Advanced Introduction to Machine Learning

10715, Fall 2014

Nonparametric Bayesian Models

--Learning/Reasoning in Open Possible Worlds

Eric Xing Lecture 19, November 12, 2014

Reading: © Eric Xing @ CMU, 2014

Clustering

Image Segmentation

- How to segment images?
 - Manual segmentation (very expensive)
 - Algorithm segmentation
 - K-means
 - Statistical mixture models
 - Spectral clustering
- Problems with most existing algorithms
 - Ignore the spatial information
 - Perform the segmentation one image at a time
 - Need to specify the number of segments *a priori*

Object Recognition and Tracking

The Evolution of Science

A Classical Approach

• Then "model selection"

Model Selection vs. Posterior Inference

- Model selection
 - "intelligent" guess: ???
 - cross validation: data-hungry ⊗
 - information theoretic:
 - AIC
 - TIC
 - MDL :
 - Bayes factor:

- arg min $KL(f(\cdot) | g(\cdot | \hat{\theta}_{ML}, K))$ Parsimony Ockam's Pazor
- Parsimony, Ockam's Razor need to compute data likelihood
- Posterior inference:

we want to handle uncertainty of model complexity explicitly

 $p(M \mid D) \propto p(D \mid M)p(M)$

$$\boldsymbol{M} \equiv \left\{ \boldsymbol{\theta}, \boldsymbol{K} \right\}$$

• we favor a distribution that does not constrain *M* in a "closed" space!

Outline

- Motivation and challenge
- Dirichlet Process and Infinite Mixture
 - Formulation
 - Approximate Inference algorithm
 - Example: population clustering

• Hierarchical Dirichlet Process and Multi-Task Clustering

- Formulation
- Application: joint multiple population clusteri

• Dynamic Dirichlet Process

- Temporal DPM
- Application: evolutionary clustering of documents

• Summary

Clustering

- How to label them ?
- How many clusters ???

Random Partition of Probability Space

Dirichlet Process

• A *CDF*, *G*, on possible worlds of random partitions follows a Dirichlet Process if for any measurable finite partition $(\phi_1, \phi_2, ..., \phi_m)$:

 $(G(\phi_1), G(\phi_2), ..., G(\phi_m)) \sim$ Dirichlet($\alpha G_0(\phi_1), ..., \alpha G0(\phi_m)$)

where G_0 is the base measure and α is the scale parameter

Thus a Dirichlet Process G defines a distribution of distribution

Stick-breaking Process

Chinese Restaurant Process

CRP defines an exchangeable distribution on partitions over an (infinite) sequence of samples, such a distribution is formally known as the Dirichlet Process (DP)

© Eric Xing @ CMU, 2014

Graphical Model Representations of DP

 $\begin{array}{c} & & & & & & \\ & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ &$

The CRP construction

The Stick-breaking construction

Ancestral Inference

Essentially a clustering problem, but ...

- Better recovery of the ancestors leads to better haplotyping results (because of more accurate grouping of common haplotypes)
- True haplotypes are obtainable with high cost, but they can validate model more subjectively (as opposed to examining saliency of clustering)
- Many other biological/scientific utilities © Eric Xing @ CMU, 2014

Example: DP-haplotyper [Xing et al, 2004]

• Clustering human populations

- Inference: Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis Hasting

The DP Mixture of Ancestral Haplotypes

- The customers around a table in CRP form a cluster
 - associate a mixture component (*i.e.*, a population haplotype) with a table
 - sample $\{a, \theta\}$ at each table from a base measure G_0 to obtain the population haplotype and nucleotide substitution frequency for that component

$$\begin{array}{c|c} \left\{A,\theta\right\} & \left\{A,\theta\right$$

 With p(h/{A, θ}) and p(g/h₁,h₂), the CRP yields a posterior distribution on the number of population haplotypes (and on the haplotype configurations and the nucleotide substitution frequencies)

Inheritance and Observation Models

MCMC for Haplotype Inference

- Gibbs sampling for exploring the posterior distribution under the proposed model
 - Integrate out the parameters such as θ or λ , and sample c_{i_e} , a_k and h_{i_e}

$$p(c_{i_e} = k | \mathbf{c}_{[-i_e]}, \mathbf{h}, \mathbf{a}) \propto p(c_{i_e} = k | \mathbf{c}_{[-i_e]}) p(h_{i_e} | a_{k,} \mathbf{h}_{[-i_e]}, \mathbf{c})$$
Posterior
Prior x Likelihood
CRP

• Gibbs sampling algorithm: draw samples of each random variable to be sampled given values of all the remaining variables

MCMC for Haplotype Inference

2. Sample a_k from $p(a_{k,t}|\mathbf{c},\mathbf{h}) \propto \prod_{\substack{j,i_e \mid c_{i_e,t}^{(j)} = k}} p(h_{i_e,t}^{(j)}|a_{k,t}, l_{k,t}^{(j)})$ $= \frac{\Gamma(\alpha_h + l_{k,t})\Gamma(\beta_h + l_{k,t}')}{\Gamma(\alpha_h + \beta_h + m_k)(|B| - 1)^{l_{k,t}'}} R(\alpha_h, \beta_h)$

3. Sample $h_{ie}^{(j)}$ from $p(h_{i_e,t}^{(j)}|\mathbf{h}_{[-i_e,t]}^{(j)}, \mathbf{c}, \mathbf{a}, \mathbf{g})$

• For DP scale parameter α : a vague inverse Gamma prior

© Eric Xing @ CMU, 2014

Convergence of Ancestral Inference

DP vs. Finite Mixture via EM

Outline

- Motivation and challenge
- Dirichlet Process and Infinite Mixture
 - Formulation
 - Approximate Inference algorithm
 - Example: population clustering

• Hierarchical Dirichlet Process and Multi-Task Clustering

- Formulation
- Application: joint multiple population clustering

• Dynamic Dirichlet Process

- Temporal DPM
- Application: evolutionary clustering of documents

• Summary

Multi-population Genetic Demography

- Pool everything together and solve 1 hap problem?
 - --- ignore population structures
- Solve 4 hap problems separately?
 - --- data fragmentation
- Co-clustering ... solve 4 *coupled* hap problems jointly

Hierarchical Dirichlet Process

[Teh et al., 2005, Xing et al. 2005]

• Two level Pólya urn scheme

• At the *i*-th step in *j*-th "group",

Results - Simulated Data

- 5 populations with 20 individuals each (two kinds of mutation rates)
- 5 populations share parts of their ancestral haplotypes
- the sequence length = 10

Haplotype error

Results - International HapMap DB

• Different sample sizes, and different # of sub-populations

Topic Models for Images

Infinite Topic Model for Image

Outline

- Motivation and challenge
- Dirichlet Process and Infinite Mixture
 - Formulation
 - Approximate Inference algorithm
 - Example: population clustering
- Hierarchical Dirichlet Process and Multi-Task Clustering
 - Formulation
 - Application: joint multiple population clustering
- Dynamic Dirichlet Process
 - Temporal DPM
 - Application: evolutionary clustering of documents

• Summary

Evolutionary Clustering

- Adapts the number of mixture components over time
 - Mixture components can die out
 - New mixture components are born at any time
 - Retained mixture components parameters evolve according to a Markovian dynamics

Temporal DPM [Ahmed and Xing 2008]

• The Recurrent Chinese Restaurant Process

- The restaurant operates in epochs
- The restaurant is closed at the end of each epoch
- The state of the restaurant at time epoch *t* depends on that at time epoch *t*-1
 - Can be extended to higher-order dependencies.

© Eric Xing @ CMU, 2014

Summary

• A non-parametric Bayesian model for Pattern Uncovery

- Finite mixture model of latent patterns (e.g., image segments, objects)
 - \rightarrow infinite mixture of propotypes: alternative to model selection
 - \rightarrow hierarchical infinite mixture
 - \rightarrow temporal infinite mixture model

• Applications in general data-mining ...

Shortcomings of Hidden Markov Model

- HMM models capture dependences between each state and only its corresponding observation
 - NLP example: In a sentence segmentation task, each segmental state may depend not just on a single word (and the adjacent segmental stages), but also on the (non-local) features of the whole line such as line length, indentation, amount of white space, etc.
- Mismatch between learning objective function and prediction objective function
 - HMM learns a joint distribution of states and observations P(Y, X), but in a prediction task, we need the conditional probability P(Y|X)