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Multivariate Distribution in High-
D Space
 A possible world for cellular signal transduction: 
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What is a Graphical Model?
--- example from a signal transduction pathway

 A possible world for cellular signal transduction: 
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GM: Structure Simplifies 
Representation

 Dependencies among variables
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 If Xi's are conditionally independent (as described by a PGM), the 
joint can be factored to a product of simpler terms, e.g., 

 Why we may favor a PGM?
 Representation cost: how many probability statements are needed? 

 Algorithms for systematic and efficient inference/learning computation
• Exploring the graph structure and probabilistic (e.g., Bayesian, Markovian) semantics

 Incorporation of domain knowledge and causal (logical) structures

P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)

Probabilistic Graphical Models, 
con'd

2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28! 
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Specification of a BN
 There are two components to any GM:

 the qualitative specification
 the quantitative specification
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Qualitative Specification
 Where does the qualitative specification come from?

 Prior knowledge of causal relationships
 Prior knowledge of modular relationships
 Assessment from experts
 Learning from data
 We simply link a certain architecture (e.g. a layered graph) 
 …
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 Directed edges give causality relationships (Bayesian 
Network or Directed Graphical Model):

 Undirected edges simply give correlations between 
variables (Markov Random Field or Undirected Graphical 
model):

Two types of GMs
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P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)

P(X1, X2, X3, X4, X5, X6, X7, X8)

= 1/Z exp{E(X1)+E(X2)+E(X3, X1)+E(X4, X2)+E(X5, X2)
+ E(X6, X3, X4)+E(X7, X6)+E(X8, X5, X6)}
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Bayesian Network:
 A BN is a directed graph whose nodes represent the random 

variables and whose edges represent direct influence of one 
variable on another.

 It is a data structure that provides the skeleton for representing a 
joint distribution compactly in a factorized way;

 It offers a compact representation for a set of conditional 
independence assumptions about a distribution;

 We can view the graph as encoding a generative sampling process
executed by nature, where the value for each variable is selected by 
nature using a distribution that depends only on its parents. In other 
words, each variable is a stochastic function of its parents.
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Bayesian Network: Factorization Theorem

 Theorem: 
Given a DAG, The most general form of the probability 
distribution that is consistent with the graph factors according 
to “node given its parents”:

where      is the set of parents of Xi, d is the number of nodes 
(variables) in the graph.
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Structure: DAG

• Meaning: a node is 
conditionally independent
of every other node in the 
network outside its Markov 
blanket

• Local conditional 
distributions (CPD) and the 
DAG completely determine 
the joint dist. 

• Give causality
relationships, and facilitate 
a generative process

X

Y1 Y2

Descendent

Ancestor

Parent

Children's co-parentChildren's co-parent

Child

Bayesian Network: Conditional 
Independence Semantics
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Graph separation criterion
 D-separation criterion for Bayesian networks (D for Directed 

edges):

Definition: variables x and y are D-separated (conditionally 
independent) given z if they are separated in the moralized 
ancestral graph

 Example:
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Global Markov properties of 
DAGs
 X is d-separated (directed-separated) from Z given Y if we can't 

send a ball from any node in X to any node in Z using the "Bayes-
ball" algorithm illustrated bellow (and plus some boundary 
conditions):

• Defn: I(G)all independence 
properties that correspond to d-
separation:

• D-separation is sound and 
complete

 );(dsep:)(I YZXYZXG G
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Towards quantitative specification of 
probability distribution

 Separation properties in the graph imply independence 
properties about the associated variables

 For the graph to be useful, any conditional independence 
properties we can derive from the graph should hold for the 
probability distribution that the graph represents

 The Equivalence Theorem
For a graph G,
Let D1 denote the family of all distributions that satisfy I(G),
Let D2 denote the family of all distributions that factor according to G,
Then D1≡D2.

© Eric Xing @ CMU, 2014 14



Example

A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... 

Hidden Markov Model

 Speech recognition
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Knowledge Engineering
 Picking variables

 Observed
 Hidden

 Picking structure
 CAUSAL 
 Generative 

 Picking Probabilities
 Zero probabilities
 Orders of magnitudes
 Relative values 
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AGAGAC

Tree Model

Example, con'd
 Evolution
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a0 0.75
a1 0.25

b0 0.33
b1 0.67

a0b0 a0b1 a1b0 a1b1

c0 0.45 1 0.9 0.7
c1 0.55 0 0.1 0.3

A B

C

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

D
c0 c1

d0 0.3 0.5
d1 07 0.5

Conditional probability tables 
(CPTs)
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A B

C

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

D

A~N(μa, Σa) B~N(μb, Σb)

C~N(A+B, Σc)

D~N(μa+C, Σa)
D

C

P(
D
| 
C)

Conditional probability density 
func. (CPDs)
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Conditionally Independent 
Observations

y1



Data

Model parameters

y2 yn-1 yn
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“Plate” Notation

yi

i=1:n



Data = {y1,…yn}

Model parameters

Plate = rectangle in graphical model

variables within a plate are replicated
in a conditionally independent manner
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Example: Gaussian Model

yi

i=1:n

 Generative model:   

p(y1,…yn | , ) = P p(yi | , )
=   p(data | parameters)
=   p(D  | )     

where  = {, }



 Likelihood = p(data | parameters) 
= p( D |  ) 
= L () 

 Likelihood tells us how likely the observed data are conditioned 
on a particular setting of the parameters
 Often easier to work with log L () 
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Example: Bayesian Gaussian 
Model

yi

i=1:n



Note: priors and parameters are assumed independent here
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Structure: an undirected 
graph

• Meaning: a node is 
conditionally independent of 
every other node in the 
network given its Directed 
neighbors

• Local contingency functions 
(potentials) and the cliques in 
the graph completely 
determine the joint dist. 

• Give correlations between 
variables, but no explicit way 
to generate samples

X

Y1 Y2

Markov Random Fields

© Eric Xing @ CMU, 2014 24



Global Markov property
 Let H be an undirected graph:

 B separates A and C if every path from a node in A to a node 
in C passes through a node in B:

 A probability distribution satisfies the global Markov property
if for any disjoint A, B, C, such that B separates A and C, A is 
independent of C given B:

);(sep BCAH

 );(sep:))(I BCABCAH H
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Representation
 Defn: an undirected graphical model represents a distribution 

P(X1 ,…,Xn) defined by an undirected graph H, and a set of 
positive potential functions yc associated with cliques of H, 
s.t.

where Z is known as the partition function:

 Also known as Markov Random Fields, Markov networks …
 The potential function can be understood as an contingency 

function of its arguments assigning "pre-probabilistic" score of 
their joint configuration.   
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Cliques
 For G={V,E}, a complete subgraph (clique) is a subgraph 

G'={V'ÍV,E'ÍE} such that nodes in V' are fully interconnected
 A (maximal) clique is a complete subgraph s.t. any superset 

V"ÉV' is not complete.
 A sub-clique is a not-necessarily-maximal clique.

 Example: 
 max-cliques = {A,B,D}, {B,C,D}, 
 sub-cliques = {A,B}, {C,D}, … all edges and singletons 

A

C

D B
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Example UGM – using max 
cliques 

 For discrete nodes, we can represent P(X1:4) as two 3D tables 
instead of one 4D table

A

C

D B

)()(),,,( 2341244321
1 xx ccZ

xxxxP  

 
4321

234124
xxxx

ccZ
,,,

)()( xx 

© Eric Xing @ CMU, 2014 28



Example UGM – using subcliques 

 For discrete nodes, we can represent P(X1:4) as 5 2D tables 
instead of one 4D table
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Exponential Form
 Constraining clique potentials to be positive could be inconvenient (e.g., 

the interactions between a pair of atoms can be either attractive or 
repulsive). We represent a clique potential c(xc)  in an unconstrained 
form using a real-value "energy" function c(xc):

For convenience, we will call c(xc) a potential when no confusion arises from the context.

 This gives the joint a nice additive strcuture

where the sum in the exponent is called the "free energy":

 In physics, this is called the "Boltzmann distribution".
 In statistics, this is called a log-linear model.
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Example: Boltzmann machines

 A fully connected graph with pairwise (edge) potentials on 
binary-valued nodes (for                                  ) is called a 
Boltzmann machine

 Hence the overall energy function has the form:
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Example: Ising (spin-glass) 
models
 Nodes are arranged in a regular topology (often a regular 

packing grid) and connected only to their geometric 
neighbors.

 Same as sparse Boltzmann machine, where ij0 iff i,j are 
neighbors.
 e.g., nodes are pixels, potential function encourages nearby pixels to have similar 

intensities.

 Potts model: multi-state Ising model.
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Example: Modeling Go
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Density estimation

Regression

Classification

Parametric and nonparametric  methods

Linear, conditional mixture, nonparametric

Generative and discriminative approach

Q

X

Q

X

X Y

m,s

X X

GMs are your old friends
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(Picture by 
Zoubin 
Ghahramani and 
Sam Roweis)

An 
(incomplete) 

genealogy 
of graphical 

models

© Eric Xing @ CMU, 2014 35


