Advanced Introduction to Machine Learning

10715, Fall 2014

Intro to Graphical Models

Eric Xing Lecture 13, October 15, 2014

What is a Graphical Model?

--example from a signal transduction pathway

A possible world for cellular signal transduction:

GM: Structure Simplifies Representation

Dependencies among variables

**Probabilistic Graphical Models,

con'd con'd**

 \Box **If** *Xi***'s are conditionally independent (as described by a PGM), the joint can be factored to a product of simpler terms, e.g.,**

 $P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8)$ $= P(X_1) P(X_2) P(X_3|X_1) P(X_4|X_2) P(X_5|X_2)$ $P(X_6|X_3, X_4) P(X_7|X_6) P(X_8|X_5, X_6)$

\Box **Why we may favor a PGM?**

Representation cost: how many probability statements are needed?

2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28!

- **Algorithms for systematic and efficient inference/learning computation**
	- **Exploring the graph structure and probabilistic (e.g., Bayesian, Markovian) semantics**
- **Incorporation of domain knowledge and causal (logical) structures**

Specification of a BN \bigwedge^{M}

- There are two components to any GM:
	- \bullet the *qualitative* specification
	- \bullet the *quantitative* specification

Qualitative Specification

- \bullet Where does the qualitative specification come from?
	- \bullet Prior knowledge of causal relationships
	- \bullet Prior knowledge of modular relationships
	- \bullet Assessment from experts
	- \bullet Learning from data
	- \bullet We simply link a certain architecture (e.g. a layered graph)
	- \bullet …

Two types of GMs

 Directed edges give causality relationships (Bayesian Network or Directed Graphical Model):

 $= P(X_1) P(X_2) P(X_3|X_1) P(X_4|X_2) P(X_5|X_2)$ $P(X_6|X_3, X_4) P(X_7|X_6) P(X_8|X_5, X_6)$

 Undirected edges simply give correlations between variables (Markov Random Field or Undirected Graphical model): $P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8)$
 $P(X_1) P(X_2) P(X_3|X_1) P(X_4|X_2) P(X_5|X_2)$
 $P(X_6|X_3, X_4) P(X_7|X_6) P(X_8|X_5, X_6)$
 directed edges simply give correlations be
 iables (Markov Random Field or Undirected edge):

 $P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8)$

$$
= 1/Z \exp{E(X_1) + E(X_2) + E(X_3, X_1) + E(X_4, X_2) + E(X_5, X_2)} + E(X_6, X_3, X_4) + E(X_7, X_6) + E(X_8, X_5, X_6)
$$

Bayesian Network:

- A BN is a directed graph whose nodes represent the random variables and whose edges represent direct influence of one variable on another.
- It is a data structure that provides the skeleton for representing **^a joint distribution** compactly in a **factorized** way;
- **•** It offers a compact representation for **a set of conditional independence assumptions** about a distribution;
- We can view the graph as encoding a generative sampling process executed by nature, where the value for each variable is selected by nature using a distribution that depends only on its parents. In other words, each variable is a stochastic function of its parents.

Bayesian Network: Factorization Theorem

 $(\star \, \mathsf{v})$

\bullet **Theorem:**

Given a DAG, The most general form of the probability distribution that is consistent with the graph factors according to "node given its parents":

$$
P(\mathbf{X}) = \prod_{i=1:d} P(X_i \mid \mathbf{X}_{\pi_i})
$$

XLX

where \mathbf{X}_{π_i} is the set of parents of X_i , d is the number of nodes (variables) in the graph.

 $\frac{M}{2}$

Bayesian Network: Conditional Independence Semantics $P(X_i | X_i)$

Structure: *DAG*

- **Meaning: a node is conditionally independent of every other node in the network outside its Markov blanket**
- **Local conditional distributions (CPD) and the DAG completely determine the joint dist.**
- **Give causality relationships, and facilitate a generative process**

Graph separation criterion

 \bullet D-separation criterion for Bayesian networks (D for Directed edges):

Definition: variables x and y are *D-separated* (conditionally independent) given z if they are separated in the *moralized* ancestral graph

Global Markov properties of DAGs

 X is **d-separated** (directed-separated) from Z given Y if we can't send a ball from any node in X to any node in Z using the "*Bayesball*" algorithm illustrated bellow (and plus some boundary conditions):

• **Defn:** *I***(** *G***) all independence properties that correspond to dseparation:**

$$
I(G) = \{ X \perp Z | Y : \text{dsep}_G(X; Z | Y) \}
$$

• **D-separation is sound and complete**

Towards quantitative specification of probability distribution

- Separation properties in the graph imply independence properties about the associated variables
- For the graph to be useful, any conditional independence properties we can derive from the graph should hold for the probability distribution that the graph represents

The Equivalence Theorem

For a graph G,

Let \mathcal{D}_1 denote the family of all distributions that satisfy I(G),

Let \mathcal{D}_2 denote the family of all distributions that factor according to G, Then \mathcal{D}_1 ≡ \mathcal{D}_2 .

Example

• Speech recognition

Hidden Markov Model

Knowledge Engineering

Picking variables

- \bullet **Observed**
- \bullet **Hidden**

Picking structure

- \bullet **CAUSAL**
- \bullet **Generative**

Picking Probabilities

- \bullet **Zero probabilities**
- \bullet **Orders of magnitudes**
- \bullet **Relative values**

Example, con'd

• Evolution

Tree Model

Conditional probability tables (CPTs)

Conditional probability density func. (CPDs)

Conditionally Independent Observations

"Plate" Notation θ **Model parameters**

Plate = rectangle in graphical model

yi

variables within a plate are replicated in a conditionally independent manner

i=1:n

Example: Gaussian Model

Fig. 3 Generative model:

$$
p(y_1,...y_n | \mu, \sigma) = P p(y_i | \mu, \sigma)
$$

= p(data | parameters)
= p(D | \theta)
where $\theta = {\mu, \sigma}$

- $\mathcal{L}_{\mathcal{A}}$ **Likelihood = p(data | parameters)** $= p(D | \theta)$ $= L(\theta)$
- $\mathcal{L}_{\mathcal{A}}$ **Likelihood tells us how likely the observed data are conditioned on a particular setting of the parameters**
	- **Often easier to work with log L** (θ)

Example: Bayesian Gaussian Model

Note: priors and parameters are assumed independent here

Markov Random Fields

Structure: an *undirected graph*

- **Meaning: a node is conditionally independent of every other node in the network given its Directed neighbors**
- **Local contingency functions (potentials) and the cliques in the graph completely determine the joint dist.**
- **Give correlations between variables, but no explicit way to generate samples**

Global Markov property

Let *H* be an undirected graph:

- *B separates A* and *C* if every path from a node in *A* to a node in *C* passes through a node in *B*: $\,\,\mathop{\mathrm{sep}}\nolimits_{H}(A;C|B)$
- A probability distribution satisfies the *global Markov property* if for any disjoint *A*, *B*, *C*, such that *B* separates *A* and *C*, *A* is $\left\{ A \perp C \middle| B \right\}$: $\sup_{H} (A; C | B)$

Representation

 Defn: an undirected graphical model represents a distribution $P(X_1,...,X_n)$ defined by an undirected graph *H*, and a set of positive **potential functions** y_{c} associated with cliques of H, s.t.

$$
P(x_1, \ldots, x_n) = \frac{1}{Z} \prod_{c \in C} \psi_c(\mathbf{x}_c)
$$

where *Z* is known as the partition function:

$$
Z = \sum_{x_1,\ldots,x_n} \prod_{c \in C} \psi_c(\mathbf{x}_c)
$$

- \bullet Also known as Markov Random Fields, Markov networks …
- \bullet The *potential function* can be understood as an contingency function of its arguments assigning "pre-probabilistic" score of their joint configuration.

Cliques

- For *G*={*V*,*E*}, a complete subgraph (clique) is a subgraph *G'*={*V'*Í*V*,*E'*Í*E*} such that nodes in *V'* are fully interconnected
- A (maximal) clique is a complete subgraph s.t. any superset *V"*É*V'* is not complete.
- \bullet A sub-clique is a not-necessarily-maximal clique.

- **•** Example:
	- \bullet max-cliques = {*A*,*B*,*D*}, {*B*,*C*,*D*},
	- \bullet sub-cliques = $\{A, B\}$, $\{C, D\}$, $\ldots \rightarrow$ all edges and singletons

Example UGM – using max cliques

 For discrete nodes, we can represent *P*(*X*1:4) as two 3D tables instead of one 4D table

Example UGM – using subcliques ABDC \mathcal{X} 1 $\frac{1}{\pi} \prod \psi_{ii}(\mathbf{x})$ $=\frac{1}{Z}\prod_{ij}\psi_{ij}(\mathbf{x}_{ij})$ $P(x_1, x_2, x_3, x_4)$ $(x_1, x_2, x_3, x_4) = \frac{1}{7}$ $\psi_{ij}(\mathbf{x}_{ij})$ x_2 ⁰ *Z ij* $\frac{1}{2}\psi_{12}(\mathbf{x}_{12})\psi_{14}(\mathbf{x}_{14})\psi_{23}(\mathbf{x}_{23})\psi_{24}(\mathbf{x}_{24})\psi_{34}(\mathbf{x}_{12})$ $_{12}$ (**x**₁₂) ψ ₁₄ (**x**₁₄) ψ ₂₃ (**x**₂₃) ψ ₂₄ (**x**₂₄) ψ ₃₄ (**x**₃₄) Ξ *Z* $Z = \sum_{ij} \prod_{ij} \psi_{ij}(\mathbf{x}_{ij})$ x_1, x_2, x_3, x_4 *ij*

 For discrete nodes, we can represent *P*(*X*1:4) as 5 2D tables instead of one 4D table

Exponential Form

 \bullet Constraining clique potentials to be positive could be inconvenient (e.g., the interactions between a pair of atoms can be either attractive or repulsive). We represent a clique potential $\psi_\text{c}(\mathbf{x}_\text{c})$ in an unconstrained form using a real-value "energy" function $\phi_\text{c}(\textbf{x}_\text{c})$:

$$
\psi_c(\mathbf{x}_c) = \exp\{-\phi_c(\mathbf{x}_c)\}
$$

For convenience, we will call $\phi_\mathrm{c}(\mathrm{x}_\mathrm{c})$ a potential when no confusion arises from the context.

0 This gives the joint a nice additive strcuture

$$
p(\mathbf{x}) = \frac{1}{Z} \exp \left\{-\sum_{c \in C} \phi_c(\mathbf{x}_c)\right\} = \frac{1}{Z} \exp \left\{-H(\mathbf{x})\right\}
$$

where the sum in the exponent is called the "free energy":

$$
H(\mathbf{x}) = \sum_{c \in C} \phi_c(\mathbf{x}_c)
$$

- \bullet • In physics, this is called the "Boltzmann distribution".
- \bullet In statistics, this is called a log-linear model.

Example: Boltzmann machines

 A fully connected graph with pairwise (edge) potentials on binary-valued nodes (for $\boldsymbol{\mathsf{x}}_i \in \{-1, +1\}$ or $\boldsymbol{\mathsf{x}}_i \in \{\mathsf{0,1}\})$ is called a Boltzmann machine $\{-1,+1\}$ or $\mathcal{X}_i \in \{0,1\}$

$$
P(x_1, x_2, x_3, x_4) = \frac{1}{Z} \exp \left\{ \sum_{ij} \phi_{ij} (x_i, x_j) \right\}
$$

=
$$
\frac{1}{Z} \exp \left\{ \sum_{ij} \theta_{ij} x_i x_j + \sum_i \alpha_i x_i + C \right\}
$$

• Hence the overall energy function has the form:

$$
H(x) = \sum_{ij} (x_i - \mu)\Theta_{ij}(x_j - \mu) = (x - \mu)^T \Theta(x - \mu)
$$

 \oslash Eric Xing \oslash CMU, 2014 \oslash 31

Example: Ising (spin-glass) models

• Nodes are arranged in a regular topology (often a regular packing grid) and connected only to their geometric neighbors.

- \bullet Same as sparse Boltzmann machine, where θ_{ij} ≠0 iff *i,j* are neighbors.
	- \bullet e.g., nodes are pixels, potential function encourages nearby pixels to have similar **intensities**
- Potts model: multi-state Ising model.

Example: Modeling Go

This is the middle position of a Go game. Overlaid is the estimate for the probability of becoming black or white for every intersection. Large squares mean the probability is higher.

Reading: © Eric Xing @ CMU, 2014 35

nn3 alphan1 mn0 92 sm1 55 Nmetnt

Approaches to inference

- Exact inference algorithms
	- \bullet The elimination algorithm
	- \bullet Belief propagation
	- \bullet The junction tree algorithms (but will not cover in detail here)
- Approximate inference techniques
	- \bullet Variational algorithms
	- \bullet Stochastic simulation / sampling methods
	- \bullet Markov chain Monte Carlo methods
Monte Carlo methods

- \bullet Draw random samples from the desired distribution
- Yield a stochastic representation of a complex distribution
	- \bullet marginals and other expections can be approximated using sample-based averages

$$
E[f(x)] = \frac{1}{N} \sum_{t=1}^{N} f(x^{(t)})
$$

- \bullet **Asymptotically** exact and easy to apply to arbitrary models
- \bullet Challenges:
	- \bullet how to draw samples from a given dist. (not all distributions can be trivially sampled)?
	- \bullet how to make better use of the samples (not all sample are useful, or eqally useful, see an example later)?
	- \bullet how to know we've sampled enough?

Example: naive sampling

 \bullet Construct samples according to probabilities given in a BN.

Alarm example: (Choose the right sampling sequence)

1) Sampling:P(B)=<0.001, 0.999> suppose it is false, B0. Same for E0. P(A|B0, E0)=<0.001, 0.999>

suppose it is false...

2) Frequency counting: In the samples right, P(J|A0)=P(J,A0)/P(A0)=<1/9, 8/9 >.

Example: naive sampling

Construct samples according to probabilities given in a BN.

Alarm example: (Choose the right sampling sequence)

3) what if we want to compute P(J|A1) ? we have only one sample ... P(J|A1)=P(J,A1)/P(A1)=<0, 1>.

4) what if we want to compute P(J|B1) ? No such sample available! P(J|A1)=P(J,B1)/P(B1) can not be defined.

For a model with hundreds or more variables, rare events will be very hard to garner evough samples even after a long time or sampling ...

Monte Carlo methods (cond.)

- **Direct Sampling**
	- \bullet We have seen it.
	- \bullet Very difficult to populate a high-dimensional state space
- **Rejection Sampling**
	- \bullet Create samples like direct sampling, only count samples which is consistent with given evidences.
- **Likelihood weighting, ...**
	- \bullet Sample variables and calculate evidence weight. Only create the samples which support the evidences.
- Markov chain Monte Carlo (MCMC)
	- \bullet Metropolis-Hasting
	- \bullet **Gibbs**

Markov chain Monte Carlo (MCMC)

 Construct a Markov chain whose stationary distribution is the target density = *P* (*X*|*e*).

- Run for T samples (burn-in time) until the chain converges/mixes/reaches stationary distribution.
- \bullet • Then collect *M* (correlated) samples x_m .
- Key issues:
	- \bullet Designing proposals so that the chain mixes rapidly.
	- \bullet Diagnosing convergence.

Markov Chains

\bullet **Definition:**

- \bullet Given an n-dimensional state space
- \bullet Random vector $X = (x_1, \ldots, x_n)$
- \bullet $\mathbf{x}^{(t)} = \mathbf{x}$ at time-step t
- \bullet $\mathbf{x}^{(t)}$ transitions to $\mathbf{x}^{(t+1)}$ with prob $P(\mathbf{x}^{(t+1)} | \mathbf{x}^{(t)},...,\mathbf{x}^{(1)}) = T(\mathbf{x}^{(t+1)} | \mathbf{x}^{(t)}) = T(\mathbf{x}^{(t)} \to \mathbf{x}^{(t+1)})$
- **Homogenous**: chain determined by state **x**(0), fixed *transition kernel* T (rows sum to 1)
- **Equilibrium**: $\pi(\mathbf{x})$ is a *stationary (equilibrium) distribution* if $\pi(\mathbf{x}') = \sum_{\mathbf{x}} \pi(\mathbf{x}) \mathsf{T}(\mathbf{x} \rightarrow \mathbf{x}').$

i.e., is a left eigenvector of the transition matrix $\pi^T T = \pi^T T$.

$$
(0.2 \t 0.5 \t 0.3) = (0.2 \t 0.5 \t 0.3) \begin{pmatrix} 0.25 & 0 & 0.75 \\ 0 & 0.7 & 0.3 \\ 0.5 & 0.5 & 0 \end{pmatrix}
$$

0.75
0.5
0.5
0.5

An MC is *irreducible* if transition graph connected

Markov Chains

- An MC is *aperiodic* if it is not trapped in cycles
- An MC is *ergodic* (regular) if you can get from state *x* to *x* ' in a finite number of steps.
- Detailed balance: $prob(x^{(t)} \rightarrow x^{(i-1)}) = prob(x^{(t-1)} \rightarrow x^{(t)})$

$$
p(\mathbf{x}^{(t)})\mathbf{\Gamma}\left(\mathbf{x}^{(t-1)}\,|\,\mathbf{x}^{(t)}\right) = p(\mathbf{x}^{(t-1)})\mathbf{\Gamma}\left(\mathbf{x}^{(t)}\,|\,\mathbf{x}^{(t-1)}\right)
$$

summing over **x**(t-1)

$$
p(\mathbf{x}^{(t)}) = \sum_{\mathbf{x}^{(t-1)}} p(\mathbf{x}^{(t-1)}) \mathbf{\Gamma}(\mathbf{x}^{(t)} | \mathbf{x}^{(t-1)})
$$

• Detailed bal \rightarrow stationary dist exists

Metropolis-Hastings

- Treat the target distribution as stationary distribution
- Sample from an easier proposal distribution, followed by an acceptance test
- This induces a transition matrix that satisfies detailed balance
	- \bullet MH proposes moves according to *Q*(*x'*|*x*) and accepts samples with probability $A(x'|x)$.
	- \bullet The induced transition matrix is

$$
T(x \rightarrow x') = Q(x'|x)A(x'|x)
$$

 \bullet Detailed balance means

 π (*x*) Q (*x*'|*x*) A (*x'*|*x*) = π (*x*') Q (*x*|*x*') A (*x*|*x*')

 \bullet Hence the acceptance ratio is

$$
A(x' | x) = \min\left(1, \frac{\pi(x')Q(x | x')}{\pi(x)Q(x' | x)}\right)
$$

Metropolis-Hastings

- 1.. Initialize $x^{(0)}$
- 2.While not mixing // burn-in
	- $X=X^{(t)}$
	- $t + 1$,

 ϵ

- \bullet sample *u* ~ Unif(0,1)
- \bullet • sample $x^* \sim Q(x^*|x)$

$$
\int_{\mathbf{x}^{(t)}}^{\infty} \frac{u}{x^{(t)}} = x^* \frac{A(x^*|x)}{n \text{ transition}} = \min\left(1, \frac{\pi(x^*)Q(x|x^*)}{\pi(x)Q(x^*|x)}\right)
$$

- else
- $x^{(t)} = x$ // stay in current state
- \bullet Reset t=0, for *t* =1: *N*
	- \bullet *x*(t+1)) ← Draw sample (*x*(t))

 Function Draw sample (*x***(t))**

MCMC example

\oslash Eric Xing \oslash CMU, 2014 \oslash 47

Gibbs sampling

- \bullet Gibbs sampling is an MCMC algorithm that is especially appropriate for inference in graphical models.
- \bullet The procedue
	- \bullet we have variable set $X = \{x_1, x_2, x_3, \ldots, x_N\}$ for a GM
	- \bullet • at each step one of the variables X_i is selected (at random or according to some fixed sequences), denote the remaining variables as *X*-*i* , and its current value as $\mathbf{x}_{\cdot i}^{}\!\left(t\text{-}1\right)$
		- 0 Using the "alarm network" as an example, say at time t we choose X_{E} , and we denote the current value assignments of the remaining variables, *X*-*^E ,* obtained from previous samples, as $\boldsymbol{x}_{-\!\!E}^{(t-1)} = \left\{\!\!\boldsymbol{x}_{\beta}^{(t-1)}, \boldsymbol{x}_{\mathcal{A}}^{(t-1)}, \boldsymbol{x}_{\mathcal{J}}^{(t-1)}, \boldsymbol{x}_{\mathcal{M}}^{(t-1)}\right\}$
	- \bullet the conditonal distribution $p(X_i | X_i^{(t-1)})$ is computed
	- \bullet a value $x_i^{(t)}$ is sampled from this distribution
	- \bullet • the sample $\mathbf{x}_i^{(t)}$ replaces the previous sampled value of X_i in \mathbf{X} .
		- i.e., $x^{(t)} = x^{(t-1)} \cup x^{(t)}$ *Et E* $\boldsymbol{\chi} \left(\boldsymbol{t} \right) = \boldsymbol{\chi}_{-\boldsymbol{\mathsf{F}}} \left(\boldsymbol{t}^{-1} \right) \cup \boldsymbol{\chi}$ 1

Markov Blanket

Markov Blanket in BN

 A variable is independent from others, given its parents, children and children's parents (dseparation).

MB in MRF

 A variable is independent all its non-neighbors, given all its direct neighbors.

 \Rightarrow $p(X_i | X_{-i}) = p(X_i | \text{ MB}(X_i))$

Gibbs sampling

 Every step, choose one variable and sample it by P(X|MB(X)) based on previous sample.

Gibbs sampling of the alarm network

MB(A)={B, E, J, M} MB(E)={A, B}

- \bullet **To calculate P(J|B1,M1)**
- \bullet **Choose (B1,E0,A1,M1,J1) as a start**
- \bullet **Evidences are B1, M1, variables are A, E, J.**
- \bullet **Choose next variable as A**
- \bullet **Sample A by P(A|MB(A))=P(A|B1, E0, M1, J1) suppose to be false.**
- **(B1, E0, A0, M1, J1)**
- \bullet **Choose next random variable as E, sample E~P(E|B1,A0)**

Example

 $\mathbf{1}$

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 $0.3\left| \cdot \right|$

 0.2

 0.1

 $0\frac{L}{0}$

Example

 \bigcirc

 $\bullet\bullet\bullet\bullet$

Example

 $P(J1 | E1, MO) = 0.14$ $P(E1 | J1) = 0.01$ $P(E1 | M1) = 0.04$

 $P(E1 | M1, J1) = 0.17$

Gibbs sampling

- \bullet Gibbs sampling is a special case of MH
- The transition matrix updates each node one at a time using the following proposal:

 $Q((\mathbf{x}_i, \mathbf{x}_{-i}) \rightarrow (\mathbf{x}_i', \mathbf{x}_{-i})) = p(\mathbf{x}_i' | \mathbf{x}_{-i})$

- This is efficient since for two reasons
	- \bullet It leads to samples that is always accepted

$$
A((\mathbf{x}_{i}, \mathbf{x}_{-i}) \rightarrow (\mathbf{x}_{i}^{\top}, \mathbf{x}_{-i})) = \min\left(1, \frac{p(\mathbf{x}_{i}^{\top}, \mathbf{x}_{-i})Q((\mathbf{x}_{i}^{\top}, \mathbf{x}_{-i}) \rightarrow (\mathbf{x}_{i}, \mathbf{x}_{-i}))}{p(\mathbf{x}_{i}, \mathbf{x}_{-i})Q((\mathbf{x}_{i}, \mathbf{x}_{-i}) \rightarrow (\mathbf{x}_{i}^{\top}, \mathbf{x}_{-i}))}\right)
$$

$$
= \min\left(1, \frac{p(\mathbf{x}_{i}^{\top} | \mathbf{x}_{-i})p(\mathbf{x}_{-i})p(\mathbf{x}_{i}^{\top} | \mathbf{x}_{-i})}{p(\mathbf{x}_{i}^{\top} | \mathbf{x}_{-i})p(\mathbf{x}_{-i})p(\mathbf{x}_{i}^{\top} | \mathbf{x}_{-i})}\right) = \min(1, 1)
$$
Thus
$$
T((\mathbf{x}_{i}, \mathbf{x}_{-i}) \rightarrow (\mathbf{x}_{i}^{\top}, \mathbf{x}_{-i})) = p(\mathbf{x}_{i}^{\top} | \mathbf{x}_{-i})
$$

 \bullet • It is efficient since $p(x_i | x_{-i})$ only depends on the values in X_i 's Markov blanket

Gibbs sampling

• Scheduling and ordering:

- \bullet Sequential sweeping: in each "epoch" *t,* touch every r.v. in some order and yield an new sample, $x^{(t)}$, after every r.v. is resampled
- 0 Randomly pick an r.v. at each time step
- \bullet Blocking:
	- \bullet Large state space: state vector *X* comprised of many components (high dimension)
	- \bullet Some components can be correlated and we can sample components (i.e., subsets of r.v.,) one at a time
- Gibbs sampling can fail if there are deterministic constraint

- Suppose we observe Z = 1. The posterior has 2 modes: $P(X = 1, |Y = 0|Z = 1)$ **and** $P(X = 0, Y = 1 | Z = 1)$ **.** if we start in mode 1, $P(X | Y = 0, Z = 1)$ leaves $X = 1$ **1, so we can't move to mode 2 (Reducible Markov chain).**
- **If all states have non-zero probability, the MC is guaranteed to be regular.**
- **Z is xor**
- **Sampling blocks of variables at a time can help improve mixing.**

© Eric Xing @ CMU, 2014 56

© Eric Xing @ CMU, 2014 57

- Run several chains
- Start at over-dispersed points
- Monitor the log lik.
- Monitor the serial correlations
- **Monitor acceptance ratios**
- Re-parameterize (to get approx. indep.)
- Re-block (Gibbs)
- Collapse (int. over other pars.)
- Run with troubled pars. fixed at reasonable vals.

Summary

- \bullet Random walk through state space
- \bullet Can simulate multiple chains in parallel
- \bullet Much hinges on proposal distribution *Q*
	- \bullet Want to visit state space where $p(X)$ puts mass
	- \bullet Want A(*x**|*x*) high in modes of *p*(*X*)
	- \bullet Chain mixes well

Convergence diagnosis

- \bullet How can we tell when burn-in is over?
- \bullet Run multiple chains from different starting conditions, wait until they start "behaving similarly".
- \bullet Various heuristics have been proposed.

Reading: Tutorial on Topic Model @ ACL12

We are inundated with data …

(from images.google.cn)

- Humans cannot afford to deal with (e.g., search, browse, or measure similarity) a huge number of text and media documents
- We need computers to help out …

A task:

• Say, we want to have a mapping ..., so that

- \bullet Compare similarity
- \bullet Classify contents
- \bullet Cluster/group/categorize docs
- \bullet Distill semantics and perspectives
- 0 ..

 \Rightarrow

Representation:

Data: **Bag of Words Representation**

As for the Arabian and Palestinean voices that are against the current negotiations and the so-called peace process, they are not against peace per se, but rather for their well-founded predictions that Israel would NOT give an inch of the West bank (and most probably the same for Golan Heights) back to the Arabs. An 18 months of "negotiations" in Madrid, and Washington proved these predictions. Now many will jump on me saying why are you blaming israelis for no-result negotiations. I would say why would the Arabs stall the negotiations, what do they have to loose ?

- \bullet Each document is a vector in the word space
- \bullet Ignore the order of words in a document. Only count matters!
- \bullet A high-dimensional and sparse representation
	- Not efficient text processing tasks, e.g., search, document classification, or similarity measure
	- Not effective for browsing

Latent Semantic Structure in GM

 $=\sum$ l $P(\mathbf{w}) = \sum P(\mathbf{w}, \ell)$ Distribution over words

Inferring latent structure

$$
P(\ell \mid w) = \frac{P(w \mid \ell)P(\ell)}{P(w)}
$$

How to Model Semantics?

- Q: What is it about?
- \bullet A: Mainly MT, with syntax, some learning

A Hierarchical Phrase-Based Model for Statistical Machine Translation

We present a statistical phrase-based Translation model that uses *hierarchical phrases*—phrases that contain sub-phrases. The model is formally a synchronous context-free grammar but is learned from a bitext without any syntactic information. Thus it can be seen as a shift to the *formal* machinery of syntax based translation systems without any *linguistic* commitment. In our experiments using BLEU as a metric, the hierarchical Phrase based model achieves a relative Improvement of 7.5% over Pharaoh, a state-of-the-art phrase-based system.

Why this is Useful?

- Q: What is it about?
- \bullet A: Mainly MT, with syntax, some learning

- 0 Q: give me similar document?
	- \bullet Structured way of browsing the collection
- 0 Other tasks
	- \bullet Dimensionality reduction
		- \bullet TF-IDF vs. topic mixing proportion
		- 0 Classification, clustering, and more …

A Hierarchical Phrase-Based Model for Statistical Machine Translation

We present a statistical phrase-based Translation model that uses *hierarchical phrases*—phrases that contain sub-phrases. The model is formally a synchronous context-free grammar but is learned from a bitext without any syntactic information. Thus it can be seen as a shift to the *formal* machinery of syntax based translation systems without any *linguistic* commitment. In our experiments using BLEU as a metric, the hierarchical Phrase based model achieves a relative Improvement of 7.5% over Pharaoh, a state-of-the-art phrase-based system.

Words in Contexts

 \bullet "It was a nice **shot**. "

Words in Contexts (con'd)

 the opposition Labor **Party** fared even worse, with a predicted 35 **seats**, seven less than last **election**.

A possible generative process of a document

loar hank **.8UPOI .3TOPIC 1Vank .2**iNet streamⁿ **.7TOPIC 2**

DOCUMENT 1: money¹ bank1 bank1 loan1 river2 stream² bank1 money¹ river2 bank1 money¹ bank1 loan1 money¹ stream² bank1 money¹ bank1 bank1 loan1 river2 stream² bank1 money¹ river2 bank1 money¹ bank1 loan1 bank1 money¹ stream²

DOCUMENT 2: river2 stream² bank2 stream² bank2 money¹ loan1 river2 stream² loan1 bank2 river2 bank2 bank1 stream² river2 loan1 bank2 stream² bank2 money¹ loan1 river2 stream² bank2 stream² bank2 money¹ river2 stream² loan1 bank2 river2 bank2 money¹ bank1 stream² river2 bank2 stream² bank2 money¹

Mixture Components (distributions over elements) admixing weight vector (represents all components' contributions)

Bayesian approach: use priors Admixture weights \sim Dirichlet(α) **Mixture components** \sim Dirichlet(Γ)

 $©$ Eric Xing $@$ CMU, 2014 69

Topic Models = Mixed Membership Models = Admixture

Generating a document

 $-Draw \theta$ from the prior

For each word*n*

 $\big(\theta\big)$ \sim Draw z_n from *multinomia* l(θ

Which prior to use?

- Draw $w_n \mid z_n, \{\beta_{1:k}\}$ from multinomial $\left(\beta_{z_n}\right)$

Outcomes from a topic model

$\bullet\;$ The "topics" β in a corpus: \mathbb{R}

- \bullet There is no name for each "topic", you need to name it!
- \bullet There is no objective measure of good/bad
- \bullet The shown topics are the "good" ones, there are many many trivial ones, meaningless ones, redundant ones, … you need to manually prune the results
- \bullet How many topics? …
Outcomes from a topic model

• The "topic vector" θ of each doc

- 0 Create an embedding of docs in a "topic space"
- \bullet • Their no ground truth of θ to measure quality of inference
- \bullet • But on θ it is possible to define an "objective" measure of goodness, such as classification error, retrieval of similar docs, clustering, etc., of documents
- 0 But there is no consensus on whether these tasks bear the true value of topic models …

Outcomes from a topic model

\bullet The per-word topic indicator *z*:

The William Randolph Hearst Foundation will give \$1.25 million to Lincoln Center, Metropolitan Opera Co., New York Philharmonic and Juilliard School. "Our board felt that we had a real opportunity to make a mark on the future of the performing arts with these grants an act every bit as important as our traditional areas of support in health, medical research, education and the social services," Hearst Foundation President Randolph A. Hearst said Monday in announcing the grants. Lincoln Center's share will be \$200,000 for its new building, which will house young artists and provide new public facilities. The Metropolitan Opera Co. and New York Philharmonic will receive \$400,000 each. The Juilliard School, where music and the performing arts are taught, will get \$250,000. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual \$100,000 donation, too.

- \bullet Not very useful under the bag of word representation, because of loss of ordering
- \bullet But it is possible to define simple probabilistic linguistic constraints (e.g, bi-grams) over *^z* and get potentially interesting results [Griffiths, Steyvers, Blei, & Tenenbaum, 2004]

Outcomes from a topic model

• Topic change trends

"Theoretical Physics"

"Neuroscience"

The Big Picture

Computation on LDA

• Inference

- \bullet Given a Document D
	- \bullet • Posterior: $P(\Theta | \mu, \Sigma, \beta, D)$
	- Evaluation: $P(D | μ, Σ, β)$

The William Randolph Hearst Foundation will give \$1.25 million to Lincoln Center, Metropolitan Opera Co., New York Philharmonic and Juilliard School. "Our board felt that we had a real opportunity to make a mark on the future of the performing arts with these grants an act every bit as important as our traditional areas of support in health, medical research, education and the social services," Hearst Foundation meaning, meaning the meaning the grants. Lincoln Center's President Randolph A. Hearst said Monday in announcing the grants. Lincoln Center's share will be \$200,000 for its new building, which will house young artists and new public facilities. The Metropolitan Opera Co. and New York Philharmonic will receive \$400,000 each. The Juilliard School, where music and the performing arts are taught, will get \$250,000. The Hearist Foundation, a leading surporter of the Lincoln Center Consolidated Corporate Fund, will make its too.

• Learning

- \bullet Given a collection of documents ${D_i}$
	- \bullet Parameter estimation

$$
\arg \max_{(\mu, \Sigma, \beta)} \sum \log \bigl(P(D_i | \mu, \Sigma, \beta) \bigr)
$$

Exact Bayesian inference on LDA is intractable

• A possible query:

 \bullet

$$
p(\theta_n | D) = ?
$$

$$
p(z_{n,m} | D) = ?
$$

 Close form solution? $p(D)$ $(x_{n,m}|\boldsymbol{\beta}_{r}) p(z_{n,m}|\theta_{n}) | p(\theta_{n}|\alpha) | p(\phi|\alpha)$ $\left(D\right)$ $(\boldsymbol{\theta}_{n} | D) = \frac{p(\theta_{n_i}, D)}{n_i}$ $\left\{z_{nm}\right\}$, $\left\{\mathbf{I}_{n}\right\}$, $\left\{m\right\}$, $\left\{m\right\}$, $\left\{m\right\}$ $p(x_{n,m}|\boldsymbol{\beta})\cdot p(z_{n,m}|\boldsymbol{\theta}_n)$ $p(\boldsymbol{\theta}_n|\alpha)$ $p(\boldsymbol{\phi}|G)d\boldsymbol{\theta}_n d$ *p D* $p(\boldsymbol{\theta_n} | D) = \frac{p(\boldsymbol{\theta_n}, D)}{D}$ *n m* $\sum_{z_{n}}$ **J** $\left($ **LI** \sum_{m} $\left($ **LI** \sum_{m} \cdots z_{n} $\prod_{n} \left(\prod_{m} P^{(\infty n, m)} P_{z_n} P^{(\infty n, m + \mathcal{O}_{n})} \right) P^{(\mathcal{O}_{n}) + \mathcal{O}_{n}} P^{(\mathcal{V}) + \mathcal{O}_{n} \mathcal{O}_{\mathcal{O}_{n}}}$ $\left[\prod_{m} F^{(1)}(n,m) F^{(2)}(n,m) F^{(3)}(n,m) \right] F^{(1)}(n,m)$ $n,m \in \mathbb{Z}$, $\angle T \sim n, m \sim n$ $P_n(D) = \frac{F(D_n)}{D}$ $=\sum_{\{z_{n,m}\}}\int\Biggl(\prod_n\Biggl(\prod_m p(x_{n,m}\,|\pmb{\beta}_{z_n})\,p(z_{n,m}\,|\pmb{\theta}_n)\Biggr)p(\pmb{\theta}_n\,|\,\alpha)\Biggr)p(\pmb{\phi}\,|\,G)d\pmb{\theta}_n$ β_{z_n}) $p(z_{n,m} | \theta_n)$ $p(\theta_n | \alpha)$ $p(\phi | G) d\theta_n d\beta$ $\theta_n|D) = \frac{p(\theta_n)}{2}$ $\theta_n|D) = \frac{p(\theta_n)}{p(\theta_n)}$

$$
p(D) = \sum_{\{z_{n,m}\}} \int \cdots \int \left(\prod_{n} \left(\prod_{m} p(x_{n,m} | \beta_{z_n}) p(z_{n,m} | \theta_n) \right) p(\theta_n | \alpha) \right) p(\beta | \mathcal{G}) d\theta_1 \cdots d\theta_N d\beta
$$

 \bullet Sum in the denominator over T^n terms, and integrate over n k -dimensional topic vectors

Approximate Inference

- Variational Inference
	- \bullet Mean field approximation (Blei et al)
	- \bullet Expectation propagation (Minka et al)
	- \bullet Variational 2nd-order Taylor approximation (Ahmed and Xing)

- Markov Chain Monte Carlo
	- \bullet Gibbs sampling (Griffiths et al)

Collapsed Gibbs sampling

(Tom Griffiths & Mark Steyvers)

- Collapsed Gibbs sampling
	- \bullet • Integrate out θ

For variables **z** = *z*₁, *z*₂, …, *z_n* Draw *zi*(*t*+1) from *P*(*zi|***^z***-i, ^w*) $\mathbf{z}_{-i} = z_1^{(t+1)}, z_2^{(t+1)}, \ldots, z_{i-1}^{(t+1)}, z_{i+1}^{(t)}, \ldots, z_n^{(t)}$

$$
\{z^{(1)}, z^{(2)}, \ldots, z^{(T)}\}
$$

θn

 $\left(z_{n,m}\right)$

 $\left(x_{n,\, m}\right)$

 α

βi

 \overline{G}

 \oslash Eric Xing \oslash CMU, 2014 \oslash

- \bullet **Need full conditional distributions for variable**
- **Since we only sample** *^z* **we need**

$$
P(z_i = j | \mathbf{z}_{-i}, \mathbf{w}) \propto P(w_i | z_i = j, \mathbf{z}_{-i}, \mathbf{w}_{-i}) P(z_i = j | \mathbf{z}_{-i})
$$

$$
= \frac{n_{-i,j}^{(w_i)} + G}{n_{-i,j}^{(d_i)} + \alpha}
$$

$$
n_j^{(w)}
$$
 number of times word w assigned to topic j

$$
n_j^{(d)}
$$
 number of times topic j used in document d

G

θn

 $\left(z_{n,m}\right)$

 $\left(x_{n,m}\right)$

 α

βi

 \overline{G}

$$
P(z_i=j|\mathbf{z}_{-i},\mathbf{w}) \propto \frac{n_{-i,j}^{(w_i)} + G}{n_{-i,j}^{(\cdot)} + W G} \frac{n_{-i,j}^{(d_i)} + \alpha}{n_{-i,j}^{(d_i)} + T \alpha}
$$

$$
P(z_i=j|\mathbf{z}_{-i},\mathbf{w}) \propto \frac{n_{-i,j}^{(w_i)}+\boldsymbol{G}}{n_{-i,j}^{(\cdot)}+W\boldsymbol{G}}\frac{n_{-i,j}^{(d_i)}+\alpha}{n_{-i,j}^{(d_i)}+T\alpha}
$$

$$
P(z_i=j|\mathbf{z}_{-i},\mathbf{w}) \propto \frac{n_{-i,j}^{(w_i)}+\boldsymbol{G}}{n_{-i,j}^{(\cdot)}+W\boldsymbol{G}}\frac{n_{-i,j}^{(d_i)}+\alpha}{n_{-i,j}^{(d_i)}+T\alpha}
$$

$$
P(z_i=j|\mathbf{z}_{-i},\mathbf{w}) \propto \frac{n_{-i,j}^{(w_i)} + G}{n_{-i,j}^{(\cdot)} + W G} \frac{n_{-i,j}^{(d_i)} + \alpha}{n_{-i,j}^{(d_i)} + T \alpha}
$$

$$
P(z_i=j|\mathbf{z}_{-i},\mathbf{w}) \propto \frac{n_{-i,j}^{(w_i)} + G}{n_{-i,j}^{(\cdot)} + W G} \frac{n_{-i,j}^{(d_i)} + \alpha}{n_{-i,j}^{(d_i)} + T \alpha}
$$

$$
P(z_i=j|\mathbf{z}_{-i},\mathbf{w}) \propto \frac{n_{-i,j}^{(w_i)} + G}{n_{-i,j}^{(\cdot)} + W G} \frac{n_{-i,j}^{(d_i)} + \alpha}{n_{-i,j}^{(d_i)} + T \alpha}
$$

Learning a TM

 \bullet Maximum likelihood estimation:

$$
\{\beta_1, \beta_2, \dots, \beta_K\}, \alpha = \arg \max_{(\alpha, \beta)} \sum \log \bigl(P(D_i | \alpha, \beta)\bigr)
$$

- \bullet Need statistics on topic-specific word assignment (due to *z*), topic vector distribution (due to θ), etc.
	- 0 E.g,, this is the formula for topic *k*:

$$
\beta_k = \frac{1}{\sum_{d} N_d} \sum_{d=1}^{D} \sum_{d_n=1}^{N_d} \delta(z_{d,d_n}, k) w_{d,d_n}
$$

- \bullet These are hidden variables, therefore need an EM algorithm (also known as data augmentation, or DA, in Monte Carlo paradigm)
- \bullet This is a "reduce" step in parallel implementation

Conclusion

\bullet GM-based topic models are cool

- \bullet Flexible
- \bullet **Modular**
- \bullet **Interactive**
- \bullet There are many ways of implementing topic models
	- \bullet unsupervised
	- \bullet supervised

\bullet Efficient Inference/learning algorithms

- \bullet GMF, with Laplace approx. for non-conjugate dist.
- \bullet **MCMC**
- \bullet Many applications
	- \bullet …
	- \bullet Word-sense disambiguation
	- \bullet Image understanding
	- \bullet Network inference