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Multivariate Distribution in High- | 8322
D Space oo

e A possible world for cellular signal transduction:

[ Receptor A ] X, [ Receptor B ] X,

[ Kinase C ] X; [ Kinase D ] X, [ Kinase E ]Xs
[ TFF } X,

[ Gene G ] X, [ Gene H ] X,
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What is a Graphical Model? 13
--- example from a signal transduction pathway o
e A possible world for cellular signal transduction:
[ReceptorA ] X, [ReceptorB ] X,
[ Kinase C ] X; [ Kinase D ] X, [ Kinase E ]Xs
[ TFF } X,
[ Gene G ] X, [ Gene H ] X,
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GM: Structure Simplifies 3
Representation oo

e Dependencies among variables
| [ Receptor A ] X, [ Receptor B ] X, i
S l _____________________________________________________________________ M _e_”JP_r?E‘?_i
[ Kinase C ] X; [ Kinase D ] X, [ Kinase E x5

1
Nucleus i
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Probabilistic Graphical Models, cece
con'd oo

a If Xi's are conditionally independent (as described by a PG&), the

joint can be factored to a product of simpler terms, e.qg.,
Receptor A X, X,

P(Xy, X,, X3, Xy, Xe, Xg, X7, Xg)

= P(Xy) P(X;) P(X;| Xy) P(X,| X,) P(Xq| Xy)
P(Xel X3, Xg) P(X7] Xg) P(Xg| Xs, Xo)

a Why we may favor a PGM?

» Representation cost: how many probability statements are needed?

2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28

= Algorithms for systematic and efficient inference/learning computation
* Exploring the graph structure and probabilistic (e.g., Bayesian, Markovian) semantics

= Incorporation of domain knowledge and causal (logical) structures
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Specification of a BN

e There are two components to any GM:

e the qualitative specification
e the quantitative specification
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Qualitative Specification

e Where does the qualitative specification come from?

e Prior knowledge of causal relationships

e Prior knowledge of modular relationships

e Assessment from experts

e Learning from data

e We simply link a certain architecture (e.g. a layered graph)
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Two types of GMs oo

e Directed edges give causality relationships (Bayesian
Network or Directed Graphical Model):

P(Xy, Xp, Xay Xgs Xe, Xgr X Xo)

= P(X;y) P(X3) P(Xs] Xy) P(X4] X5) P(Xs| Xy)
P(Xgl X3, X4) P(X7] Xg) P(Xg| X5, Xo)

e Undirected edges simply give correlations between
variables (Markov Random Field or Undirected Graphical

model):
P(Xq, Xy, X3, Xy, X, Xg, X7, Xg)
(o )% [
= UZ exp{E(X)+EX)+E (X5, X)+E(Xy, X)+E(Xs, X)) 7 )
+ E(Xg) Xg, Xg)+E(X, X)+E(Xg, Xs, Xo)} —
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Bayesian Network: 4+

e A BN is a directed graph whose nodes represent the random
variables and whose edges represent direct influence of one
variable on another.

e |tis a data structure that provides the skeleton for representing a
joint distribution compactly in a factorized way;

e |t offers a compact representation for a set of conditional
Independence assumptions about a distribution;

e \We can view the graph as encoding a generative sampling process
executed by nature, where the value for each variable is selected by
nature using a distribution that depends only on its parents. In other
words, each variable is a stochastic function of its parents.
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Bayesian Network: Factorization Theorem | ¢

e Theorem:

Given a DAG, The most general form of the probability
distribution that is consistent with the graph factors according
to “node given its parents™:
POX)=]]P(Xi1X,)
i=1.d
where X _is the set of parents of X;, d is the number of nodes
(variables) in the graph.

P(Xy, X5, X3, Xy, Xe, Xg, X7, Xg)

:> = P(Xy) P(Xp) P(X5| Xp) P(X,| X3) P(X5] X)
P(Xgl X3, X,) P(X7| Xg) P(Xg| X5, X¢)
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000
Bayesian Network: Conditional 555:
Independence Semantics oo
Structure: DAG R

« Meaning: a node is - -

conditionally independent
of every other node in the o a M

network outside its Markov

blanket yvbA
- C O >
* Local conditional Xy‘ﬂ‘

distributions (CPD) and the
DAG completely determine -

the joint dist. m \‘

- Children's co-parent ]

« Give causality
relationships, and facilitate
a generative process

Descendent
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Graph separation criterion .o

e D-separation criterion for Bayesian networks (D for Directed
edges):

Definition: variables x and y are D-separated (conditionally

independent) given z if they are separated in the moralized
ancestral graph

e Example:
Vv
L :
= z y = z Y
original graph ancestral moral ancestral
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Global Markov properties of cece
DAGS oo

e X is d-separated (directed-separated) from Z given Y if we can't
send a ball from any node in X to any node in Z using the "Bayes-
ball" algorithm illustrated bellow (and plus some boundary
conditions):

— « Defn: I(6)=all independence

%y Y properties that correspond to d-
separation:
A Q%A%
. ‘ x : 1(G) = {X LZ|¥ :dsep (X;Z]Y)]
(a) (b)
%v/o % /\/Q * D-separation is sound and
~Z/
'S O complete

(@) (b) © Eric Xing @ CMU, 2014 13



Towards quantitative specification of | sese
probability distribution oo

e Separation properties in the graph imply independence
properties about the associated variables

e Forthe graph to be useful, any conditional independence
properties we can derive from the graph should hold for the
probability distribution that the graph represents

e The Equivalence Theorem

For a graph G,

Let 9, denote the family of all distributions that satisfy 1(G),

Let 9, denote the family of all distributions that factor according to G,
Then 9,=9,.
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Example .

e Speech recognition

Coocepe: a xiogle word

JDWWM . OO

HHH e@@ o)
100000 s

Hidden Markov Model
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Knowledge Engineering

e Picking variables
e Observed
e Hidden

e Picking structure
e CAUSAL
e Generative

e Picking Probabilities
e Zero probabilities
e Orders of magnitudes
e Relative values

© Eric Xing @ CMU, 2014
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Example, con'd os

e Evolution

ancestor

T years

Tree Model
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Conditional probability tables

(CPTs)

0.75

0.25

0.33

0.67

P(@)P(b)P(c|a,b)P(d|c)

P(a,b,c.d) =

a%h0 aob’ a'bo a'b’
c? 0.45 1 0.9 0.7
c' 0.55 0 0.1 0.3
cO c'
d® (0.3 [0.5
d’ 07 |0.5
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Conditional probability density cece
func. (CPDs) oo

P(a,b,c.d) =
A~N(, £) B-~N(u,, £,) P(a)P(b)P(c|a,b)P(d|c)

AR
AL i
kN AN }\, /o |
o AN AN \\> . | SATET
NI VO ) J P
5 AT ) f k / Y \
SETTON A AT BTN
9 SRAT A Gathy e b
N8 ¢ i (A ! | \
¢ A \ J Y A P | y ;
\/\ A% Vi / Y L |
fo Ay SRR IR IR ST Vi
¥ ! \/ VRV VY Y Ll A AR RN
N A i i { ) Vo NN
S e Y \ \ N A / N / \1 N
< N \ \ / ) . : LN A
) g g k oy JANRN LR T T
Sy e y 5 A R ST
S s S YRR U A SV VN VN T S D
i A AL A O N i e =
LN NG T L S T = :

‘ D~N(u,+C, 2,) 5 C
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Conditionally Independent T
Observations oo

Model parameters

OS-D® o
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“Plate” Notation oo

‘ Model parameters
|

Data ={yy,...yn}

I=1:n

Plate = rectangle in graphical model

variables within a plate are replicated
In a conditionally independent manner

© Eric Xing @ CMU, 2014
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0000
0000
o000
Example: Gaussian Model -
‘ ’ Generative model:
\

PY1,---Yn | 1, O) =P p@yiln o)
= p(data | parameters)
= p(D |0)

1I=1:n where 0 = {u, o}
= Likelihood = p(data | parameters)
=p(D1]6)
=L (0)

= Likelihood tells us how likely the observed data are conditioned
on a particular setting of the parameters

= Often easier to work with log L ()
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Example: Bayesian Gaussian i
Model oo

© o0 ®

&

I=1:n

Note: priors and parameters are assumed independent here
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Markov Random Fields

Structure: an undirected

graph

« Meaning: a node is

conditionally independent of
every other node in the
network given its Directed
neighbors

Local contingency functions
(potentials) and the cliques in
the graph completely
determine the joint dist.

Give correlations between
variables, but no explicit way
to generate samples

© Eric Xing @ CMU, 2014
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Global Markov property o

e Let H be an undirected graph:

X4
X,

e B separates A and C if every path from a node in A to a node
in C passes through a node in B: sep,, (A;C|B)

e A probability distribution satisfies the global Markov property
if for any disjoint A, B, C, such that B separates A and C, A is
independent of C given B: I(H) = {AL C\B) :Sep, (A;C\B)}
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Representation -

e Defn: an undirected graphical model represents a distribution
P(X;,...,X,) defined by an undirected graph H, and a set of
positive potential functions y_ associated with cliques of H,

s.t.
P(Xg,eo i Xy) == HWC(X)

ceC
where Z is known as the partition functlon

Z = Z [[w.(x.)

X, ceC
e Also known as Markov Random Fields, Markov networks ...

e The potential function can be understood as an contingency
function of its arguments assigning "pre-probabilistic”" score of
their joint configuration.
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Cliques -

o For G={V,E}, a complete subgraph (clique) is a subgraph
G'={V'IV,E'IE} such that nodes in V' are fully interconnected

o A gmaximal) cligue is a complete subgraph s.t. any superset
V"EV'is not complete.

e A sub-clique is a not-necessarily-maximal clique.

2wws

e Example: e

e max-cliques = {A,B,D}, {B,C,D},
e sub-cliques = {A,B}, {C,D}, ...~ all edges and singletons
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Example UGM — using max i
cliques oo

2ws

1
P(X;, Xz, X3, X4) = 2‘//C(X124)><Wc (X234)

L = Z‘//c (X124) X W (X234) ! H

0 1
X1:X2,X3,X4

e For discrete nodes, we can represent P(X,.,) as two 3D tables
instead of one 4D table
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Example UGM — using subcliques | ¢

1
P(XI’XZ’X3’X4):?HWij(Xij) X"
]

1
= — Wi (Xp2)W 14 (X14 )W 23 (X23)W 24 (X2 )W 34 (X34)

/
L= Z H‘//ij(xij)

X1, X2, X3,Xq 1]

e For discrete nodes, we can represent P(X,.,) as 5 2D tables
instead of one 4D table
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Exponential Form -

e Constraining clique potentials to be positive could be inconvenient (e.g.,
the interactions between a pair of atoms can be either attractive or
repulsive). We represent a clique potential y(x.) in an unconstrained
form using a real-value "energy" function ¢,(x.):

Ve (Xc) =exp {_ ¢c (Xc)}
For convenience, we will call ¢,(x.) a potential when no confusion arises from the context.
e This gives the joint a nice additive strcuture

= Low|T4050] - Lowt- 0

ceC
where the sum in the exponent is called the "free energy":

H(x)=> ¢.(x,)
ceC
e In physics, this is called the "Boltzmann distribution”.
e |n statistics, this is called a log-linear model.
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Example: Boltzmann machines

2NpS

e A fully connected graph with pairwise (edge) potentials on

binary-valued nodes (for x; e {~1,+1}or x; € {0,1}) is called a
Boltzmann machine

P(X(, X5, X5, X4) = %exp Z¢ij(xi,xj)}

=%exp< D 0%, + Do, +C}
ij i
e Hence the overall energy function has the form:
H(x) = Zij (X = )0 (x; — 1) = (x— 1) O(x~ )

© Eric Xing @ CMU, 2014
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Example: Ising (spin-glass) T
models oo

e Nodes are arranged in a regular topology (often a regular
packing grid) and connected only to their geometric
neighbors.

e Same as sparse Boltzmann machine, where 6,=0 iff 1,j are
neighbors.

e e.g., nodes are pixels, potential function encourages nearby pixels to have similar
intensities.

e Potts model: multi-state Ising model.
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Example: Modeling Go

.= -
) IIII.-“ \
.‘ . . - «:. . s -

- ‘.'A..j ‘
a8 @&

@
R
.

.:
-8
x

| —— o

This is the middle position of a Go game.
Overlaid is the estimate for the probability of
becoming black or white for every intersection.
Large squares mean the probability is higher.
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GMs are your old friends

Density estimation

Parametric and nonparametric methods

Regression

Linear, conditional mixture, nonparametric

Classification

Generative and discriminative approach
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An
(incomplete)
genealogy
of graphical
models

SBN,
Boltzrmann
Machines

Cooperative

Quantization

Vector

(Picture by
Zoubin
Ghahramani and
Sam Rowels)

Mixture of
Gaussians

vaQ)

Mmix

Gaussian

red-dim

/

y HMM

Factorial HMM

red-dim

Mixture of
Factor Analyzers

Factor Analysis
(P CA)

/

nony
ICA

\

mixX - mixture

red-dim : reduced

dimension
dyn dynamics
aistrio . distriouteda

representatior

nonlin - nonlinear
switch : switching

Mixture of
HMMs

\

Switching
State-space
Models

Linear

Cynamical
Systemns (SSMs)

dyn )
Y nonlin
Nonlinear Nonli
Gaussian an |n<_:‘;ar
e Dynamical
i U, 2014 Systems

A
N‘

Mixture of
LDSs
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