|(*)(,min)|*(

xxQx
xxQxxxAu


1 Function 

Draw sample (x(t))
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MCMC example 

q(x*|x) ~ N(x(i),100)
p(x) ~ 0.3 exp(-0.2x2) + 0.7 exp(-0.2(x-10)2)
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Gibbs sampling
 Gibbs sampling is an MCMC algorithm that is especially 

appropriate for inference in graphical models.

 The procedue
 we have variable set X={x1, x2, x3,... xN} for a GM

 at each step one of the variables Xi is selected (at random or according 
to some fixed sequences), denote the remaining variables as X-i , and its 
current value as x-i

(t-1)

 Using the "alarm network" as an example, say at time t we choose XE, and we 
denote the current value assignments of the remaining variables, X-E , 
obtained from previous samples, as 

 the conditonal distribution p(Xi| x-i
(t-1)) is computed

 a value xi
(t) is sampled from this distribution

 the sample xi
(t) replaces the previous sampled value of Xi in  X.

 i.e., 
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t xxx  

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Markov Blanket
 Markov Blanket in BN

 A variable is independent from 
others, given its parents, children 
and children‘s parents (d-
separation).

 MB in MRF
 A variable is independent all its 

non-neighbors, given all its direct 
neighbors.

p(Xi| X-i)= p(Xi| MB(Xi))

 Gibbs sampling
 Every step, choose one variable 

and sample it by P(X|MB(X)) based 
on previous sample.
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Gibbs sampling of the alarm 
network

 To calculate P(J|B1,M1)
 Choose (B1,E0,A1,M1,J1) as 

a start
 Evidences are B1, M1, 

variables are A, E, J.
 Choose next variable as A
 Sample A by 

P(A|MB(A))=P(A|B1, E0, M1, 
J1) suppose to be false.

 (B1, E0, A0, M1, J1)
 Choose next random 

variable as E, sample 
E~P(E|B1,A0) 

 ...

MB(A)={B, E, J, M}
MB(E)={A, B}
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Example
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Example:
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Example
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Example
P(J1 | B1,M1) = 0.90
P(J1 | E1,M0) = 0.14
P(E1 | J1)       = 0.01
P(E1 | M1)      = 0.04
P(E1 | M1,J1) = 0.17
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 Gibbs sampling is a special case of MH
 The transition matrix updates each node one at a time using 

the following proposal: 

 This is efficient since for two reasons
 It leads to samples that is always accepted 

Thus 

 It is efficient since                  only depends on the values in Xi’s Markov 
blanket

Gibbs sampling

  )|'(),'(),( iiiiii xpxx   xxxQ

   
 

 111

1

,min
)|'()()|(
)|()()|'(,min

),'(),(),(
),(),'(),'(,min),(),( '

































iiiii

iiiii

iiiiii

iiiiii
iiii

xppxp
xppxp

xxxp
xxxpxx

xxx
xxx

xxx
xxxxx

Q
QA

  )|'(),'(),( iiiiii xpxx   xxxT

)|( '
iixp x

© Eric Xing @ CMU, 2014 54



 Scheduling and ordering: 
 Sequential sweeping: in each "epoch" t, touch every r.v. in some order 

and yield an new sample,       , after every r.v. is resampled 
 Randomly pick an r.v. at each time step 

 Blocking:
 Large state space: state vector X comprised of many components (high 

dimension)
 Some components can be correlated and we can sample components 

(i.e., subsets of r.v.,) one at a time

 Gibbs sampling can fail if there are deterministic constraint

Gibbs sampling

)(tx

X Y

Z

Z is xor

• Suppose we observe Z = 1. The posterior has 2 modes: P(X = 1, Y = 0|Z = 1)
and P(X = 0, Y = 1|Z = 1). if we start in mode 1, P(X|Y = 0, Z = 1) leaves X = 
1, so we can’t move to mode 2 (Reducible Markov chain).

• If all states have non-zero probability, the MC is guaranteed to be regular.
• Sampling blocks of variables at a time can help improve mixing.
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Chains
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Chains
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The                   of simulation
 Run several chains
 Start at over-dispersed 

points
 Monitor the log lik.
 Monitor the serial 

correlations
 Monitor acceptance ratios

 Re-parameterize (to get 
approx. indep.)

 Re-block (Gibbs)
 Collapse (int. over other 

pars.)
 Run with troubled pars. 

fixed at reasonable vals.
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Summary
 Random walk through state space
 Can simulate multiple chains in parallel
 Much hinges on proposal distribution Q

 Want to visit state space where p(X) puts mass
 Want A(x*|x) high in modes of p(X) 
 Chain mixes well

 Convergence diagnosis
 How can we tell when burn-in is over?
 Run multiple chains from different starting conditions, wait until they start 

“behaving similarly”.
 Various heuristics have been proposed.

© Eric Xing @ CMU, 2014 59



Advanced Introduction to 
Machine Learning

10715, Fall 2014

Intro to Topic Models

Eric Xing
Lecture 15, October 20, 2014

Reading: Tutorial on Topic Model @ ACL12
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We are inundated with data …

 Humans cannot afford to deal with (e.g., search, browse, or 
measure similarity) a huge number of text and media documents

 We need computers to help out …

(from images.google.cn)
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A task:
 Say, we want to have a mapping …, so that 

 Compare similarity 
 Classify contents
 Cluster/group/categorize docs
 Distill semantics and perspectives 
 .. 


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Representation:
 Data:

 Each document is a vector in the word space
 Ignore the order of words in a document. Only count matters!

 A high-dimensional and sparse representation
– Not efficient text processing tasks, e.g., search, document 

classification, or similarity measure
– Not effective for browsing

As for the Arabian and Palestinean voices that are against the 
current negotiations and the so-called peace process, they are not 
against peace per se, but rather for their well-founded 
predictions that Israel would NOT give an inch of the West bank 
(and most probably the same for Golan Heights) back to the 
Arabs. An 18 months of "negotiations" in Madrid, and 
Washington proved these predictions. Now many will jump on 
me saying why are you blaming israelis for no-result negotiations. 
I would say why would the Arabs stall the negotiations, what do 
they have to loose ?

Arabian

negotiations
against

peace
Israel

Arabs blaming

Bag of Words Representation

© Eric Xing @ CMU, 2014 63



Latent Semantic Structure in GM

Latent Structure

Words 




),()( ww PP

w

Distribution over words

)w(
)()|w()w|(

P
PPP 

 

Inferring latent structure
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How to Model Semantics?
 Q: What is it about?
 A: Mainly MT, with syntax, some learning

A Hierarchical Phrase-Based Model 
for Statistical Machine Translation

We present a statistical phrase-based 
Translation model that uses hierarchical 
phrases—phrases that contain sub-phrases. 
The model is formally a synchronous 
context-free grammar but is learned 
from a bitext without any syntactic 
information. Thus it can be seen as a 
shift to the formal machinery of syntax
based translation systems without any 
linguistic commitment. In our experiments
using BLEU as a metric, the hierarchical 

Phrase based model achieves a relative 
Improvement of 7.5% over Pharaoh, 
a state-of-the-art phrase-based system.

Source
Target
SMT

Alignment
Score
BLEU

Parse
Tree
Noun

Phrase
Grammar

CFG

likelihood
EM

Hidden
Parameters
Estimation

argMax

MT                    Syntax              Learning

0.6                          0.3                   0.1   

Unigram over vocabulary

To
pi

cs

AdMixing 
Proportion

Topic Models
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Why this is Useful?
 Q: What is it about?
 A: Mainly MT, with syntax, some learning

A Hierarchical Phrase-Based Model 
for Statistical Machine Translation

We present a statistical phrase-based 
Translation model that uses hierarchical 
phrases—phrases that contain sub-phrases. 
The model is formally a synchronous 
context-free grammar but is learned 
from a bitext without any syntactic 
information. Thus it can be seen as a 
shift to the formal machinery of syntax
based translation systems without any 
linguistic commitment. In our experiments
using BLEU as a metric, the hierarchical 

Phrase based model achieves a relative 
Improvement of 7.5% over Pharaoh, 
a state-of-the-art phrase-based system.

MT                    Syntax              Learning

AdMixing 
Proportion

0.6                          0.3                   0.1   

 Q: give me similar document?
 Structured way of browsing the collection

 Other tasks
 Dimensionality reduction 

 TF-IDF vs. topic mixing proportion

 Classification, clustering, and more …
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Words in Contexts

 “It was a nice shot. ”
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Words in Contexts (con'd)
 the opposition Labor Party fared even worse,  with a 

predicted 35 seats,  seven less than last election.

© Eric Xing @ CMU, 2014 68



TOPIC 1

TOPIC 2

DOCUMENT 2: river2 stream2 bank2 stream2 bank2

money1 loan1 river2 stream2 loan1 bank2 river2 bank2

bank1 stream2 river2 loan1 bank2 stream2 bank2 money1

loan1 river2 stream2 bank2 stream2 bank2 money1 river2

stream2 loan1 bank2 river2 bank2 money1 bank1 stream2

river2 bank2 stream2 bank2 money1

DOCUMENT 1: money1 bank1 bank1 loan1 river2 stream2

bank1 money1 river2 bank1 money1 bank1 loan1 money1

stream2 bank1 money1 bank1 bank1 loan1 river2 stream2

bank1 money1 river2 bank1 money1 bank1 loan1 bank1

money1 stream2

.3

.8

.2

Mixture 
Components

(distributions over 
elements)

admixing weight 
vector 

(represents all 
components’ 

contributions)

Bayesian approach: use priors   
Admixture weights ~ Dirichlet(  ) 
Mixture components ~ Dirichlet(  ) 

.7

A possible generative process of 
a  document
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Topic Models = Mixed 
Membership Models = Admixture

Generating a document
Prior

θ 

z 

w β  
Nd

N 

K 

 
   

    

 
 from  ,| Draw -

 from  Draw-
  each wordFor  

prior  thefrom  

:1 nzknn

n

lmultinomiazw
lmultinomiaz

n
Draw






Which prior to use?
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Latent Dirichlet Allocation

wnzn

N
M



K

 k

Blei, Ng and Jordan (2003)

Essentially a Bayesian pLSI:
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
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Outcomes from a topic model 
 The “topics”  in a corpus:

 There is no name for each “topic”, you need to name it!
 There is no objective measure of good/bad
 The shown topics are the “good” ones, there are many many trivial ones, meaningless ones, 

redundant ones, … you need to manually prune the results
 How many topics? …   
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Outcomes from a topic model 
 The “topic vector”  of each doc

 Create an embedding of docs in a “topic space”
 Their no ground truth of  to measure quality of inference 
 But on  it is possible to define an “objective” measure of goodness, such as classification 

error, retrieval of similar docs, clustering, etc., of documents
 But there is no consensus on whether these tasks bear the true value of topic models … 
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 The per-word topic indicator z:

 Not very useful under the bag of word representation, 
because of loss of ordering

 But it is possible to define simple probabilistic linguistic 
constraints (e.g, bi-grams) over z and get potentially 
interesting results [Griffiths, Steyvers, Blei, & Tenenbaum, 2004]

Outcomes from a topic model 
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Outcomes from a topic model
 Topic change trends

[David Blei, MLSS09]
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The Big Picture

Unstructured Collection Structured Topic Network

Topic 
Discovery

Dimensionality  
Reduction

w1

w2

wn

x
x

x
x

T1

Tk T2
x x x

x

Word Simplex Topic Space 

(e.g, a Simplex)
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Computation on LDA

 Inference
 Given a Document D

 Posterior: P(Θ | μ,Σ, β ,D)
 Evaluation: P(D| μ,Σ, β )

 Learning
 Given a collection of documents {Di}

 Parameter estimation

   





,,logmaxarg
),,(

iDP

θn

βi
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 A possible query:

 Close form solution?

 Sum in the denominator over Tn terms, and integrate over n k-dimensional topic 
vectors

Exact Bayesian inference on LDA 
is intractable
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 Variational Inference

 Mean field approximation (Blei et al)
 Expectation propagation (Minka et al)
 Variational 2nd-order Taylor approximation (Ahmed and Xing)

 Markov Chain Monte Carlo

 Gibbs sampling (Griffiths et al)

Approximate Inference
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Collapsed Gibbs sampling
(Tom Griffiths & Mark Steyvers)

 Collapsed Gibbs sampling
 Integrate out 

For variables z = z1, z2, …, zn

Draw zi
(t+1) from P(zi|z-i, w)

z-i = z1
(t+1), z2

(t+1),…, zi-1
(t+1), zi+1

(t), …, zn
(t)

θn

βi
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Gibbs sampling 

 Need full conditional distributions for variables
 Since we only sample z we need

number of times word w assigned to topic j

number of times topic j used in document d

θn

βi

G

G
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Gibbs sampling
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Gibbs sampling
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Gibbs sampling
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Gibbs sampling

i wi di zi zi
1
2
3
4
5
6
7
8
9

10
11
12
.
.
.

50

MATHEMATICS
KNOWLEDGE

RESEARCH
WORK

MATHEMATICS
RESEARCH

WORK
SCIENTIFIC

MATHEMATICS
WORK

SCIENTIFIC
KNOWLEDGE

.

.

.
JOY

1
1
1
1
1
1
1
1
1
1
2
2
.
.
.
5

2
2
1
2
1
2
2
1
2
1
1
1
.
.
.
2

?

iteration
1             2

G

G
© Eric Xing @ CMU, 2014 85



Gibbs sampling
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Gibbs sampling

i wi di zi zi
1
2
3
4
5
6
7
8
9

10
11
12
.
.
.

50

MATHEMATICS
KNOWLEDGE

RESEARCH
WORK

MATHEMATICS
RESEARCH

WORK
SCIENTIFIC

MATHEMATICS
WORK

SCIENTIFIC
KNOWLEDGE

.

.

.
JOY

1
1
1
1
1
1
1
1
1
1
2
2
.
.
.
5

2
2
1
2
1
2
2
1
2
1
1
1
.
.
.
2

2
1
?

iteration
1             2

G

G
© Eric Xing @ CMU, 2014 87



Gibbs sampling
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Gibbs sampling
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Gibbs sampling
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Learning a TM
 Maximum likelihood estimation:

 Need statistics on topic-specific word assignment (due to z), topic 
vector distribution (due to ), etc.
 E.g,, this is the formula for topic k: 

 These are hidden variables, therefore need an EM algorithm (also 
known as data augmentation, or DA, in Monte Carlo paradigm)

 This is a “reduce” step in parallel implementation

     


,logmaxarg,,,,
),(

21 iK DP
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Conclusion
 GM-based topic models are cool

 Flexible 
 Modular
 Interactive

 There are many ways of implementing topic models
 unsupervised
 supervised

 Efficient Inference/learning algorithms
 GMF, with Laplace approx. for non-conjugate dist.
 MCMC

 Many applications
 …
 Word-sense disambiguation
 Image understanding
 Network inference
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