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Machine learning for apartment 
hunting 

 Now you've moved to 
Pittsburgh!! 
And you want to find the most 
reasonably priced apartment 
satisfying your needs:

square-ft., # of bedroom, distance to 
campus …

Living area (ft2) # bedroom Rent ($)

230 1 600
506 2 1000
433 2 1100
109 1 500
…
150 1 ?
270 1.5 ?
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The learning problem

 Features: 
 Living area, distance to campus, # 

bedroom …
 Denote as x=[x1, x2, … xk]

 Target: 
 Rent
 Denoted as y

 Training set:
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Linear Regression
 Assume that Y (target) is a linear function of X (features):

 e.g.:

 let's assume a vacuous "feature" X0=1 (this is the intercept term, why?), and 
define the feature vector to be:

 then we have the following general representation of the linear function:

 Our goal is to pick the optimal       . How!
 We seek      that minimize the following cost function:
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The Least-Mean-Square (LMS) 
method
 The Cost Function:

 Consider a gradient descent algorithm:
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The Least-Mean-Square (LMS) 
method
 Now we have the following descent rule: 

 For a single training point, we have: 

 This is known as the LMS update rule, or the Widrow-Hoff learning rule
 This is actually a "stochastic", "coordinate" descent algorithm
 This can be used as a on-line algorithm
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Geometry and Convergence of LMS

N=1 N=2 N=3

Claim: when the step size  satisfies certain condition, and when certain 
other technical conditions are satisfied, LMS will converge to an “optimal 
region”.   
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Steepest Descent and LMS
 Steepest descent

 Note that:

 This is as a batch gradient descent algorithm
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The normal equations
 Write the cost function in matrix form:

 To minimize J(θ), take derivative and set to zero:
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Comments on the normal 
equation
 In most situations of practical interest, the number of data 

points N is larger than the dimensionality k of the input space 
and the matrix X is of full column rank. If this condition holds, 
then it is easy to verify that XTX is necessarily invertible.

 The assumption that XTX is invertible implies that it is positive 
definite, thus at the critical point we have found is a minimum. 

 What if X has less than full column rank?  regularization 
(later). 
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Direct and Iterative methods
 Direct methods: we can achieve the solution in a single step 

by solving the normal equation
 Using Gaussian elimination or QR decomposition, we converge in a finite number 

of steps
 It can be infeasible when data are streaming in in real time, or of very large 

amount

 Iterative methods: stochastic or steepest gradient
 Converging in a limiting sense
 But more attractive in large practical problems 
 Caution is needed for deciding the learning rate 
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Convergence rate
 Theorem: the steepest descent equation algorithm 

converge to the minimum of the cost characterized by 
normal equation:

If 

 A formal analysis of LMS need more math-mussels; in 
practice, one can use a small , or gradually decrease .
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A Summary:
 LMS update rule

 Pros: on-line, low per-step cost, fast convergence and perhaps less prone to local 
optimum

 Cons: convergence to optimum not always guaranteed

 Steepest descent

 Pros: easy to implement, conceptually clean, guaranteed convergence
 Cons: batch, often slow converging

 Normal equations

 Pros: a single-shot algorithm! Easiest to implement.
 Cons: need to compute pseudo-inverse (XTX)-1, expensive, numerical issues 

(e.g., matrix is singular ..), although there are ways to get around this …
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Geometric Interpretation of LMS
 The predictions on the training data are:

 Note that

and 

is the orthogonal projection of
into the space spanned by the columns 
of X
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Probabilistic Interpretation of 
LMS
 Let us assume that the target variable and the inputs are 

related by the equation:

where ε is an error term of unmodeled effects or random noise

 Now assume that ε follows a Gaussian N(0,σ), then we have:

 By independence assumption:
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Probabilistic Interpretation of 
LMS, cont.
 Hence the log-likelihood is:

 Do you recognize the last term?

Yes it is: 

 Thus under independence assumption, LMS is equivalent to 
MLE of θ !
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Case study: 
predicting gene expression

The genetic picture

CGTTTCACTGTACAATTT
causal SNPs

a univariate phenotype:

i.e., the expression intensity of 
a gene
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Individual 
1

Individual 
2

Individual 
N

Phenotype (BMI)

2.5

4.8

4.7

Genotype

. . C . . . . .  T . . C . . . . . . . T . . .

. . C . . . . .  A . . C . . . . . . . T . . .

. . G  . . . . . A . . G . . . . . . . A . . .

. . C . . . . .  T . . C . . . . . . . T . . .

. . G  . . . . . T . . C . . . . . . . T . . .

. . G  . . . . . T . . G . . . . . . . T . . .

Causal SNPBenign SNPs

…
Association Mapping as Regression
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Individual 
1

Individual 
2

Individual 
N

Phenotype (BMI)

2.5

4.8

4.7

Genotype

. . 0 . . . . .  1 . . 0 . . . . . . . 0 . . .

. . 1  . . . . . 1 . . 1 . . . . . . . 1 . . .

. . 2  . . . . . 2 . . 1 . . . . . . . 0 . . .

…
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 SNPs with large 

|βj| are relevant

Association Mapping as Regression
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Experimental setup
 Asthama dataset

 543 individuals, genotyped at 34 SNPs
 Diploid data was transformed into 0/1 (for homozygotes) or 2 (for heterozygotes)
 X=543x34 matrix
 Y=Phenotype variable (continuous)

 A single phenotype was used for regression

 Implementation details
 Iterative methods: Batch update and online update implemented.
 For both methods, step size α is chosen to be a small fixed value (10-6). This 

choice is based on the data used for experiments.
 Both methods are only run to a maximum of 2000 epochs or until the change in 

training MSE is less than 10-4

© Eric Xing @ CMU, 2014 20



Convergence Curves

 For the batch 
method, the training 
MSE is initially large 
due to uninformed 
initialization

 In the online update, 
N updates for every 
epoch reduces MSE 
to a much smaller 
value.

© Eric Xing @ CMU, 2014
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The Learned Coefficients
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Multivariate Regression for Trait 
Association Analysis

Xy

2.1 x=

x= β

Association Strength

?
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GenotypeTrait

Multivariate Regression for Trait 
Association Analysis

Many non-zero associations: 
Which SNPs are truly significant?

2.1 x=

Association Strength
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Sparsity
 One common assumption to make sparsity.

 Makes biological sense: each phenotype is likely to be 
associated with a small number of SNPs, rather than all the 
SNPs.

 Makes statistical sense: Learning is now feasible in high 
dimensions with small sample size
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Sparsity: In a mathematical sense
 Consider least squares linear regression problem:
 Sparsity means most of the beta’s are zero.

 But this is not convex!!! Many local optima, computationally 
intractable.
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L1 Regularization (LASSO)
(Tibshirani, 1996) 

 A convex relaxation.

 Still enforces sparsity!

Constrained Form Lagrangian Form
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Theoretical Guarantees
 Assumptions

 Dependency Condition: Relevant Covariates are not overly dependent
 Incoherence Condition: Large number of irrelevant covariates cannot be too 

correlated with relevant covariates
 Strong concentration bounds: Sample quantities converge to expected values 

quickly 

If these are assumptions are met, LASSO will asymptotically recover 
correct subset of covariates that relevant.

© Eric Xing @ CMU, 2014 28



Consistent Structure Recovery
[Zhao and Yu 2006]
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Genotype

x=2.1 

Trait

Lasso for Reducing False Positives

Many zero associations (sparse results), 
but what if there are multiple related traits?
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Penalty    
for sparsity
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Ridge Regression vs Lasso

Ridge Regression:  Lasso: HOT
!

Lasso (l1 penalty) results in sparse solutions – vector with more zero coordinates
Good for high‐dimensional problems – don’t have to store all coordinates!

βs with 
constant 
l1 norm

βs with constant J(β)
(level sets of J(β))

βs with 
constant 
l2 norm

β2

β1

X X
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Bayesian Interpretation
 Treat the distribution parameters  also as a random variable
 The a posteriori distribution of  after seem the data is:

This is Bayes Rule

likelihood marginal
priorlikelihoodposterior 









dpDp
pDp

Dp
pDpDp

)()|(
)()|(

)(
)()|()|(

The prior p(.) encodes our prior knowledge about the domain
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What if (XTX) is not invertible ? 

log likelihood log prior

Prior belief that β is Gaussian with zero‐mean biases solution to “small” β

I) Gaussian Prior

0

Ridge Regression

Closed form: HW

Regularized Least Squares and 
MAP
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Regularized Least Squares and 
MAP

log likelihood log prior

Prior belief that β is Laplace with zero‐mean biases solution to “small” β

Lasso

Closed form: HW

II) Laplace Prior

What if (XTX) is not invertible ? 
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Take home message
 Gradient descent

 On-line
 Batch

 Normal equations
 Geometric interpretation of LMS
 Probabilistic interpretation of LMS, and equivalence of LMS and 

MLE under certain assumption (what?) 
 Sparsity: 

 Approach: ridge vs. lasso regression
 Interpretation: regularized regression versus Bayesian regression
 Algorithm: convex optimization (we did not discuss  this)

 LR does not mean fitting linear relations, but linear combination or 
basis functions (that can be non-linear)

 Weighting points by importance versus by fitness
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After class material …
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Advanced Material: 
Beyond basic LR
 LR with non-linear basis functions

 Locally weighted linear regression

 Regression trees and Multilinear Interpolation

We will discuss this in next class after we set the state right!
(if we’ve got time )
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LR with non-linear basis 
functions
 LR does not mean we can only deal with linear relationships

 We are free to design (non-linear) features under LR

where the j(x) are fixed basis functions (and we define 0(x) = 1).

 Example: polynomial regression:

 We will be concerned with estimating (distributions over) the 
weights θ and choosing the model order M.
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Basis functions
 There are many basis functions, e.g.:

 Polynomial

 Radial basis functions

 Sigmoidal

 Splines, Fourier, Wavelets, etc
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1D and 2D RBFs
 1D RBF

 After fit:

© Eric Xing @ CMU, 2014 40



Good and Bad RBFs
 A good 2D RBF

 Two bad 2D RBFs
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Overfitting and underfitting

xy 10   2
210 xxy    
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Bias and variance
 We define the bias of a model to be the expected 

generalization error even if we were to fit it to a very (say, 
infinitely) large training set.

 By fitting "spurious" patterns in the training set, we might 
again obtain a model with large generalization error. In this 
case, we say the model has large variance.
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Locally weighted linear 
regression

 The algorithm:
Instead of minimizing

now we fit θ to minimize

Where do wi's come from?                                              

 where x is the query point for which we'd like to know its corresponding y

 Essentially we put higher weights on (errors on) training 
examples that are close to the query point (than those that are 
further away from the query)
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Parametric vs. non-parametric
 Locally weighted linear regression is the second example we 

are running into of a non-parametric algorithm. (what is the 
first?)

 The (unweighted) linear regression algorithm that we saw 
earlier is known as a parametric learning algorithm 
 because it has a fixed, finite number of parameters (the θ), which are fit to the 

data;
 Once we've fit the θ and stored them away, we no longer need to keep the 

training data around to make future predictions.
 In contrast, to make predictions using locally weighted linear regression, we need 

to keep the entire training set around. 

 The term "non-parametric" (roughly) refers to the fact that the 
amount of stuff we need to keep in order to represent the 
hypothesis grows linearly with the size of the training set.
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Robust Regression

 The best fit from a quadratic 
regression

 But this is probably better …

How can we do this?
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LOESS-based Robust Regression
 Remember what we do in "locally weighted linear regression"?
 we "score" each point for its impotence

 Now we score each point according to its "fitness"

(Courtesy to Andrew Moor) © Eric Xing @ CMU, 2014 47



Robust regression
 For k = 1 to R…

 Let (xk ,yk) be the kth datapoint
 Let yest

k be predicted value of yk

 Let wk be a weight for data point k that is large if 
the data point fits well and small if it fits badly:

 Then redo the regression using weighted data points.

 Repeat whole thing until converged!

 2)( est
kkk yyw  
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Robust regression—probabilistic 
interpretation
 What regular regression does:

Assume yk was originally generated using the following recipe:

Computational task is to find the Maximum Likelihood 
estimation of θ

),( 20  N k
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Robust regression—probabilistic 
interpretation
 What LOESS robust regression does:

Assume yk was originally generated using the following recipe:

with probability p:

but otherwise

Computational task is to find the Maximum Likelihood 
estimates of θ, p, µ and σhuge. 

 The algorithm you saw with iterative reweighting/refitting
does this computation for us. Later you will find that it is an 
instance of the famous E.M. algorithm
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Regression Tree
 Decision tree for regression

Gender Rich? Num. 
Children

# travel 
per yr.

Age

F No 2 5 38

M No 0 2 25

M Yes 1 0 72

: : : : :

Gender?

Predicted age=39 Predicted age=36

Female Male
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A conceptual picture
 Assuming regular regression trees, can you sketch a graph of 

the fitted function y*(x) over this diagram?
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How about this one?
 Multilinear Interpolation

 We wanted to create a continuous and piecewise linear fit to 
the data
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Take home message
 Gradient descent

 On-line
 Batch

 Normal equations
 Geometric interpretation of LMS
 Probabilistic interpretation of LMS, and equivalence of LMS and 

MLE under certain assumption (what?) 
 Sparsity: 

 Approach: ridge vs. lasso regression
 Interpretation: regularized regression versus Bayesian regression
 Algorithm: convex optimization (we did not discuss  this)

 LR does not mean fitting linear relations, but linear combination or 
basis functions (that can be non-linear)

 Weighting points by importance versus by fitness
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Appendix
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Parameter Learning from iid Data
 Goal: estimate distribution parameters  from a dataset of N

independent, identically distributed (iid), fully observed, 
training cases

D = {x1, . . . , xN}

 Maximum likelihood estimation (MLE)
1. One of the most common estimators
2. With iid and full-observability assumption, write L() as the likelihood of the data:

3. pick the setting of parameters most likely to have generated the data we saw:
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Example: Bernoulli model
 Data: 

 We observed N iid coin tossing: D={1, 0, 1, …, 0}

 Representation:
Binary r.v:

 Model: 

 How to write the likelihood of a single observation xi ? 

 The likelihood of datasetD={x1, …,xN}:
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Maximum Likelihood Estimation
 Objective function: 

 We need to maximize this w.r.t. 

 Take derivatives wrt 

 Sufficient statistics
 The counts,                                          are sufficient statistics of data D
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Overfitting
 Recall that for Bernoulli Distribution, we have

 What if we tossed too few times so that we saw zero head?
We have                   and we will predict that the probability of 
seeing a head next is zero!!! 

 The rescue: "smoothing"
 Where n' is know as the pseudo- (imaginary) count

 But can we make this more formal?
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Bayesian Parameter Estimation
 Treat the distribution parameters  also as a random variable
 The a posteriori distribution of  after seem the data is:

This is Bayes Rule

likelihood marginal
priorlikelihoodposterior 
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The prior p(.) encodes our prior knowledge about the domain
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Frequentist Parameter Estimation 
Two people with different priors p() will end up with 
different estimates p(|D).

 Frequentists dislike this “subjectivity”.
 Frequentists think of the parameter as a fixed, unknown 

constant, not a random variable.
 Hence they have to come up with different "objective" 

estimators (ways of computing from data), instead of using 
Bayes’ rule.
 These estimators have different properties, such as being “unbiased”, “minimum 

variance”, etc.
 The maximum likelihood estimator, is one such estimator.
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Discussion

 or p(), this is the problem!

Bayesians know it
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Bayesian estimation for Bernoulli 
 Beta distribution:  

 When x is discrete

 Posterior distribution of  : 

 Notice the isomorphism of the posterior to the prior, 
 such a prior is called a conjugate prior
  and  are hyperparameters (parameters of the prior) and correspond to the 

number of “virtual” heads/tails (pseudo counts)
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Bayesian estimation for 
Bernoulli, con'd 
 Posterior distribution of  :

 Maximum a posteriori (MAP) estimation: 

 Posterior mean estimation:

 Prior strength: A=+
 A can be interoperated as the size of an imaginary data set from which we obtain 

the pseudo-counts
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Effect of Prior Strength
 Suppose we have a uniform prior (==1/2), 

and we observe
 Weak prior A = 2. Posterior prediction:

 Strong prior A = 20. Posterior prediction:

 However, if we have enough data, it washes away the prior. 
e.g.,                                         .  Then the estimates under 
weak and strong prior are            and            ,  respectively, 
both of which are close to 0.2

),( 82  th nnn

250
102
21282 .)',,|( 




  
th nnhxp

400
1020
2102082 .)',,|( 




  
th nnhxp

),( 800200  th nnn

10002
2001




100020
20010




© Eric Xing @ CMU, 2014 65



Example 2: Gaussian density
 Data: 

 We observed N iid real samples: 
D={-0.1, 10, 1, -5.2, …, 3}

 Model: 

 Log likelihood:

 MLE: take derivative and set to zero:
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MLE for a multivariate-Gaussian
 It can be shown that the MLE for µ and Σ is

where the scatter matrix is

 The sufficient statistics are nxn and nxnxn
T.

 Note that XTX=nxnxn
T may not be full rank (eg. if N <D), in which case ΣML is not 

invertible
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Bayesian estimation

 Normal Prior:  

 Joint probability: 

 Posterior:
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Bayesian estimation: unknown µ, known σ

 The posterior mean is a convex combination of the prior and the MLE, with 
weights proportional to the relative noise levels.

 The precision of the posterior 1/σ2
N is the precision of the prior 1/σ2

0 plus one 
contribution of data precision 1/σ2 for each observed data point.

 Sequentially updating the mean
 µ∗ = 0.8 (unknown),  (σ2)∗ = 0.1 (known)

 Effect of single data point

 Uninformative (vague/ flat) prior, σ2
0 →∞
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