Advanced Introduction to
Machine Learning

10715, Fall 2014

Nonparametric Bayesian Models

--Learning/Reasoning in Open Possible Worlds

Reading:

© Eric Xing @ CMU, 2014




Clustering
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Image Segmentation

e How to segment images?

e Manual segmentation (very expensive)

e Algorithm segmentation
e K-means
e Statistical mixture models
e Spectral clustering

e Problems with most existing

algorithms
2 e Ignore the spatial information
A E f_& | ; ° Pe.rform the segmentation one image at
g 7 a time
(1 , e Need to specify the number of segments
IMMHI“\ a priori

© Eric Xing @ CMU, 2014 3



Object Recognition and Tracking | s¢
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The Evolution of Science ot

Research
circles

Researchg:
topics
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A Classical Approach

e Clustering as Mixture Modeling

e Then "model selection”
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Model Selection vs. Posterior T
Inference oo

e Model selection
e ‘intelligent" guess: ??7?
e cross validation: data-hungry ®
e information theoretic:

AIC _ A
Tic b argminKLIF ()1 916, K))
MDL Parsimony, Ockam's Razor
e Bayes factor: need to compute data likelihood

e Posterior inference:
we want to handle uncertainty of model complexity explicitly

p(M[D) e p(D|M)p(M)
M=1{6,K}

e we favor a distribution that does not constrain M in a "closed" space!
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Outline

e Motivation and challenge

Dirichlet Process and Infinite Mixture

e  Formulation
e  Approximate Inference algorithm
e  Example: population clustering

Hierarchical Dirichlet Process and Multi-Task Clustering

° Formulation

e  Application: joint multiple population clusteri

Dynamic Dirichlet Process

e Temporal DPM

e  Application: evolutionary clustering of documents

Summary

© Eric Xing @ CMU, 2014



Clustering

e How to label them ?

e How many clusters ???
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Random Partition of Probability
Space




e A CDF, G, on possible worlds
of random partitions follows a

Dirichlet Process .o
Dirichlet Process if for any

® P gl
® o
@ @ measurable finite partition

@ a distribution (¢1,¢2’ . ¢m):

® @

®
@ gxﬂ (G(¢), G(#), -, Gldh) ) ~
@ Dirichlet( aGy(¢,), ..., aGO(¢,) )
@ \aﬁother
® @

distribution

@ @ where G, is the base measure
and o iIs the scale parameter

Thus a Dirichlet Process G defines a distribution of distribution
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Stick-breaking Process

p. ~ Beta(l, aﬁ“
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Chinese Restaurant Process o2

2+« +

1 2 o
3+a 3+a 3+a

m, m, a
I+a-1 i+a-1 i+a-1

CRP defines an exchangeable distribution on partitions over an (infinite) sequence of

samples, such a distribution is formally known as the Dirichlet Process (DP)
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Graphical Model Representations
of DP

ol

X

The CRP construction The Stick-breaking construction

© Eric Xing @ CMU, 2014 14



Ancestral Inference
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e Better recovery of the ancestors leads to better haplotyping results
(because of more accurate grouping of common haplotypes)

e True haplotypes are obtainable with high cost, but they can validate model

more subjectively (as opposed to examining saliency of clustering)

e Many other biological/scientific utilities

Eric Xing @ CMU, 2014
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Example: DP-haplotyper wmgea. o

e Clustering human populations

:

6Ro)
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DP

Infinite mixture components
(for population haplotypes)

Likelihood model
(for individual
haplotypes and genotypes)

e Inference: Markov Chain Monte Carlo (MCMC)

Gibbs sampling
Metropolis Hasting

© Eric Xing @ CMU, 2014
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The DP Mixture of Ancestral 4
Haplotypes oo

e The customers around a table in CRP form a cluster
e associate a mixture component (i.e., a population haplotype) with a table

e sample {a, &} at each table from a base measure G, to obtain the
population haplotype and nucleotide substitution frequency for that

component
@ ° PY 8 9
{Ag  {Adg {Adg {Adg {Adg {AG
@ ® 6 ®

e With p(h|{A4, }) and p(g|h,,h,), the CRP yields a posterior distribution on
the number of population haplotypes (and on the haplotype
configurations and the nucleotide substitution frequencies)
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000
0000
o000
. . °ce
Inheritance and Observation Models °
e Single-locus mutation model g A1 ™
/
v //’ 3 A-a A pool
0 for h, =a, |/ " -
PH(ht|at,¢9)= 1-6 for htiat ‘iz
|B|-1 :\\
— h, =a, with prob. 8 Y[
\\\ |_|il A
\| Haplotypes
e Noisy observation model | H;, A
:
1 2 |
v
P (9 ]hy,hy):
g, =h,, ®h,, with prob. A [ Gj bt } Genotype
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MCMC for Haplotype Inference o

e Gibbs sampling for exploring the posterior distribution under
the proposed model

e Integrate out the parameters such as & or A, and sample Cie , Ay
and hl

e

p(ci, =k|cp_iq.h.a)ecp(c, =k|cy)p(h |ahij.c)

Posterior Prior X Likelihood

[_/\CRP ]

e Gibbs sampling algorithm: draw samples of each random variable to be
sampled given values of all the remaining variables
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MCMC for Haplotype Inference o

1. Sample ¢; ¥, from ¢ = k|l h, a)

(J)

x ple;” = k‘|c[‘j"€] m, n)p(/ (”|ak c. hi=iel)

X (m ,\ l + 78 )p(F “ |(1A l[ ey fork=1,.,K+1

2. Sample a, from plarsle,h) x ] p(h‘ﬁ-f.flﬂ-m151-‘{'3.)
jf‘i'e|cgi).t:k

I'(a , + l X r *3 , + ll‘
_ (an + Ut ) T( 5y “), R )

C(an + Bn + mg)(|B| — ]_)lk.t

- 1)
3. Sample h, 0 from  P(hl 0" y.c.a.8)

e For DP scale parameter «: a vague inverse Gamma prior
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Convergence of Ancestral Inference
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DP vs. Finite Mixture via EM
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Outline

e Motivation and challenge

Dirichlet Process and Infinite Mixture

e  Formulation
e  Approximate Inference algorithm
e  Example: population clustering

Hierarchical Dirichlet Process and Multi-Task Clustering

° Formulation

e  Application: joint multiple population clustering

Dynamic Dirichlet Process

e Temporal DPM

e  Application: evolutionary clustering of documents

Summary

© Eric Xing @ CMU, 2014
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Multi-population Genetic i

Demography -
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e Pool everything together and solve 1 hap problem?

e  ---ignore population structures
e Solve 4 hap problems separately?
° --- data fragmentation

e Co-clustering ... solve 4 coupled hap problems jointly
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Hierarchical Dirichlet Process

Teh et al., 2005, Xing et al. 2005

e Two level Pblya urn scheme
e Atthe i-th step in j-th "group”,

m. Oracle

— Choose 6, with prab. K
[Tk A @ Choose , with prob.

—Gototheupper level DP

Drawanew sample

with prob.

e with prob.

an"‘?/

4
an+7/
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Results - Simulated Data .

e 5 populations with 20 individuals each (two kinds of mutation
rates)

e 5 populations share parts of their ancestral haplotypes
e the sequence length =10

Comparison of haplotype error (errs) Comparison of haplotype error (erri)
0.5/ [WEHDP - 0.5/ [MEHDP
EmoP EmoP
[JPhase [JPhase
0.4} | Haplotyper - 0.4} ([ElHaplotyper L
EECHB Bl CHB
03t - 03t

E
o

0.2¢ 0.2

llﬂll " wliril
0 _-.- [E=] -.. 0
8=0.01 8=0.05

Haplotype error

=0.05
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Results - International HapMap cece

D

B

e Different sample sizes, and different # of sub-populations

I-Four pops [__]Two pops ] One pop

err_of short SNPs in CEU+YRI population (1=60)

uuuuuuuuuuuuuuuuuuu

HDP oP P=AJE Hapiotyper CHB

Iea(‘h = 60

err_ of short SNPs in CEU+YRI population (1=20)
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Topic Models for Images o°

© Eric Xing @ CMU, 2014 28



Infinite Topic Model for Image

k

A single image
with k topic

An LDA

H
Stick
breaking

T g )0
o0

A single image
with inf-topic

A DP

J
J images
with inf-topic

An HDP
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Outline

e Motivation and challenge

e Dirichlet Process and Infinite Mixture

° Formulation
e  Approximate Inference algorithm
° Example: population clustering

e Hierarchical Dirichlet Process and Multi-Task Clustering

e  Formulation
e  Application: joint multiple population clustering

e Dynamic Dirichlet Process

e Temporal DPM
e  Application: evolutionary clustering of documents

e Summary

© Eric Xing @ CMU, 2014
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Evolutionary Clustering o

e Adapts the number of mixture components over time
e Mixture components can die out
e New mixture components are born at any time

e Retained mixture components parameters evolve according to a Markovian
dynamics

Topics

Research *.
Papers

1900
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Temporal DPM (anmed and xing 2008] :

e The Recurrent Chinese Restaurant Process

e The restaurant operates in epochs
e The restaurant is closed at the end of each epoch

e The state of the restaurant at time epoch t depends on that at time epoch t-1
Can be extended to higher-order dependencies.
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T=3
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The Big Picture

Fixed-dimensions Dynamic

Model Dimension
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Summary oo

e A non-parametric Bayesian model for Pattern Uncovery

e Finite mixture model of latent patterns (e.g., image segments, objects)
—> infinite mixture of propotypes: alternative to model selection
—> hierarchical infinite mixture
—> temporal infinite mixture model

e Applications in general data-mining ...
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Shortcomings of Hidden Markov | 8322
Model oo

¢ HMM models capture dependences between each state and only its
corresponding observation

e NLP example: In a sentence segmentation task, each segmental state may
depend not just on a single word (and the adjacent segmental stages), but also
on the (non-local) features of the whole line such as line length, indentation,
amount of white space, etc.

e Mismatch between learning objective function and prediction

objective function

e HMM learns a joint distribution of states and observations P(Y, X), butin a
prediction task, we need the conditional probability P(Y|X)
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