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Multivariate Distribution in High-
D Space
 A possible world for cellular signal transduction: 
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What is a Graphical Model?
--- example from a signal transduction pathway

 A possible world for cellular signal transduction: 
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GM: Structure Simplifies 
Representation

 Dependencies among variables
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 If Xi's are conditionally independent (as described by a PGM), the 
joint can be factored to a product of simpler terms, e.g., 

 Why we may favor a PGM?
 Representation cost: how many probability statements are needed? 

 Algorithms for systematic and efficient inference/learning computation
• Exploring the graph structure and probabilistic (e.g., Bayesian, Markovian) semantics

 Incorporation of domain knowledge and causal (logical) structures

P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)

Probabilistic Graphical Models, 
con'd

2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28! 

Receptor A

Kinase C

TF F

Gene G Gene H

Kinase EKinase D

Receptor BX1 X2

X3 X4 X5

X6

X7 X8

Receptor A

Kinase C

TF F

Gene G Gene H

Kinase EKinase D

Receptor BX1 X2

X3 X4 X5

X6

X7 X8

X1 X2

X3 X4 X5

X6

X7 X8

© Eric Xing @ CMU, 2014 5



Specification of a BN
 There are two components to any GM:

 the qualitative specification
 the quantitative specification
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Qualitative Specification
 Where does the qualitative specification come from?

 Prior knowledge of causal relationships
 Prior knowledge of modular relationships
 Assessment from experts
 Learning from data
 We simply link a certain architecture (e.g. a layered graph) 
 …
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 Directed edges give causality relationships (Bayesian 
Network or Directed Graphical Model):

 Undirected edges simply give correlations between 
variables (Markov Random Field or Undirected Graphical 
model):

Two types of GMs
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P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)

P(X1, X2, X3, X4, X5, X6, X7, X8)

= 1/Z exp{E(X1)+E(X2)+E(X3, X1)+E(X4, X2)+E(X5, X2)
+ E(X6, X3, X4)+E(X7, X6)+E(X8, X5, X6)}
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Bayesian Network:
 A BN is a directed graph whose nodes represent the random 

variables and whose edges represent direct influence of one 
variable on another.

 It is a data structure that provides the skeleton for representing a 
joint distribution compactly in a factorized way;

 It offers a compact representation for a set of conditional 
independence assumptions about a distribution;

 We can view the graph as encoding a generative sampling process
executed by nature, where the value for each variable is selected by 
nature using a distribution that depends only on its parents. In other 
words, each variable is a stochastic function of its parents.
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Bayesian Network: Factorization Theorem

 Theorem: 
Given a DAG, The most general form of the probability 
distribution that is consistent with the graph factors according 
to “node given its parents”:

where      is the set of parents of Xi, d is the number of nodes 
(variables) in the graph.
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Structure: DAG

• Meaning: a node is 
conditionally independent
of every other node in the 
network outside its Markov 
blanket

• Local conditional 
distributions (CPD) and the 
DAG completely determine 
the joint dist. 

• Give causality
relationships, and facilitate 
a generative process

X

Y1 Y2

Descendent

Ancestor

Parent

Children's co-parentChildren's co-parent

Child

Bayesian Network: Conditional 
Independence Semantics
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Graph separation criterion
 D-separation criterion for Bayesian networks (D for Directed 

edges):

Definition: variables x and y are D-separated (conditionally 
independent) given z if they are separated in the moralized 
ancestral graph

 Example:
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Global Markov properties of 
DAGs
 X is d-separated (directed-separated) from Z given Y if we can't 

send a ball from any node in X to any node in Z using the "Bayes-
ball" algorithm illustrated bellow (and plus some boundary 
conditions):

• Defn: I(G)all independence 
properties that correspond to d-
separation:

• D-separation is sound and 
complete

 );(dsep:)(I YZXYZXG G
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Towards quantitative specification of 
probability distribution

 Separation properties in the graph imply independence 
properties about the associated variables

 For the graph to be useful, any conditional independence 
properties we can derive from the graph should hold for the 
probability distribution that the graph represents

 The Equivalence Theorem
For a graph G,
Let D1 denote the family of all distributions that satisfy I(G),
Let D2 denote the family of all distributions that factor according to G,
Then D1≡D2.
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Example

A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... 

Hidden Markov Model

 Speech recognition
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Knowledge Engineering
 Picking variables

 Observed
 Hidden

 Picking structure
 CAUSAL 
 Generative 

 Picking Probabilities
 Zero probabilities
 Orders of magnitudes
 Relative values 
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AGAGAC

Tree Model

Example, con'd
 Evolution
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a0 0.75
a1 0.25

b0 0.33
b1 0.67

a0b0 a0b1 a1b0 a1b1

c0 0.45 1 0.9 0.7
c1 0.55 0 0.1 0.3

A B

C

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

D
c0 c1

d0 0.3 0.5
d1 07 0.5

Conditional probability tables 
(CPTs)
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A B

C

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

D

A~N(μa, Σa) B~N(μb, Σb)

C~N(A+B, Σc)

D~N(μa+C, Σa)
D

C

P(
D
| 
C)

Conditional probability density 
func. (CPDs)
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Conditionally Independent 
Observations

y1



Data

Model parameters

y2 yn-1 yn
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“Plate” Notation

yi

i=1:n



Data = {y1,…yn}

Model parameters

Plate = rectangle in graphical model

variables within a plate are replicated
in a conditionally independent manner
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Example: Gaussian Model

yi

i=1:n

 Generative model:   

p(y1,…yn | , ) = P p(yi | , )
=   p(data | parameters)
=   p(D  | )     

where  = {, }



 Likelihood = p(data | parameters) 
= p( D |  ) 
= L () 

 Likelihood tells us how likely the observed data are conditioned 
on a particular setting of the parameters
 Often easier to work with log L () 
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Example: Bayesian Gaussian 
Model

yi

i=1:n



Note: priors and parameters are assumed independent here

 

© Eric Xing @ CMU, 2014 23



Structure: an undirected 
graph

• Meaning: a node is 
conditionally independent of 
every other node in the 
network given its Directed 
neighbors

• Local contingency functions 
(potentials) and the cliques in 
the graph completely 
determine the joint dist. 

• Give correlations between 
variables, but no explicit way 
to generate samples

X

Y1 Y2

Markov Random Fields
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Global Markov property
 Let H be an undirected graph:

 B separates A and C if every path from a node in A to a node 
in C passes through a node in B:

 A probability distribution satisfies the global Markov property
if for any disjoint A, B, C, such that B separates A and C, A is 
independent of C given B:

);(sep BCAH

 );(sep:))(I BCABCAH H
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Representation
 Defn: an undirected graphical model represents a distribution 

P(X1 ,…,Xn) defined by an undirected graph H, and a set of 
positive potential functions yc associated with cliques of H, 
s.t.

where Z is known as the partition function:

 Also known as Markov Random Fields, Markov networks …
 The potential function can be understood as an contingency 

function of its arguments assigning "pre-probabilistic" score of 
their joint configuration.   



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Cc
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Cliques
 For G={V,E}, a complete subgraph (clique) is a subgraph 

G'={V'ÍV,E'ÍE} such that nodes in V' are fully interconnected
 A (maximal) clique is a complete subgraph s.t. any superset 

V"ÉV' is not complete.
 A sub-clique is a not-necessarily-maximal clique.

 Example: 
 max-cliques = {A,B,D}, {B,C,D}, 
 sub-cliques = {A,B}, {C,D}, … all edges and singletons 

A

C

D B
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Example UGM – using max 
cliques 

 For discrete nodes, we can represent P(X1:4) as two 3D tables 
instead of one 4D table

A

C

D B

)()(),,,( 2341244321
1 xx ccZ

xxxxP  
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Example UGM – using subcliques 

 For discrete nodes, we can represent P(X1:4) as 5 2D tables 
instead of one 4D table
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D B
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Exponential Form
 Constraining clique potentials to be positive could be inconvenient (e.g., 

the interactions between a pair of atoms can be either attractive or 
repulsive). We represent a clique potential c(xc)  in an unconstrained 
form using a real-value "energy" function c(xc):

For convenience, we will call c(xc) a potential when no confusion arises from the context.

 This gives the joint a nice additive strcuture

where the sum in the exponent is called the "free energy":

 In physics, this is called the "Boltzmann distribution".
 In statistics, this is called a log-linear model.

 )(exp)( cccc xx  

 )(exp)(exp)( xxx H
ZZ

p
Cc

cc 







 



11 





Cc

ccH )()( xx 

© Eric Xing @ CMU, 2014 30



Example: Boltzmann machines

 A fully connected graph with pairwise (edge) potentials on 
binary-valued nodes (for                                  ) is called a 
Boltzmann machine

 Hence the overall energy function has the form:
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Example: Ising (spin-glass) 
models
 Nodes are arranged in a regular topology (often a regular 

packing grid) and connected only to their geometric 
neighbors.

 Same as sparse Boltzmann machine, where ij0 iff i,j are 
neighbors.
 e.g., nodes are pixels, potential function encourages nearby pixels to have similar 

intensities.

 Potts model: multi-state Ising model.
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Example: Modeling Go
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Density estimation

Regression

Classification

Parametric and nonparametric  methods

Linear, conditional mixture, nonparametric

Generative and discriminative approach

Q

X

Q

X

X Y

m,s

X X

GMs are your old friends
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(Picture by 
Zoubin 
Ghahramani and 
Sam Roweis)

An 
(incomplete) 

genealogy 
of graphical 

models
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