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Multivariate Distribution in High- | 332¢
D Space "\ *“"“‘,\ ) ) i“\\;‘
e A possible world for cellular signal transduction: ). Y\X)
(L
[ReceptorA ] ) & [ReceptorB ] X,
[KinaseC ]X3 [ Kinase D ]X4 [KinaseE ]xs
[ TFF }Xs
[GeneG ] X, [GeneH ] X,
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. . 0000
What is a Graphical Model? 13
--- example from a signal transduction pathway o
e A possible world for cellular signal transduction:
[ReceptorA ] X, [ReceptorB ] X,
[ Kinase C ] X; [ Kinase D ] X, [ Kinase E ]Xs
[ TFF } X,
[ Gene G ] X, [ Gene H ] X,
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GM: Structure Simplifies 3
Representation oo

e Dependencies among variables
| [ Receptor A ] X, [ Receptor B ] X, i
S l _____________________________________________________________________ M _e_”JP_r?E‘?_i
[ Kinase C ] X; [ Kinase D ] X, [ Kinase E x5

1
Nucleus i
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Probabilistic Graphical Models, cece
con'd PN Ve o ) :

o If X;'s are conditionally independent (as described by a PG&), the

joint can be factored to a product of simpler terms, e.qg.,
Receptor A X, X,

P(XI’ XZ) Xj” X49 X5’ X6’ X7’ X8)
= P(X)) B(_z) w ) P (XUQ) P (X5| Xz)

P(X,| X;, X,) POXA X,) P(X,|, X f
a Why we may favor a PGM?

» Representation cost: how many probability statements are needed?

2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28

= Algorithms for systematic and efficient inference/learning computation
* Exploring the graph structure and probabilistic (e.g., Bayesian, Markovian) semantics

= Incorporation of domain knowledge and causal (logical) structures

Kinase C
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Specification of a BN L™

e There are two components to any GM:

e the qualitative specification
e the quantitative specification
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Qualitative Specification

e Where does the qualitative specification come from?

e Prior knowledge of causal relationships

e Prior knowledge of modular relationships

e Assessment from experts

e Learning from data

e We simply link a certain architecture (e.g. a layered graph)
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Two types of GMs oo

e Directed edges give causality relationships (Bayesian
Network or Directed Graphical Model):

P(XI’ XZ’ X3’ X4’ X5’ X6’ X7’ XS)

= P(X;) P(X;) P (X3| X, P (X4| X;) P (X5| X;)
P(X6| Xj” X4) P(X7| X6) P(X8| X5, X6)

e Undirected edges simply give correlations between
variables (Markov Random Field or Undirected Graphical
model):

P(X} X5 X3 Xy X5 X X X)

= I/Z exp{E(X))+E(X,)TE(X;, X)+E(X, X)TE(X; X))
+ E(Xp X3 X)HE(X;, Xo)+E(Xy X5 X)}
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Bayesian Network: 4+

e A BN is a directed graph whose nodes represent the random
variables and whose edges represent direct influence of one
variable on another.

e |tis a data structure that provides the skeleton for representing a
joint distribution compactly in a factorized way;

e |t offers a compact representation for a set of conditional
Independence assumptions about a distribution;

e \We can view the graph as encoding a generative sampling process
executed by nature, where the value for each variable is selected by
nature using a distribution that depends only on its parents. In other
words, each variable is a stochastic function of its parents.
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W / S 7% o
%@W *& wwr (x|

Sian Network: I-actorization\l orem | o

e Theorem: </ /);

Given a DAG, The most general form of the probability
distribution that i@ the graph factors according
to “node given its parents”: )

P(X) = [TP(X;|X.) \L ™

i=1l:d
where X_is the set of parents of X;, d is the number of nodes

(variables) in the graph. — 1)
G LA

P(X;, X5 X5 X, X5 Xy X5 X)
:> = P(X;) P(X;) P(X;| X;) P(X| X)) P(XA X;)
P(X,| X5, X,) P(X;| Xg) P(X 5
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000
Bayesian Network: Conditional 555:
Independence Semantics PG\ K-3) ‘ oo
Structure: DAG e

 Meaning: a node is o
conditionally independent
of every other node in the ota M

network outside its_Markov

blanket V>‘ A
L | IId't. n | \* :
/'

distributions (CPD) and the
DAG completely determine -

the joint dist. m \‘

- Children's co-parent ]

« Give causality
relationships, and facilitate
a generative process

Descendent
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Graph separation criterion .o

e D-separation criterion for Bayesian networks (D for Directed
edges):

Definition: variables x and y are D-separated (conditionally

independent) given z if they are separated in the moralized
ancestral graph

e Example:
Vv
L :
= z y = z Y
original graph ancestral moral ancestral
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Global Markov properties of cece
DAGS oo

e X is d-separated (directed-separated) from Z given Y if we can't
send a ball from any node in X to any node in Z using the "Bayes-
ball" algorithm illustrated bellow (and plus some boundary
conditions):

— « Defn: I(6)=all independence

%y Y properties that correspond to d-
separation:
A Q%A%
. ‘ x : 1(G) = {X LZ|¥ :dsep (X;Z]Y)]
(a) (b)
%v/o % /\/Q * D-separation is sound and
~Z/
'S O complete

(@) (b) © Eric Xing @ CMU, 2014 13



Towards quantitative specification of | sese
probability distribution oo

e Separation properties in the graph imply independence
properties about the associated variables

e Forthe graph to be useful, any conditional independence
properties we can derive from the graph should hold for the
probability distribution that the graph represents

e The Equivalence Theorem

For a graph G,

Let 9, denote the family of all distributions that satisfy 1(G),

Let 9, denote the family of all distributions that factor according to G,
Then 9,=9,.
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Example .

e Speech recognition

Coocepe: a xiogle word

JDWWM . OO

HHH e@@ o)
100000 s

Hidden Markov Model

© Eric Xing @ CMU, 2014 15



Knowledge Engineering

e Picking variables
e Observed
e Hidden

e Picking structure
e CAUSAL
e Generative

e Picking Probabilities
e Zero probabilities
e Orders of magnitudes
e Relative values

© Eric Xing @ CMU, 2014
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Example, con'd os

e Evolution

ancestor

T years

Tree Model
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Conditional probability tables

(CPTs)

0.75

0.25

0.33

0.67

P(@)P(b)P(c|a,b)P(d|c)

P(a,b,c.d) =

a%h0 aob’ a'bo a'b’
c? 0.45 1 0.9 0.7
c' 0.55 0 0.1 0.3
cO c'
d® (0.3 [0.5
d’ 07 |0.5
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Conditional probability density cece
func. (CPDs) oo

P(a,b,c.d) =
A~N(, £) B-~N(u,, £,) P(a)P(b)P(c|a,b)P(d|c)

AR
AL i
kN AN }\, /o |
o AN AN \\> . | SATET
NI VO ) J P
5 AT ) f k / Y \
SETTON A AT BTN
9 SRAT A Gathy e b
N8 ¢ i (A ! | \
¢ A \ J Y A P | y ;
\/\ A% Vi / Y L |
fo Ay SRR IR IR ST Vi
¥ ! \/ VRV VY Y Ll A AR RN
N A i i { ) Vo NN
S e Y \ \ N A / N / \1 N
< N \ \ / ) . : LN A
) g g k oy JANRN LR T T
Sy e y 5 A R ST
S s S YRR U A SV VN VN T S D
i A AL A O N i e =
LN NG T L S T = :

‘ D~N(u,+C, 2,) 5 C
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Conditionally Independent T
Observations oo

Model parameters

OS-D® o
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“Plate” Notation oo

‘ Model parameters
|

Data ={yy,...yn}

I=1:n

Plate = rectangle in graphical model

variables within a plate are replicated
In a conditionally independent manner

© Eric Xing @ CMU, 2014
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0000
0000
o000
Example: Gaussian Model -
‘ ’ Generative model:
\

PY1,---Yn | 1, O) =P p@yiln o)
= p(data | parameters)
= p(D |0)

1I=1:n where 0 = {u, o}
= Likelihood = p(data | parameters)
=p(D1]6)
=L (0)

= Likelihood tells us how likely the observed data are conditioned
on a particular setting of the parameters

= Often easier to work with log L ()
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Example: Bayesian Gaussian i
Model oo

© o0 ®

&

I=1:n

Note: priors and parameters are assumed independent here
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Markov Random Fields

Structure: an undirected

graph

« Meaning: a node is

conditionally independent of
every other node in the
network given its Directed
neighbors

Local contingency functions
(potentials) and the cliques in
the graph completely
determine the joint dist.

Give correlations between
variables, but no explicit way
to generate samples

© Eric Xing @ CMU, 2014
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Global Markov property o

e Let H be an undirected graph:

X4
X,

e B separates A and C if every path from a node in A to a node
in C passes through a node in B: sep,, (A;C|B)

e A probability distribution satisfies the global Markov property
if for any disjoint A, B, C, such that B separates A and C, A is
independent of C given B: I(H) = {AL C\B) :Sep, (A;C\B)}

© Eric Xing @ CMU, 2014 25



Representation -

e Defn: an undirected graphical model represents a distribution
P(X;,...,X,) defined by an undirected graph H, and a set of
positive potential functions y_ associated with cliques of H,

s.t.
P(Xg,eo i Xy) == HWC(X)

ceC
where Z is known as the partition functlon

Z = Z [[w.(x.)

X, ceC
e Also known as Markov Random Fields, Markov networks ...

e The potential function can be understood as an contingency
function of its arguments assigning "pre-probabilistic”" score of
their joint configuration.

© Eric Xing @ CMU, 2014 26



Cliques -

o For G={V,E}, a complete subgraph (clique) is a subgraph
G'={V'IV,E'IE} such that nodes in V' are fully interconnected

o A gmaximal) cligue is a complete subgraph s.t. any superset
V"EV'is not complete.

e A sub-clique is a not-necessarily-maximal clique.

2wws

e Example: e

e max-cliques = {A,B,D}, {B,C,D},
e sub-cliques = {A,B}, {C,D}, ...~ all edges and singletons

© Eric Xing @ CMU, 2014 27



Example UGM — using max i
cliques oo

2ws

1
P(X;, Xz, X3, X4) = 2‘//C(X124)><Wc (X234)

L = Z‘//c (X124) X W (X234) ! H

0 1
X1:X2,X3,X4

e For discrete nodes, we can represent P(X,.,) as two 3D tables
instead of one 4D table

© Eric Xing @ CMU, 2014 28



Example UGM — using subcliques | ¢

1
P(XI’XZ’X3’X4):?HWij(Xij) X"
]

1
= — Wi (Xp2)W 14 (X14 )W 23 (X23)W 24 (X2 )W 34 (X34)

/
L= Z H‘//ij(xij)

X1, X2, X3,Xq 1]

e For discrete nodes, we can represent P(X,.,) as 5 2D tables
instead of one 4D table

© Eric Xing @ CMU, 2014 29



Exponential Form -

e Constraining clique potentials to be positive could be inconvenient (e.g.,
the interactions between a pair of atoms can be either attractive or
repulsive). We represent a clique potential y(x.) in an unconstrained
form using a real-value "energy" function ¢,(x.):

Ve (Xc) =exp {_ ¢c (Xc)}
For convenience, we will call ¢,(x.) a potential when no confusion arises from the context.
e This gives the joint a nice additive strcuture

= Low|T4050] - Lowt- 0

ceC
where the sum in the exponent is called the "free energy":

H(x)=> ¢.(x,)
ceC
e In physics, this is called the "Boltzmann distribution”.
e |n statistics, this is called a log-linear model.

© Eric Xing @ CMU, 2014 30



Example: Boltzmann machines

2NpS

e A fully connected graph with pairwise (edge) potentials on

binary-valued nodes (for x; e {~1,+1}or x; € {0,1}) is called a
Boltzmann machine

P(X(, X5, X5, X4) = %exp Z¢ij(xi,xj)}

=%exp< D 0%, + Do, +C}
ij i
e Hence the overall energy function has the form:
H(x) = Zij (X = )0 (x; — 1) = (x— 1) O(x~ )

© Eric Xing @ CMU, 2014
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Example: Ising (spin-glass) T
models oo

e Nodes are arranged in a regular topology (often a regular
packing grid) and connected only to their geometric
neighbors.

e Same as sparse Boltzmann machine, where 6,=0 iff 1,j are
neighbors.

e e.g., nodes are pixels, potential function encourages nearby pixels to have similar
intensities.

e Potts model: multi-state Ising model.

© Eric Xing @ CMU, 2014 32



Example: Modeling Go

.= -
) IIII.-“ \
.‘ . . - «:. . s -

- ‘.'A..j ‘
a8 @&

@
R
.

.:
-8
x

| —— o

This is the middle position of a Go game.
Overlaid is the estimate for the probability of
becoming black or white for every intersection.
Large squares mean the probability is higher.
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An
(incomplete)
genealogy
of graphical
models

SBN,
Boltzrmann
Machines

Cooperative

Quantization

Vector

(Picture by
Zoubin
Ghahramani and
Sam Rowels)

Mixture of
Gaussians

vaQ)

Mmix

Gaussian

red-dim

/

y HMM

Factorial HMM

red-dim

Mixture of
Factor Analyzers

Factor Analysis
(P CA)

/

nony
ICA

\

mixX - mixture

red-dim : reduced

dimension
dyn dynamics
aistrio . distriouteda

representatior

nonlin - nonlinear
switch : switching

Mixture of
HMMs

\

Switching
State-space
Models

Linear

Cynamical
Systemns (SSMs)

dyn )
Y nonlin
Nonlinear Nonli
Gaussian an |n<_:‘;ar
e Dynamical
i U, 2014 Systems

A
N‘

Mixture of
LDSs

34



Advanced Introduction to
Machine Learning

Markov Chain Monte Carlo

Met with Proposal Unif(x-0.1.x+0.1)

The wal
2 Y AT, o hatt Ml A A
! ]Hf ':Tﬂ'\ "ﬂ,mﬁy “."Y,-",. " ;‘j A :‘{ A ,i'1‘
'\ ALY | " tw"" f l
4t » w"l “{ Wl P

¥ f | W, AW

‘.
zU 100 200 300 400 500 600 700 800 800 1000 H L]
eading:
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Approaches to inference

e Exact inference algorithms

e The elimination algorithm
e Belief propagation
e The junction tree algorithms  (but will not cover in detail here)

e Approximate inference techniques

e Variational algorithms
e Stochastic simulation / sampling methods
e Markov chain Monte Carlo methods

© Eric Xing @ CMU, 2014
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Monte Carlo methods .

e Draw random samples from the desired distribution

e Yield a stochastic representation of a complex distribution

e marginals and other expections can be approximated using sample-based
averages

N
ELF ()] = D F (x )
N =
e Asymptotically exact and easy to apply to arbitrary models

e Challenges:

e how to draw samples from a given dist. (not all distributions can be trivially
sampled)?

e how to make better use of the samples (not all sample are useful, or eqally
useful, see an example later)?

e how to know we've sampled enough?

© Eric Xing @ CMU, 2014



0000
o000
L )
. - . | X
Example: naive sampling -
e Construct samples according to probabilities given in a BN.
= EO | BO | A0 | MO | Jo
EO BO A0 MO JO
:T’ ;? _"éé" EO | BO | AO MO | J1
FF| o EO BO A0 MO Jo
EO BO A0 MO JO
AT Y EO BO A0 MO JO
: L0 E1 BO A1 M1 J1
Alarm example: (Choose the right sampling EO BO AO MO Jo
sequence)
1) Sampling:P(B)=<0.001, 0.999> suppose it is false, EO BO AO MO JO
BO. Same for EO. P(A|BO, E0)=<0.001, 0.999>
suppose it is false... EO BO A0 MO JO

2) Frequency counting: In the samples right,
P(J|A0)=P(J,A0)/P(A0)=<1/9, 8/9>

© Eric Xing @ CMU, 2014
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Example: nalve sampling

e Construct samples according to probabilities given in a BN.

Alarm example: (Choose the right sampling
sequence)

3) what if we want to compute P(J|AL) ?

4) what if we want to compute P(J|B1) ?
P(J|A1)=P(J,B1)/P(B1) can not be defined.

For a model with hundreds or more
variables, rare events will be very hard to
garner evough samples even after a long
time or sampling ...

EO BO AO MO JO
EO BO AO MO JO
EO BO AO MO J1
EO BO AO MO JO
EO BO AO MO JO
EO BO AO MO JO
E1 BO A1 M1 J1
EO BO AO MO JO
EO BO AO MO JO
EO BO AO MO JO

© Eric Xing @ CMU, 2014
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Monte Carlo methods (cond.) :

e Direct Sampling

e We have seenit.
e Very difficult to populate a high-dimensional state space

e Rejection Sampling

e Create samples like direct sampling, only count samples which is consistent with
given evidences.

e Likelihood weighting, ...

e Sample variables and calculate evidence weight. Only create the samples which
support the evidences.

e Markov chain Monte Carlo (MCMC)

e Metropolis-Hasting
e Gibbs

© Eric Xing @ CMU, 2014 40



Markov chain Monte Carlo 444
(MCMC) oo

e Construct a Markov chain whose stationary distribution is the
target density = P(X]e).

e Run for T samples (burn-in time) until the chain
converges/mixes/reaches stationary distribution.

e Then collect M (correlated) samples x,, .

e Key issues:
e Designing proposals so that the chain mixes rapidly.
e Diagnosing convergence.

© Eric Xing @ CMU, 2014
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Markov Chains ot

e Definition:
e Given an n-dimensional state space
e Random vector X = (x,...,X,)
o XM =xattime-step t
e x® transitions to x*") with prob
P(x®D | xO, . . xM) = T(x®*) | xb) = T(xO 2> xt1)
e Homogenous: chain determined by state x©), fixed transition
kernel T (rows sum to 1)

e Equilibrium: =(x) is a stationary (equilibrium) distribution if
(X') = Z,7(X) T(X>X").

i.e., is a left eigenvector of the transition matrix 7'T = #'T.

025 0 075
(0.2 05 03)=(02 05 03) 0 07 03
05 05 0
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Markov Chains °

e An MC is irreducible if transition graph connected
e An MC is aperiodic if it is not trapped in cycles

e An MC is ergodic (regular) if you can get from state x to x'
in a finite number of steps.

e Detailed balance: prob(x>x{-1) = prob(xt-1—>x()
P(X(t))T (X(t—l) |X(t)) _ p(x(t—l))-,- (X(t) |X(t—1))

summing over x({t1)

p(X) = 3 p(< T (<) |x*)

t-1)

e Detailed bal - stationary dist exists

© Eric Xing @ CMU, 2014
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Metropolis-Hastings o

e Treat the target distribution as stationary distribution

e Sample from an easier proposal distribution, followed by an
acceptance test

e This induces a transition matrix that satisfies detailed balance

e MH proposes moves according to Q(x'|x) and accepts samples with probability
A(x'|x).
e The induced transition matrix is

T(x > x)=Q(x'[x)A(x|x)

e Detailed balance means

7(X)Q X X)AX| x) =7(x")Q(x [ x)A(x [ x")

e Hence the acceptance ratio is

Lo aO)Rx X
A = 1,
alied m'”( n(x)Q(xwx))

© Eric Xing @ CMU, 2014 44




Metropolis-Hastings o

1. Initialize x©)

2. While not mixing // burn-in

x=x) \
t+=1,

sample u ~ Unif(0,1)

sample x* ~ Q(x*|x)

- if u<A(x*|x):min(1, ”(X*)Q(Xl)(*)] > Function
X =x* " [[transition 7(X)Q (x*| x) Draw sample (x(t))

- else
xt) = x // stay in current state

e Reset t=0, for t =1:N
e X(t+1)) € Draw sample (x(t))

© Eric Xing @ CMU, 2014



MCMC example

J r|\ |

|
20

lI i1=1000
I\
.. 'l \
10
X

0.1 ‘
||”
0.05 Flfis !
5 .:1||‘|“”|H||||]I.‘nl[”‘
0 0 10
gx*Ix) ~ N(x0,100)

p(x) ~ 0.3 exp(-0.2x?) + 0.7 exp(-0.2(x-10)?)
© Eric Xing @ CMU, 2014
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Gibbs sampling

e Gibbs sampling is an MCMC algorithm that is especially
appropriate for inference in graphical models.

e The procedue

e we have variable set X={x;, x,, X3,... X} for a GM

e at each step one of the variables X; is selected (at random or according
to some fixed sequences), denote the remaining variables as X ;, and its
current value as x (tD

Using the "alarm network" as an example, say at time t we choose X, and we
denote the current value assignments of the remaining variables, X ¢,
obtained from previous samples, as x_(tE—l) — {XB(H),xf—l),x}t—l),xg—l)}

e the conditonal distribution p(X;| x (1) is computed
e avalue x{® is sampled from this distribution

e the sample x replaces the previous sampled value of X;in X.

e, x® =xEDoxd
© Eric Xing @ CMU, 2014 47



Markov Blanket ot

—
e Markov Blanket in BN

e Avariable is independent from
others, given its parents, children
and children‘s parents (d-
separation).

e MB in MRF
e Avariable is independent all its TN } 12l
non-neighbors, given all its direct
neighbors.

= p(Xil X.)= p(Xil MB(X)))

e Gibbs sampling

e Every step, choose one variable
and sample it by P(X|MB (X)) based
on previous sample.

© Eric Xing @ CMU, 2014 48



Gibbs sampling of the alarm T
network 4+

e To calculate P(J|B1,M1)

e Choose (B1,E0,A1,M1,J1) as
a start

P(E)
002

Burglary Earthquake

e Evidences are B1l, M1,

: ';‘;" variables are A, E, J.
x| % e Choose next variable as A
F1 001

e Sample A by
P(AIMB(A))=P(A|B1, EO, M1,
J1) suppose to be false.

Al P Al PM)
. 1 .01

e Choose next random
MB(A)={B, E, J, M} variable as E, sample
MB(E)={A, B} E~P(E|B1,A0)

© Eric Xing @ CI@U, 2014, 49
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Example

First 100 iterations of sample3

0.2

1 1 1 1

0 10 20 30 40 50 B0 70 80 90 100
lteration

© Eric Xing @ CMU, 2014 50



Example:

09

0.8

07~
06F
05F
0.4-
03F
02F

0.1+

PW1 | B1, M1)

samplel
sample2
sample3

lteration

© Eric Xing @ CMU, 2014
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Example os

PU1 | ET, MO)

1~

samplel

09r sample2

sample3
08~
07F
0BF
05F
0.4+

Iteration . 1D4
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Example .
—

P(J1 | B1 ,M1) = 090 . Gibbs sampling of alarm network
PUTIELMO) =014 b
P(E1 ]| J1) =0.01 .|
P(E1|M1) =004 .l
P(E1 M1 ,J1) =0.17 06 —— P(J11B1,M1)
— P(1|E1 MO)
05F PETUT)
——— P(E1|M1)
0.4F P{E1IMT JT)
0.2 n“
| NS T
01
0 1 2 3 4 5 6 7 8 9 10
lteration w10?
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Gibbs sampling 4+

e Gibbs sampling is a special case of MH

e The transition matrix updates each node one at a time using
the following proposal:

Q((X,,X_,.) — (X I’X—i)): p(x;'[Xx)

e This is efficient since for two reasons

e Itleads to samples that is always accepted
: o p(xli ,X_,')Q((Xli 1X—i) - (X,-,X_,-))
A((Xf X ) = (X 1X—i))_ mln[l, P(Xiax_f)Q((xi’X—i) - (x", ,X_,))J

 minf1, POCIXDROPOG X)) iy
PO X )P )P(X X)) |

Thus T((x;, X ;) = (%', %)= p(x;'[x;)

o Itis efficient since p(x; |x_;) only depends on the values in Xs Markov
blanket
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Gibbs sampling

e Scheduling and ordering:

e Sequential sweeping: in each "epoch" t, touch every r.v. in some order
and yield an new sample, x ®), after every r.v. is resampled

e Randomly pick an r.v. at each time step

e Blocking:

e Large state space: state vector X comprised of many components (high
dimension)

e Some components can be correlated and we can sample components
(i.e., subsets of r.v.,) one at a time

e Gibbs sampling can fail if there are deterministic constraint

» Suppose we observe Z=1. The posterior has 2 modes:
and P(X=0, Y=1|Z=1).if we startin mode 1, P(X]Y=0,Z=1) leaves X =
1, so we can’t move to mode 2 (Reducible Markov chain).

« If all states have non-zero probability, the MC is guaranteed to be regular.
Z is xor « Sampling blocks of variables at a time can help improve mixing.
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GOOD!

Chains
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BAD! Chains

Met. with Proposal Unif(x-0.1,x+0.1) e
0 T T T T T T T fgj:—
0.1
The wall 0.08
/ 0.06
0.04
2k 0.02
0
H |
4L
-6 i
8}
No mixing yet!!
0k g
_12 I 1 | | | | | I !
0 100 200 300 400 500 600 700 800 900 1000

n=3,alpha=1 ,m=0.92,5=1.55 Nmet=5. © Eric Xing @ CMU, 2014
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0000
A b . | 1
The of simulation .
e Run several chains e Re-parameterize (to get
e Start at over-dispersed approx. indep.)
points e Re-block (Gibbs)

e Monitor the log lik.

e Monitor the serial
correlations

e Monitor acceptance ratios

e Collapse (int. over other
pars.)

e Run with troubled pars.
fixed at reasonable vals.

© Eric Xing @ CMU, 2014
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0000
:.O
Summary .
e Random walk through state space
e Can simulate multiple chains in parallel
e Much hinges on proposal distribution Q
e Want to visit state space where p(X) puts mass
e Want A(x*|x) high in modes of p(X)
e Chain mixes well
e Convergence diagnosis

How can we tell when burn-in is over?

Run multiple chains from different starting conditions, wait until they start
“behaving similarly”.

Various heuristics have been proposed.

© Eric Xing @ CMU, 2014
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Advanced Introduction to
Machine Learning

10715, Fall 2014

Intro to Topic Models

Reading: Tutorial on Topic Model @ ACL12

© Eric Xing @ CMU, 2014 60



We are inundated with data ... :

oA Y ‘!" ' “‘. %

‘ ":;"_ (from images.google.cn)
e Humans canr]ot_affor to deal with (e g? searc?h, browge, or
measure similarity) a huge number of text and media documents

e \We need computers to help out ...

© Eric Xing @ CMU, 2014
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A task:

e Say, we want to have a mapping ..., so that

4

e Compare similarity * g
e Classify contents

e Cluster/group/categorize docs

e Distill semantics and perspectives

© Eric Xing @ CMU, 2014 62



Representation: 4+

e Data: Bag of Words Representation

As for the Arabian and Palestinean voices that are against the
current negotiations and the so-called peace process, they are not
against peace per se, but rather for their well-founded

predictions that Israel would NOT give an inch of the West bank | Arabian

(and most probably the same for Golan Heights) back to the

Arabs. An 18 months of "'negotiations' in Madrid, and neggtia’[ions

Washington proved these predictions. Now many will jump on é .

me saying why are you blaming israelis for no-result negotiations. agal nst

| would say why would the Arabs stall the negotiations, what do peace

they have to loose ? Israel
Arabs .

blaming
—— / e

e Each document is a vector in the word space | =

leacning

. 0]
e Ignore the order of words in a document. Only count matters! 3| jound
2| intelligence
Jou Mdﬂﬁﬁtillnh“m/% 0 text ¥
. . . . 0| agent
e A high-dimensional and sparse representation || |
Not efficient text processing tasks, e.g., search, document 0| peds

lee 47 e 3 %
of the jown2l s also pubtished by Woigan
classification, or similarity measure K
Not effective for browsing

© Eric Xing @ CMU, 2014 63
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Latent Semantic Structure in GM °f

Distribution over words
@t Struc@ P(w) = Z P(w,/)
14

Inferring latent structure

<WordsD P(/| W) = P(V\él(i\):(f)

© Eric Xing @ CMU, 2014 64




How to Model Semantics?

e Q: Whatis it about?

e A: Mainly MT, with syntax, some learning

l

/

e

0.6 0.3 0.1 AdMixing
Proportion
MT Syntax Learning
Source o
Target Parse likelihood
9 Tree EM
SMT :
: Noun Hidden 0
Alignment O
Phrase Parameters | -5
Score U o)
BLEU Grammar Estimation E
CFG argMax

\M

Unigram over vocabulary

Topic Models

© Eric Xing @ CMU, 2014

A Hierarchical Phrase-Based Model
for Statistical Machine Translation

We present a statistical phrase-based
Translation model that uses hierarchical
phrases—phrases that contain sub-phrases.
The model is formally a synchronous
context-free grammar but is learned

from a bitext without any syntactic
information. Thus it can be seen as a
shift to the formal machinery of syntax
based translation systems without any
linguistic commitment. In our experiments
using BLEU as a metric, the hierarchical
Phrase based model achieves a relative
Improvement of 7.5% over Pharaoh,

a state-of-the-art phrase-based system.

4
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Why this is Useful?

e Q: Whatis it about?
e A: Mainly MT, with syntax, some learning

AdMixing
Proportion

e Q: give me similar document?

e Structured way of browsing the collection

e Other tasks

e Dimensionality reduction

e TF-IDF vs. topic mixing proportion

e Classification, clustering, and more ...

© Eric Xing @ CMU, 2014 66



Words in Contexts ot

. “Itwas anice Shot.”

© Eric Xing @ CMU, 2014 67



Words in Contexts (con'd)

e the opposition Labor Party fared even worse, with a

predicted 35 S€ALS, seven less than last election.

© Eric Xing @ CMU, 2014 68



A possible generative process of | ss2
a document :

DOCUMENT 1: river? stream?
8 river?2
\ stream? river? stream?
river?
‘/\/\ stream?
v
TOPIC 1
T
\_/ ) .

DOCUMENT 2: river? stream? bank? stream? bank?
< 0(& river?2 stream? bank? river? bank?
¢ - stream?river? bank? stream? bank?

s“eam‘g‘ river2 stream? bank? stream? bank? river?
: stream? bank?river? bank?2 stream?
t‘\\'"zl“/ueq river2 bank? stream? bank?
‘/\/\ eQI}s.
v
TOPIC 2 o _
admixing weight . )
Mixture vector 0 Bayesian approach: use priors
Components  (represents all Admixture weights ~ Dirichlet( )

(distributions over components’

JOTIE Mixture components ~ Dirichlet( /")
elements) contributions)

© Eric Xing @ CMU, 2014 69



Topic Models = Mixed
Membership Models = Admixture |2

Generating a document

— Draw @ from the prior Prior
For each word n
- Draw z,, from multinomial (@) 5
-Draw w, | z,,{f,.} from multinomial(ﬂzn)
Z
F OO
K Ny
Which prior to use? N

© Eric Xing @ CMU, 2014 70



Latent Dirichlet Allocation

Blei, Ng and Jordan (2003)

Essentially a Bayesian pLSI:

®—4),

@ ~ Dir(x)

Wn, ~ p(Wn|zn, B)

N

M

p(w) =" p(6) p(ﬂ)(H p(z,/0) (W, \ﬂzn))dﬁ ds

© Eric Xing @ CMU, 2014
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Outcomes from a topic model

e The “topics” Bin a corpus:

T 59 T 104 T 31
image ftp card
jpeg pub monitor
comp.graphics color graphics dos
’ file mail video
gif version apple
images tar windows
format file drivers
bit information vga
files send cards
display server graphics
T 30 T 84 T 44
power water sale
ground energy price
. . wire air offer
sci.electronics L L
circuit nuclear shipping
supply loop sell
voltage hot interested
current cold mail
wiring cooling condition
signal heat email
cable temperature ed

T 42 T 78 T 47
israel jews armenian
israeli Jjewish turkish
politics.mideast peace 'isra)el' armenia}ns
writes israeli armenia
article arab turks
arab people genocide
war arabs russian
lebanese center soviet
lebanon jew people
people nazi muslim
T 44 T 94 T 49
sale don drive
price mail sesi
misc.forsale offer call disle
shipping package hard
sell writes mb
interested send drives
mail number ide
condition ve controller
email hotel floppy
cd credit system

e There is no name for each “topic”, you need to name it!

e There is no objective measure of good/bad

e The shown topics are the “good” ones, there are many many trivial ones, meaningless ones,
redundant ones, ... you need to manually prune the results

e How many topics? ...

© Eric Xing @ CMU, 2014
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Qutcomes from a topic model o°

e The “topic vector” @ of each doc

80

60~

NP AN =

40+

+040*+0qO %+ 0

20

4o * +0d
3

-40+

-60—

*

80 1 1 1 I 1 1 I 1 ]
-100 -80 -60 -40 -20 0 20 40 60 80

e Create an embedding of docs in a “topic space”
e Their no ground truth of 8to measure quality of inference

e Buton Aitis possible to define an “objective” measure of goodness, such as classification
error, retrieval of similar docs, clustering, etc., of documents

e But there is no consensus on whether these tasks bear the true value of topic models ...
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Qutcomes from a topic model o°

e The per-word topic indicator z:

The William Randolph Hearst Foundation will give $1.25 million to Lmcoln Center,
Metropolitan Opera Co., New York Philharmonic and Jnilliard School.  “Ownr board
felt that we had a real opportunity to make a mark on the future of the performing
arts with these prants amn act every bit as important as onr traditional areas of support
in health, medical research, education and the social services,” Hearst Foundation
President Randolph A. Hearst said Monday in announcing the grants. Lincoln Center’s
share will be $200,000 for its new building, which will honse young artists and provide
new public facilities. The Metropolitan Opera Co. and New York Philharmonic will
receive $400.000 each. The Jnilliard School, where music and the performing arts are
tanght, will get $250,000. The Hearst Foundation, a leading supporter of the Lincoln
Center Cousolidated Corporate Fund, will make its msnal annnal 5100,000 domation,

too.
0
e Not very useful under the bag of word representation, | /\
because of loss of ordering z2) &) &) &

e Butitis possible to define simple probabilistic linguistic
constraints (e.g, bi-grams) over z and get potentially
interesting results [Griffiths, Steyvers, Blei, & Tenenbaum, 2004]
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Qutcomes from a topic model o°

e T[opic change trends

"Theoretical Physics"”

"Neuroscience™

| | I | | | |

1880 1900 1920 1940 1960 1980 2000

1880

1900

1920

' ' [David Blei, MLSSO
1940 1960 1980 2000

© Eric Xing @ CMU, 2014
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The Big Picture

Unstructured Collection Structured Topic Network

Topic

ol
\

Wy Ty
" >
W, Dlmens_lonallty T XX \T,
Reduction
Word Simplex Topic Space

(e.g, a Simplex)

© Eric Xing @ CMU, 2014
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Computation on LDA -

e Inference

% “Arts" “Budgets” “Children”

.
e Given a Document D m e
FILM TAX WOMEN
SHOW PROGRAM PEOPLE
MUSIC BUDGET CHILD
a MOVIE BILLION YEARS
- PLAY FEDERAL FAMILIES
Posterior: P(© > D Mo TR BN
- b 1) 1) BEST SPENDING PARENTS
ACTOR NEW SAYS
FIRST STATE FAMILY
L] YORK PLAN WELFARE
Evaluation: P(D| y,2 e Tt u: B
- ] , THEATER PROGRAMS PERCENT PRESIDENT
ACTRESS GOVERNMENT CARE ELEMENTARY
LOVE CONGRESS LIFE HAITT

W Viliam Randolph Hearst Fonndation will give 8125 willin to Lincoln Center,
etrapolitan Opera. Co., New York Philbarmonic and Juilliard School. “Our board
felt that we had a real opportunity to make a mark on the futwre of the performing
arts with these zrauts an act every bit as impartant as our traditional areas of supp:
in health, wmedical resenrch, education and the social services Hearst Fonndation
President Randolph A. Hearst said Monday in s Lincoln Center’s
share will be 5200000 for its new building, which will young artists and provid
new public fcilities. The Metropolitan Opera Co. aud New York Philbarmanic will
receive §4000000 each. The Juilliard School, where music and the performing arts are

- tanght, will get 5250,000. The Hearst Foundation, a leading supporter of the Lincaln
‘ e rn I n g Center Cousolidated Corporate Fund, will make its nsual aunnal $100,000 donation,
a toa.

e Given a collection of documents {D}

Parameter estimation

argmax » log(P(D;|u, %, B
(u.2,5)
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Exact Bayesian inference on LDA | 382
IS Intractable oo

e A possible query:

p(o,|D)="
p(zn,m | D) =7
o Close form solution?  p(@ |D)= p(...D)
! p(D)
> I(H[H P(Xom 18,,) P(Z,m |6, )J p(o, Ia)Jp(¢|G)d0_,, dg
_ {ant” Un U o

p0d) =[] [H[Hpm,m 18, )P(Z,.n I, )Jp(a,, |a)jp(ﬂ|6)dol---daNd/f

{z,m}

e Sum in the denominator over T" terms, and integrate over n k-dimensional topic
vectors
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Approximate Inference -

e Variational Inference

e Mean field approximation (Blei et al)
e Expectation propagation (Minka et al)
e Variational 2"d-order Taylor approximation (Ahmed and Xing)

e Markov Chain Monte Carlo

e Gibbs sampling (Griffiths et al)
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Collapsed Gibbs sampling T
(Tom Griffiths & Mark Steyvers) o

e Collapsed Gibbs sampling

e Integrate out @

-~

For variablesz=2z,, z,, ..., z,
Draw z{®*V from P(zj|z; w) @
2.2 2,00 20N 72 @) 72 O 70 <

@

|~
L E

{20 @)

N/—\
3
!

’ . L -

= %Zz(t)
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Gibbs sampling

e Need full conditional distributions for variable
) (7
e Since we only sample zwe need D

P(zi = j|z—i: W) X P(’wi|zi — j, Z—i,W_i)P(zi = j|z_,-) @I

n(ﬂ'z’)_i_G n(d?)-—l—a

—‘t,j 1,3

n(_zj + WG n(_dz?’), + T

nt®) number of times word w assigned to topic j

ng-d) number of times topic j used in document d

© Eric Xing @ CMU, 2014
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Gibbs sampling

R
NEBowovouorwdr —

50

Wi
MATHEMATICS
KNOWLEDGE
RESEARCH
WORK
MATHEMATICS
RESEARCH
WORK
SCIENTIFIC
MATHEMATICS
WORK
SCIENTIFIC
KNOWLEDGE

JOY

NNRPRRPRRPRPRPRRPRRRRERO

iteration
1

PRPFRPNEFEPNMNNNRERENDRNDNODN
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Gibbs sampling

Tl el
NIh o ©ONO D WN P -

50

Wi
MATHEMATICS
KNOWLEDGE
RESEARCH
WORK
MATHEMATICS
RESEARCH
WORK
SCIENTIFIC
MATHEMATICS
WORK
SCIENTIFIC
KNOWLEDGE

JOY

NNNRRPRRPRRPRPRRPRRERRREERO

iteration
1 2
Z; Z;
2 ?
2

1

2

1

2

2

1

2

1

1

1

2
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Gibbs sampling

el
BEBowovouorwdpr —

50

Wi
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KNOWLEDGE
RESEARCH
WORK
MATHEMATICS
RESEARCH
WORK
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WORK
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iteration
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Pz = jlz_i,w)
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Gibbs sampling

el
BEBowovouorwdpr —

50

Wi
MATHEMATICS
KNOWLEDGE
RESEARCH
WORK
MATHEMATICS
RESEARCH
WORK
SCIENTIFIC
MATHEMATICS
WORK
SCIENTIFIC
KNOWLEDGE

JOY

NNNRRPRRPRRPRPRRPRRERRREERO

iteration
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Gibbs sampling

R
NEBowovouorwdr —

50
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Gibbs sampling

el
BEBowovouorwdpr —

50
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Gibbs sampling

R
NEBowovouorwdr —
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Gibbs sampling

el
BEBowovouorwdpr —

50
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CY X )
0000
. . 0000
Gibbs sampling
o0
®
iteration
1 2 1000
i W; di Z; Z; Zi
1 MATHEMATICS 1 2 2 2
2 KNOWLEDGE 1 2 1 2
3 RESEARCH 1 1 1 2
4 WORK 1 2 2 1
5 MATHEMATICS 1 1 2 2
6 RESEARCH 1 2 2 2 1
7 WORK 1 2 2 2 = _ ~(1)
8 SCIENTIFIC 1 1 1 1 T
9 MATHEMATICS 1 2 2 2 t
10 WORK 1 1 2 2
11 SCIENTIFIC 2 1 1 2
12 KNOWLEDGE 2 1 2 2
50 Joy 5 2 1 1
, n) 16 %) ta
P(z,, :J|Z_1‘,W) X 0 (d.)’
n;,;+ Wwa n_zf‘,. + To
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Learning a TM -

e Maximum likelihood estimation:

(B Bor-... B b = argmax Y log(P (D[, 8))

(a.p)

e Need statistics on topic-specific word assignment (due to z), topic
vector distribution (due to 6), etc.

e E.g,, thisis the formula for topic k:
D Ny

n’

d ].dn_].

e These are hidden variables, therefore need an EM algorithm (also
known as data augmentation, or DA, in Monte Carlo paradigm)

e This is a “reduce” step in parallel implementation
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Conclusion

e GM-based topic models are cool
e Flexible
e Modular
e Interactive

e There are many ways of implementing topic models
e unsupervised
e supervised

e Efficient Inference/learning algorithms

e GMF, with Laplace approx. for non-conjugate dist.
e MCMC

e Many applications
[ J
e Word-sense disambiguation
e Image understanding

e Network inference
© Eric Xing @ CMU, 2014
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