Advanced Introduction to Machine Learning

10715, Fall 2014

Intro to Graphical Models

Eric Xing Lecture 13, October 15, 2014

Multivariate Distribution in High-D Space

A possible world for cellular signal transduction:

What is a Graphical Model?

--example from a signal transduction pathway

A possible world for cellular signal transduction:

GM: Structure Simplifies Representation

Dependencies among variables

Probabilistic Graphical Models, con'd

 \Box **If** *Xi***'s are conditionally independent (as described by a PGM), the joint can be factored to a product of simpler terms, e.g.,**

 $P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8)$ $= P(X_1) P(X_2) P(X_3 | X_1) P(X_4 | X_2) P(X_5 | X_2)$ $P(X_6|X_3, X_4) P(X_7|X_6) P(X_8|X_5, X_6)$

\Box **Why we may favor a PGM?**

Representation cost: how many probability statements are needed?

2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28!

- **Algorithms for systematic and efficient inference/learning computation**
	- **Exploring the graph structure and probabilistic (e.g., Bayesian, Markovian) semantics**
- **Incorporation of domain knowledge and causal (logical) structures**

Specification of a BN

- There are two components to any GM:
	- \bullet the *qualitative* specification
	- \bullet the *quantitative* specification

Qualitative Specification

- Where does the qualitative specification come from?
	- \bullet Prior knowledge of causal relationships
	- \bullet Prior knowledge of modular relationships
	- \bullet Assessment from experts
	- \bullet Learning from data
	- \bullet We simply link a certain architecture (e.g. a layered graph)
	- \bullet …

Two types of GMs

 Directed edges give causality relationships (Bayesian Network or Directed Graphical Model):

 $= P(X_1) P(X_2) P(X_3 | X_1) P(X_4 | X_2) P(X_5 | X_2)$ $P(X_6|X_3, X_4) P(X_7|X_6) P(X_8|X_5, X_6)$

 Undirected edges simply give correlations between variables (Markov Random Field or Undirected Graphical model): $P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8)$
 $P(X_1) P(X_2) P(X_3|X_1) P(X_4|X_2) P(X_5|X_2)$
 $P(X_6|X_3, X_4) P(X_7|X_6) P(X_8|X_5, X_6)$
 directed edges simply give correlations be
 iables (Markov Random Field or Undirected edge):

 $P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8)$

$$
= 1/Z \exp{E(X_1) + E(X_2) + E(X_3, X_1) + E(X_4, X_2) + E(X_5, X_2)} + E(X_6, X_3, X_4) + E(X_7, X_6) + E(X_8, X_5, X_6)
$$

Bayesian Network:

- A BN is a directed graph whose nodes represent the random variables and whose edges represent direct influence of one variable on another.
- It is a data structure that provides the skeleton for representing **^a joint distribution** compactly in a **factorized** way;
- **•** It offers a compact representation for **a set of conditional independence assumptions** about a distribution;
- We can view the graph as encoding a generative sampling process executed by nature, where the value for each variable is selected by nature using a distribution that depends only on its parents. In other words, each variable is a stochastic function of its parents.

Bayesian Network: Factorization Theorem

 \bullet **Theorem:**

> Given a DAG, The most general form of the probability distribution that is consistent with the graph factors according to "node given its parents":

$$
P(\mathbf{X}) = \prod_{i=1:d} P(X_i | \mathbf{X}_{\pi_i})
$$

where \mathbf{X}_{π_i} is the set of parents of X_i , d is the number of nodes (variables) in the graph.

Bayesian Network: Conditional Independence Semantics

Structure: *DAG*

- **Meaning: a node is conditionally independent of every other node in the network outside its Markov blanket**
- **Local conditional distributions (CPD) and the DAG completely determine the joint dist.**
- **Give causality relationships, and facilitate a generative process**

Graph separation criterion

 \bullet D-separation criterion for Bayesian networks (D for Directed edges):

Definition: variables x and y are *D-separated* (conditionally independent) given z if they are separated in the *moralized* ancestral graph

Global Markov properties of DAGs

 X is **d-separated** (directed-separated) from Z given Y if we can't send a ball from any node in X to any node in Z using the "*Bayesball*" algorithm illustrated bellow (and plus some boundary conditions):

• **Defn:** *I***(** *G***) all independence properties that correspond to dseparation:**

$$
I(G) = \{ X \perp Z | Y : \text{dsep}_G(X; Z | Y) \}
$$

• **D-separation is sound and complete**

Towards quantitative specification of probability distribution

- Separation properties in the graph imply independence properties about the associated variables
- For the graph to be useful, any conditional independence properties we can derive from the graph should hold for the probability distribution that the graph represents

The Equivalence Theorem

For a graph G,

Let \mathcal{D}_1 denote the family of all distributions that satisfy I(G),

Let \mathcal{D}_2 denote the family of all distributions that factor according to G, Then \mathcal{D}_1 ≡ \mathcal{D}_2 .

Example

• Speech recognition

Hidden Markov Model

Knowledge Engineering

Picking variables

- \bullet **Observed**
- \bullet **Hidden**

Picking structure

- \bullet **CAUSAL**
- \bullet **Generative**

Picking Probabilities

- \bullet **Zero probabilities**
- \bullet **Orders of magnitudes**
- \bullet **Relative values**

Example, con'd

• Evolution

Tree Model

Conditional probability tables (CPTs)

Conditional probability density func. (CPDs)

Conditionally Independent Observations

"Plate" Notation θ **Model parameters**

Plate = rectangle in graphical model

yi

variables within a plate are replicated in a conditionally independent manner

i=1:n

Example: Gaussian Model

Fig. 3 Generative model:

$$
p(y_1,...y_n | \mu, \sigma) = P p(y_i | \mu, \sigma)
$$

= p(data | parameters)
= p(D | \theta)
where $\theta = {\mu, \sigma}$

- $\mathcal{L}_{\mathcal{A}}$ **Likelihood = p(data | parameters)** $= p(D | \theta)$ $= L(\theta)$
- $\mathcal{L}_{\mathcal{A}}$ **Likelihood tells us how likely the observed data are conditioned on a particular setting of the parameters**
	- **Often easier to work with log L** (θ)

Example: Bayesian Gaussian Model

Note: priors and parameters are assumed independent here

Markov Random Fields

Structure: an *undirected graph*

- **Meaning: a node is conditionally independent of every other node in the network given its Directed neighbors**
- **Local contingency functions (potentials) and the cliques in the graph completely determine the joint dist.**
- **Give correlations between variables, but no explicit way to generate samples**

Global Markov property

Let *H* be an undirected graph:

- *B separates A* and *C* if every path from a node in *A* to a node in *C* passes through a node in *B*: $\,\,\mathop{\mathrm{sep}}\nolimits_{H}(A;C|B)$
- A probability distribution satisfies the *global Markov property* if for any disjoint *A*, *B*, *C*, such that *B* separates *A* and *C*, *A* is $\left\{ A \perp C \middle| B \right\}$: $\sup_{H} (A; C | B)$

Representation

 Defn: an undirected graphical model represents a distribution $P(X_1,...,X_n)$ defined by an undirected graph *H*, and a set of positive **potential functions** y_{c} associated with cliques of H, s.t.

$$
P(x_1, \ldots, x_n) = \frac{1}{Z} \prod_{c \in C} \psi_c(\mathbf{x}_c)
$$

where *Z* is known as the partition function:

$$
Z = \sum_{x_1,\ldots,x_n} \prod_{c \in C} \psi_c(\mathbf{x}_c)
$$

- \bullet Also known as Markov Random Fields, Markov networks …
- \bullet The *potential function* can be understood as an contingency function of its arguments assigning "pre-probabilistic" score of their joint configuration.

Cliques

- For *G*={*V*,*E*}, a complete subgraph (clique) is a subgraph *G'*={*V'*Í*V*,*E'*Í*E*} such that nodes in *V'* are fully interconnected
- A (maximal) clique is a complete subgraph s.t. any superset *V"*É*V'* is not complete.
- \bullet A sub-clique is a not-necessarily-maximal clique.

- **•** Example:
	- \bullet max-cliques = {*A*,*B*,*D*}, {*B*,*C*,*D*},
	- \bullet sub-cliques = $\{A, B\}$, $\{C, D\}$, $\ldots \rightarrow$ all edges and singletons

Example UGM – using max cliques

 For discrete nodes, we can represent *P*(*X*1:4) as two 3D tables instead of one 4D table

Example UGM – using subcliques ABDC \mathcal{X} 1 $\frac{1}{\pi} \prod \psi_{ii}(\mathbf{x})$ $=\frac{1}{Z}\prod_{ij}\psi_{ij}(\mathbf{x}_{ij})$ $P(x_1, x_2, x_3, x_4)$ $(x_1, x_2, x_3, x_4) = \frac{1}{7}$ $\psi_{ij}(\mathbf{x}_{ij})$ x_2 ⁰ *Z ij* $\frac{1}{2}\psi_{12}(\mathbf{x}_{12})\psi_{14}(\mathbf{x}_{14})\psi_{23}(\mathbf{x}_{23})\psi_{24}(\mathbf{x}_{24})\psi_{34}(\mathbf{x}_{12})$ $_{12}$ (**x**₁₂) ψ ₁₄ (**x**₁₄) ψ ₂₃ (**x**₂₃) ψ ₂₄ (**x**₂₄) ψ ₃₄ (**x**₃₄) Ξ *Z* $Z = \sum_{ij} \prod_{ij} \psi_{ij}(\mathbf{x}_{ij})$ x_1, x_2, x_3, x_4 *ij*

 For discrete nodes, we can represent *P*(*X*1:4) as 5 2D tables instead of one 4D table

Exponential Form

 \bullet Constraining clique potentials to be positive could be inconvenient (e.g., the interactions between a pair of atoms can be either attractive or repulsive). We represent a clique potential $\psi_\text{c}(\mathbf{x}_\text{c})$ in an unconstrained form using a real-value "energy" function $\phi_\text{c}(\textbf{x}_\text{c})$:

$$
\psi_c(\mathbf{x}_c) = \exp\{-\phi_c(\mathbf{x}_c)\}
$$

For convenience, we will call $\phi_\mathrm{c}(\mathrm{x}_\mathrm{c})$ a potential when no confusion arises from the context.

0 This gives the joint a nice additive strcuture

$$
p(\mathbf{x}) = \frac{1}{Z} \exp \left\{-\sum_{c \in C} \phi_c(\mathbf{x}_c)\right\} = \frac{1}{Z} \exp \left\{-H(\mathbf{x})\right\}
$$

where the sum in the exponent is called the "free energy":

$$
H(\mathbf{x}) = \sum_{c \in C} \phi_c(\mathbf{x}_c)
$$

- \bullet • In physics, this is called the "Boltzmann distribution".
- \bullet In statistics, this is called a log-linear model.

Example: Boltzmann machines

 A fully connected graph with pairwise (edge) potentials on binary-valued nodes (for $\boldsymbol{\mathsf{x}}_i \in \{-1, +1\}$ or $\boldsymbol{\mathsf{x}}_i \in \{\mathsf{0,1}\})$ is called a Boltzmann machine $\{-1,+1\}$ or $\mathcal{X}_i \in \{0,1\}$

$$
P(x_1, x_2, x_3, x_4) = \frac{1}{Z} \exp \left\{ \sum_{ij} \phi_{ij} (x_i, x_j) \right\}
$$

=
$$
\frac{1}{Z} \exp \left\{ \sum_{ij} \theta_{ij} x_i x_j + \sum_i \alpha_i x_i + C \right\}
$$

• Hence the overall energy function has the form:

$$
H(x) = \sum_{ij} (x_i - \mu)\Theta_{ij}(x_j - \mu) = (x - \mu)^T \Theta(x - \mu)
$$

 \oslash Eric Xing \oslash CMU, 2014 \oslash 31

Example: Ising (spin-glass) models

• Nodes are arranged in a regular topology (often a regular packing grid) and connected only to their geometric neighbors.

- \bullet Same as sparse Boltzmann machine, where θ_{ij} ≠0 iff *i,j* are neighbors.
	- \bullet e.g., nodes are pixels, potential function encourages nearby pixels to have similar **intensities**
- Potts model: multi-state Ising model.

Example: Modeling Go

This is the middle position of a Go game. Overlaid is the estimate for the probability of becoming black or white for every intersection. Large squares mean the probability is higher.

GMs are your old friends

Density estimation

Parametric and nonparametric methods

Regression

Linear, conditional mixture, nonparametric

Classification

Generative and discriminative approach

