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Clustering
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Image Segmentation
 How to segment images?

 Manual segmentation (very expensive)
 Algorithm segmentation

 K-means
 Statistical mixture models
 Spectral clustering

 Problems with most existing 
algorithms
 Ignore the spatial information
 Perform the segmentation one image at 

a time
 Need to specify the number of segments 

a priori
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Object Recognition and Tracking

t=1 t=2 t=3

(1.8, 7.4, 2.3)
(1.9, 9.0, 2.1)

(1.9, 6.1, 2.2)

(0.9, 5.8, 3.1)

(0.7, 5.1, 3.2)
(0.6, 5.9, 3.2)
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PNAS papers

Research
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1900 2000 ?

Research
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The Evolution of Science
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A Classical Approach
 Clustering as Mixture Modeling

 Then "model selection" 
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 Model selection
 "intelligent" guess: ???
 cross validation: data-hungry 
 information theoretic:

 AIC
 TIC
 MDL :

 Bayes factor: need to compute data likelihood

 Posterior inference: 
we want to handle uncertainty of model complexity explicitly

 we favor a distribution that does not constrain M in a "closed" space!

 ),ˆ|(|)(minarg KKL MLgf 

)()|()|( MpMDpDMp 

 K,M

Parsimony,  Ockam's Razor

Model Selection vs. Posterior 
Inference
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Outline

 Motivation and challenge

 Dirichlet Process and Infinite Mixture
 Formulation
 Approximate Inference algorithm
 Example: population clustering

 Hierarchical Dirichlet Process and Multi-Task Clustering
 Formulation
 Application: joint multiple population clusteri

 Dynamic Dirichlet Process
 Temporal DPM
 Application: evolutionary clustering of documents

 Summary
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Clustering

 How to label them ?

 How many clusters ???

© Eric Xing @ CMU, 2014 9



 11  ,
 22  ,

 55  ,

 66  ,

 33  ,

 44  ,

…
centroid :=

Image ele. :=(x,

. (event, pevent) 

Random Partition of Probability 
Space
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Dirichlet Process
 A CDF, G, on possible worlds 

of random partitions follows a 
Dirichlet Process if for any 
measurable finite partition 
(1,2, .., m):

(G(1), G(2), …, G(m) ) ~ 
Dirichlet( G0(1), …., G0(m) )

where G0 is the base measure
and is the scale parameter

1
2

5
6

3
4

Thus a Dirichlet Process G defines a distribution of distribution 

a distribution

another 
distribution
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Stick-breaking Process
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Chinese Restaurant Process

CRP defines an exchangeable distribution on partitions over an (infinite) sequence of 
samples, such a distribution is formally known as the Dirichlet Process (DP)
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The Stick-breaking constructionThe CRP construction

Graphical Model Representations 
of DP


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Ancestral Inference

 Better recovery of the ancestors leads to better haplotyping results 
(because of more accurate grouping of common haplotypes)

 True haplotypes are obtainable with high cost, but they can validate model 
more subjectively (as opposed to examining saliency of clustering)

 Many other biological/scientific utilities 

Gn

Hn1 Hn2

Ak k



N

Essentially a clustering problem, but …
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Example: DP-haplotyper [Xing et al, 2004]

 Clustering human populations

 Inference: Markov Chain Monte Carlo (MCMC)
 Gibbs sampling
 Metropolis Hasting

Gn

Hn1 Hn2

A 

N

K

G

 G0 DP

infinite mixture components
(for population haplotypes)

Likelihood model
(for individual 

haplotypes and genotypes)
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{A} {A} {A} {A} {A} {A} …
3

1
2 4

5 6 7

8 9

The DP Mixture of Ancestral 
Haplotypes
 The customers around a table in CRP form a cluster

 associate a mixture component (i.e., a population haplotype) with a table 
 sample {a, } at each table from a base measure G0 to obtain the 

population haplotype and nucleotide substitution frequency for that 
component

 With p(h|{ }) and p(g|h1,h2), the CRP yields a posterior distribution on 
the number of population haplotypes (and on the haplotype 
configurations and the nucleotide substitution frequencies)
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 Single-locus mutation model

 Noisy observation model

Inheritance and Observation Models

…
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 Gibbs sampling for exploring the posterior distribution under 
the proposed model
 Integrate out the parameters such as    or    , and sample 

and  

 Gibbs sampling algorithm: draw samples of each random variable to be 
sampled given values of all the remaining variables

MCMC for Haplotype Inference
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Posterior                           Prior           x      Likelihood

CRP 

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MCMC for Haplotype Inference
1. Sample cie

(j), from 

2. Sample ak from 

3. Sample hie
(j) from

 For DP scale parameter : a vague inverse Gamma prior
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Convergence of Ancestral Inference
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DP vs. Finite Mixture via EM
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Outline

 Motivation and challenge

 Dirichlet Process and Infinite Mixture
 Formulation
 Approximate Inference algorithm
 Example: population clustering

 Hierarchical Dirichlet Process and Multi-Task Clustering
 Formulation
 Application: joint multiple population clustering

 Dynamic Dirichlet Process
 Temporal DPM
 Application: evolutionary clustering of documents

 Summary
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Multi-population Genetic 
Demography

 Pool everything together and solve 1 hap problem? 
 --- ignore population structures

 Solve 4 hap problems separately?
 --- data fragmentation

 Co-clustering … solve 4 coupled hap problems jointly
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 Two level Pólya urn scheme
 At the i-th step in j-th "group", 
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Hierarchical Dirichlet Process
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Results - Simulated Data
 5 populations with 20 individuals each (two kinds of mutation 

rates)
 5 populations share parts of their ancestral haplotypes
 the sequence length = 10

Haplotype error
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Results - International HapMap 
DB
 Different sample sizes, and different # of sub-populations
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Latent Dirichlet Allocation (LDA)

“beach”

Topic Models for Images
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Infinite Topic Model for Image

A single image 
with k topic
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Outline
 Motivation and challenge

 Dirichlet Process and Infinite Mixture
 Formulation
 Approximate Inference algorithm
 Example: population clustering

 Hierarchical Dirichlet Process and Multi-Task Clustering
 Formulation
 Application: joint multiple population clustering

 Dynamic Dirichlet Process
 Temporal DPM
 Application: evolutionary clustering of documents

 Summary
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 Adapts the number of mixture components over time
 Mixture components can die out
 New mixture components are born at any time
 Retained mixture components parameters evolve according to a Markovian 

dynamics

1900 2000

CS

BioPhy

Research 
Papers

Topics

Evolutionary Clustering
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 The Recurrent Chinese Restaurant Process

 The restaurant operates in epochs
 The restaurant is closed at the end of each epoch
 The state of the restaurant at time epoch t depends on that at time epoch t-1

 Can be extended to higher-order dependencies.

Temporal DPM [Ahmed and Xing 2008]
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2,11,1 3,1 T=1

T=22,21,2 3,1
N1,1=2 N2,1=3 N3,1=1

4,2

T=32,21,2 4,2

N2,3

N2,3 =
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TDPM Generative Power

W=T


DPM
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Independent 
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The Big Picture
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 A non-parametric Bayesian model for Pattern Uncovery
 Finite mixture model of latent patterns (e.g., image segments, objects)
 infinite mixture of propotypes: alternative to model selection 
 hierarchical infinite mixture
 temporal infinite mixture model

 Applications in general data-mining … 

Summary
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Shortcomings of Hidden Markov 
Model

 HMM models capture dependences between each state and only its 
corresponding observation  
 NLP example: In a sentence segmentation task, each segmental state may 

depend not just on a single word (and the adjacent segmental stages), but also 
on the (non-local) features of the whole line such as line length, indentation, 
amount of white space, etc.

 Mismatch between learning objective function and prediction 
objective function
 HMM learns a joint distribution of states and observations P(Y, X), but in a 

prediction task, we need the conditional probability P(Y|X)

Y1 Y2 … … … Yn

X1 X2 … … … Xn
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