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Clustering
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Image Segmentation
 How to segment images?

 Manual segmentation (very expensive)
 Algorithm segmentation

 K-means
 Statistical mixture models
 Spectral clustering

 Problems with most existing 
algorithms
 Ignore the spatial information
 Perform the segmentation one image at 

a time
 Need to specify the number of segments 

a priori
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Object Recognition and Tracking

t=1 t=2 t=3

(1.8, 7.4, 2.3)
(1.9, 9.0, 2.1)

(1.9, 6.1, 2.2)

(0.9, 5.8, 3.1)

(0.7, 5.1, 3.2)
(0.6, 5.9, 3.2)
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PNAS papers

Research
topics

1900 2000 ?

Research
circles

The Evolution of Science

CS

BioPhy
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A Classical Approach
 Clustering as Mixture Modeling

 Then "model selection" 
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 Model selection
 "intelligent" guess: ???
 cross validation: data-hungry 
 information theoretic:

 AIC
 TIC
 MDL :

 Bayes factor: need to compute data likelihood

 Posterior inference: 
we want to handle uncertainty of model complexity explicitly

 we favor a distribution that does not constrain M in a "closed" space!

 ),ˆ|(|)(minarg KKL MLgf 

)()|()|( MpMDpDMp 

 K,M

Parsimony,  Ockam's Razor

Model Selection vs. Posterior 
Inference
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Outline

 Motivation and challenge

 Dirichlet Process and Infinite Mixture
 Formulation
 Approximate Inference algorithm
 Example: population clustering

 Hierarchical Dirichlet Process and Multi-Task Clustering
 Formulation
 Application: joint multiple population clusteri

 Dynamic Dirichlet Process
 Temporal DPM
 Application: evolutionary clustering of documents

 Summary
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Clustering

 How to label them ?

 How many clusters ???
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Dirichlet Process
 A CDF, G, on possible worlds 

of random partitions follows a 
Dirichlet Process if for any 
measurable finite partition 
(1,2, .., m):

(G(1), G(2), …, G(m) ) ~ 
Dirichlet( G0(1), …., G0(m) )

where G0 is the base measure
and is the scale parameter

1
2

5
6

3
4

Thus a Dirichlet Process G defines a distribution of distribution 

a distribution

another 
distribution
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Stick-breaking Process
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Chinese Restaurant Process

CRP defines an exchangeable distribution on partitions over an (infinite) sequence of 
samples, such a distribution is formally known as the Dirichlet Process (DP)
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The Stick-breaking constructionThe CRP construction

Graphical Model Representations 
of DP
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Ancestral Inference

 Better recovery of the ancestors leads to better haplotyping results 
(because of more accurate grouping of common haplotypes)

 True haplotypes are obtainable with high cost, but they can validate model 
more subjectively (as opposed to examining saliency of clustering)

 Many other biological/scientific utilities 

Gn

Hn1 Hn2

Ak k



N

Essentially a clustering problem, but …
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Example: DP-haplotyper [Xing et al, 2004]

 Clustering human populations

 Inference: Markov Chain Monte Carlo (MCMC)
 Gibbs sampling
 Metropolis Hasting

Gn

Hn1 Hn2

A 

N

K

G

 G0 DP

infinite mixture components
(for population haplotypes)

Likelihood model
(for individual 

haplotypes and genotypes)
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{A} {A} {A} {A} {A} {A} …
3

1
2 4

5 6 7

8 9

The DP Mixture of Ancestral 
Haplotypes
 The customers around a table in CRP form a cluster

 associate a mixture component (i.e., a population haplotype) with a table 
 sample {a, } at each table from a base measure G0 to obtain the 

population haplotype and nucleotide substitution frequency for that 
component

 With p(h|{ }) and p(g|h1,h2), the CRP yields a posterior distribution on 
the number of population haplotypes (and on the haplotype 
configurations and the nucleotide substitution frequencies)
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 Single-locus mutation model

 Noisy observation model

Inheritance and Observation Models

…
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 Gibbs sampling for exploring the posterior distribution under 
the proposed model
 Integrate out the parameters such as    or    , and sample 

and  

 Gibbs sampling algorithm: draw samples of each random variable to be 
sampled given values of all the remaining variables

MCMC for Haplotype Inference
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Posterior                           Prior           x      Likelihood

CRP 


© Eric Xing @ CMU, 2014 19



MCMC for Haplotype Inference
1. Sample cie

(j), from 

2. Sample ak from 

3. Sample hie
(j) from

 For DP scale parameter : a vague inverse Gamma prior
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Convergence of Ancestral Inference
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DP vs. Finite Mixture via EM
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Outline

 Motivation and challenge

 Dirichlet Process and Infinite Mixture
 Formulation
 Approximate Inference algorithm
 Example: population clustering

 Hierarchical Dirichlet Process and Multi-Task Clustering
 Formulation
 Application: joint multiple population clustering

 Dynamic Dirichlet Process
 Temporal DPM
 Application: evolutionary clustering of documents

 Summary

© Eric Xing @ CMU, 2014 23



Multi-population Genetic 
Demography

 Pool everything together and solve 1 hap problem? 
 --- ignore population structures

 Solve 4 hap problems separately?
 --- data fragmentation

 Co-clustering … solve 4 coupled hap problems jointly
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 Two level Pólya urn scheme
 At the i-th step in j-th "group", 
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Hierarchical Dirichlet Process
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Results - Simulated Data
 5 populations with 20 individuals each (two kinds of mutation 

rates)
 5 populations share parts of their ancestral haplotypes
 the sequence length = 10

Haplotype error
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Results - International HapMap 
DB
 Different sample sizes, and different # of sub-populations
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Latent Dirichlet Allocation (LDA)

“beach”

Topic Models for Images
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Infinite Topic Model for Image

A single image 
with k topic
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J images 
with inf-topic

An HDP
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Outline
 Motivation and challenge

 Dirichlet Process and Infinite Mixture
 Formulation
 Approximate Inference algorithm
 Example: population clustering

 Hierarchical Dirichlet Process and Multi-Task Clustering
 Formulation
 Application: joint multiple population clustering

 Dynamic Dirichlet Process
 Temporal DPM
 Application: evolutionary clustering of documents

 Summary
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 Adapts the number of mixture components over time
 Mixture components can die out
 New mixture components are born at any time
 Retained mixture components parameters evolve according to a Markovian 

dynamics

1900 2000

CS

BioPhy

Research 
Papers

Topics

Evolutionary Clustering
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 The Recurrent Chinese Restaurant Process

 The restaurant operates in epochs
 The restaurant is closed at the end of each epoch
 The state of the restaurant at time epoch t depends on that at time epoch t-1

 Can be extended to higher-order dependencies.

Temporal DPM [Ahmed and Xing 2008]
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© Eric Xing @ CMU, 2014 33



TDPM Generative Power

W=T


DPM

W=4


TDPM

W= 0
any)

Independent 
DPMs

Power‐law
curve

© Eric Xing @ CMU, 2014 34



© Eric Xing @ CMU, 2014 35



The Big Picture
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Fixed-dimensions Dynamic 
clustering
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 A non-parametric Bayesian model for Pattern Uncovery
 Finite mixture model of latent patterns (e.g., image segments, objects)
 infinite mixture of propotypes: alternative to model selection 
 hierarchical infinite mixture
 temporal infinite mixture model

 Applications in general data-mining … 

Summary
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Shortcomings of Hidden Markov 
Model

 HMM models capture dependences between each state and only its 
corresponding observation  
 NLP example: In a sentence segmentation task, each segmental state may 

depend not just on a single word (and the adjacent segmental stages), but also 
on the (non-local) features of the whole line such as line length, indentation, 
amount of white space, etc.

 Mismatch between learning objective function and prediction 
objective function
 HMM learns a joint distribution of states and observations P(Y, X), but in a 

prediction task, we need the conditional probability P(Y|X)

Y1 Y2 … … … Yn

X1 X2 … … … Xn

© Eric Xing @ CMU, 2014 38


